高强韧镁合金的表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有密度小、比强度和比刚度高、减震性好、电磁屏蔽性好等特点,但它的耐蚀性差,限制了其广泛应用。本文采用微弧氧化、直接化学镀、化学转化等表面处理方法在ZK61镁合金基体上制得保护涂层,提高了镁合金的耐蚀性,延长了其使用寿命。
     在铝酸盐和硅酸盐体系电解液中对ZK61镁合金进行了微弧氧化处理。随氧化时间和电流密度的增大,镁合金微弧氧化膜层中微孔的数量减少,但微孔的直径和表面粗糙度增大,甚至有裂纹出现。膜层厚度随氧化时间和电流密度的增加而线性增长,但与基体的结合力明显降低。镁合金微弧氧化膜层的耐蚀性随氧化时间和电流密度的增大呈先增大后减小的趋势。电流密度对微弧氧化膜层成分的影响较大,氧化时间的影响较小。在铝酸盐体系中,微弧氧化膜层主要由MgO和MgAl_2O_4组成,微弧氧化处理的最佳工艺为氧化时间40min、电流密度0.20A/cm~2。在硅酸盐体系中,微弧氧化膜层主要含有MgO、Mg_2SiO_4和SiO_2,微弧氧化处理的最佳工艺为氧化时间40min、电流密度0.20A/cm~2。
     以碱式碳酸镍为主盐、次亚磷酸钠为还原剂,对ZK61镁合金进行了直接化学镀镍处理。镍镀层呈现胞状物形态,没有明显缺陷;随pH值的上升,胞状物呈减小后增大的趋势。随硫脲浓度的增加,镀速呈直线下降趋势。镀层的耐蚀性随着温度和时间的增大而增大,随pH值的升上先增大后减小。直接化学镀镍最佳的工艺参数为硫脲浓度1mg/L、温度85℃、时间60min、pH6.4。
     磷酸盐转化膜的表面形貌呈现破碎的瓦片状,有裂痕;膜层的成分为Mg_3(PO_4)_2。随温度、时间、pH值的上升,裂痕呈增大的趋势。膜层的厚度随着时间和温度的增大而增大,随着pH值的上升先增大后减小。膜层的耐蚀性随时间、温度和pH值的增大呈先增大后减小的趋势。磷酸盐化学转化处理的最佳工艺条件为温度40℃、时间15min和pH3.5。
Magnesium alloys have attracted great attention for applications in automotive, electrical and aerospace industries because of their low density, high specific strength and high specific stiffness, etc. However, magnesium has a very low normal electrode potential, which makes it become one of the most active structural metals. This paper use three surface treatment methods(micro-arc oxidation、direct chemical plating, chemical conversion) to produce protective coatings magnesium alloys. The coatings can increase the corrosion resistance of magnesium alloy and extend the service life.
     Micro-oxidation coating was prepared on the surface of ZK61 magnesium alloy in silicate and aluminate systems. With the increasing of time and current density, the amount of micropores in the micro-arc oxidation coating decreases, but the size of micropore and the roughness of coating become greater, and thickness shows a linear growth, adhesion force decrease significantly. The corrosion increases first and then declines with the processing time and current density. Current density shows a greater impact on composition of micro-oxidation film. The coating is mainly composed of MgO (periclase, syn) and MgAl_2O_4 (spinel) in aluminate system. The coating contains MgO (periclase, syn), Mg_2SiO_4 (forsterite, syn) and SiO_2 in silicate system. The optimum processing parameters for magnesium alloy are in a processing time of 40 min and a current density of 0.20 A/cm~2.
     Direct chemical nickel plating was processed on ZK61 magnesium alloy based on the main salt of basic nickel carbonate and reductant of sodium hypophosphite. Coating has no obvious defects, and surface morphology shows cell bar shape, pH has greater impact on surface morphology. With the increase of pH value, cell bar shape reduces in size first and then increases. With increasing of thiourea concentration, depositing rate decreases straightly. The corrosion resistance of coating increases with the increasing of temperature and time, and increases first and then declines with increasing of pH value. The optimum processing parameters for direct electroless nickel plating are in a processing thiourea density of 1mg/L, temperature of 85℃, time of 60min and pH value of 6.4.
     Surface morphology of conversion film shows broken tile flake, and has cracks and obvious flaws. With increasing of temperature、time and pH value, the cracks increases in size. Thickness rises with increasing of time and temperature, increases first and then decreases with increase of pH value. The corrosion increases first and then reduces with increasing of time、temperature and pH value. The film is mainly composed of Mg_3(PO_4)_2. The optimum processing parameters for phosphate chemical conversion are in a processing time of 15min, temperature of 40℃, and pH value of 3.5.
引文
[1] Ruden Thomas J, Albright Darryl L, High ductility magnesium alloys in automotive applications, Advanced Mater & Processes, 1994, 145(6):267~272
    [2] Christina Gair, The magnesium message, Home Office Computing, 1999, 17(8):512~518
    [3]羊秋林,李尹熙,汽车用轻量化材料,北京:机械工业出版社,1991,88~90
    [4]燕战秋,未来汽车材料和我国新材料研究课题,汽车工程,1993,15(3):180~188
    [5]张永君,严川伟,王福会等,镁的应用及其腐蚀与防护,材料保护,2002,35(4):4~6
    [6] Makar G L, Kruger J, Corrosion of magnesium, International Materials Reviews, 1993, 38(3):138~153
    [7]曾小勤,王渠东,吕宜振等,镁合金应用新进展,铸造,1998,11:39~43
    [8]黄光胜,范永革,汤爱涛等,镁及镁合金腐蚀最新研究进展,材料导报,2002,16(4):38~40
    [9] Rappaz M, Modelling of microstructure formation in solidification process, Int. Mater Rev, 1989, 34(3):113~117
    [10]王渠东,镁合金在电子壳体中的应用,材料导报,2000,14(6):22~24
    [11]李晓敏,压铸镁合金在电子产业中的应用及其发展前景,轻金属,2003,(7):37~38
    [12]霍宏伟,李瑛,王赫男等,镁合金的腐蚀与防护,材料导报,2001,15(7):25~27
    [13] Amy L Rudd, Carmel B Breslin, Florian Mansfeld, The corrosion protection afforded by rare earth conversion coatings applied to magnesium, Corr. Sci., 2000, 42(2):275~288
    [14] Song Guangling, Andrej Atrens, Wu Xianliang et al, Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride, Corrosion Science, 1998, 40(10):1769~1773
    [15] Rajan Ambat, Naing Aung, Zhou Z, Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy, Corrosion Science, 2000, 42:1433~1439
    [16] Song Guangling, Andrej Atrens, Influence of microstructure on the corrosion of die-cast AZ91D, Corrosion Science, 1999, 1(1):11~16
    [17]刘凤岭,骆更新,微弧氧化与材料表面陶瓷化,材料保护,1998,31(3):12~24
    [18]王永康,熊仁章,铝基复合材料表面微弧氧化涂覆陶瓷膜研究,兵器材料科学与程,1998, 21(4):25~27
    [19] Van T B, Brown S D, Wirtz G P, Mechanism of anodic spark deposition , Am.Ceram.Soc.Bull, 1977,56(6):563~566
    [20] Dittrich K H, Leoard L G, Microarc oxidation of aluminate alloy components, Crys & Res Technical, 1984, 19(1):93~96
    [21] Krysmann W, Kurze P, Dittrick K H, Process characteristics and parameters of anodic oxidation by spark discharge (ANOF), Crys Res Technical, 1984, 19(7):973~978
    [22] Kurze P, Krysmann W, Schreckenbach J, Coloured ANOF layers on aluminum, Cryst Res Technical, 1987, 22(1):53~58
    [23] DeLong H K, Plating on magnesium, Metal Finishing Guide book, 1978, 7(60):175
    [24] DeLong H K, Method of producing a metallic coating on magnesium and its alloys, US Patent, 2526544, 1950
    [25] DeLong H K, Method of producing an electroplate of nickel on magnesium base alloys, US Patent, 2728720, 1955
    [26] Srnyth M D, Magnesium surface finishing, Metal Finishing Guide book, 1983, 81(1):529
    [27] Olsen A L, Method for electrolytic metal coating of magnesium articles, European Patent Application, 0030305, 1981
    [28] Olsen A L, Plating of magnesium high pressure die casting, Trans. IMF, 1980, 58:29~32
    [29] Dennis J K, Wan M K Y Y, Wake S J, Plating on magnesium alloy die casting, Trans. IMF, 1985, 63:74~80
    [30] Delong H K, Electroless nickel plating, U S Patent, 3152009, 1962
    [31] Mizunari S, Fuju K, Electroless nickel plating method for magnesium alloy material, JP Patent, 2003073843, 2003
    [32] Toshinobu O, Qtiyoko E, Yaji S, Plating method of magnesium and magnesium alloy, JP Patent, 61067770, 1986
    [33] Takayuki Homma, Isao Komatsu, Amiko Tamald, Molecular orbital study on the reaction mechanisms of electroless deposition processes, Electrochim Acta, 2001, 47:47
    [34]胡信国,戴长松,王金玉,化学镀镍的动力探讨,全国首届化学镀会议论文集,南京,1992
    [35]翟金坤,黄子勋,化学镀镍,北京:北京航空学院出版社,1987,24
    [36]李宁,化学镀实用技术,北京:化学工业出版社,2004,10
    [37]李宁,袁国伟,化学镀镍基合金理论与技术,北京:哈尔滨工业大学出版社, 2000,32
    [38] Duncan R N, The metallurgical structure of electroless nickel deposits; effect on coating properties, Plating Surface Finishing, 1996, 12(11):65
    [39]张永忠,张奎,樊建中,化学镀镍合金研究进展,宇航材料工艺,1998,6:7
    [40] John C, Grebetz, High ductility recycled magnesium alloys, Autornot Eng, 1996, 104(8):50
    [41] Dwain M Magers, A global review of magnesium parts in automobiles, Light Metal Age, 1996, 54(10):46
    [42]李青,镁的表面处理,电镀与涂饰,1995,14(2):43~47
    [43] Hagans P L, Haas C M, Chromate conversion coatings, Surface Engineering, 1994, (5):10~13
    [44]卢锦堂,宋进兵,陈锦虹等,无铬钝化的研究进展,材料保护,1999,32(3):24~26
    [45]张津,张宗和,镁合金及应用,北京:化学工业出版社,2004
    [46] Gray J E, Luan B, Protective Coating on magnesium and its alloys-a critical review, Journal of Alloys and Compounds, 2002, 336:88~113
    [47]钱建刚,李荻,郭保兰,镁合金的化学转化膜,材料保护,2002,35(3):5~6
    [48]曾爱平,薛颖,钱宇峰等,镁合金的化学表面处理,腐蚀与防护,2002,21(2):55~56
    [49] Hawkek D, Albright D L, A Phosphate-permanganate conversion coating for magnesium, Metal Finishing, 1995, 98(10):34~38
    [50] Hiroyuki U, An Investigation of the structure and corrosion resistance of a permanganate conversion coating on AZ91D magnesium alloys, Journal of Japan Institute of Light Metals, 2000, 42:275~288
    [51] Gonzalez M A, A Non-chrone conversion coating for magnesium alloys and magnesium-based matrix composites, Corrosion science, 1995, 37(11):1736~1772
    [52]边风刚,李国禄,镁合金表面处理的发展状况,材料保护,2002,35(3):1~4
    [53] Sundararajan G, Krishna L R, Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology, Surface & Coatings Technology, 2003, 167:269~277
    [54] Krishna L R, Somaraju K C, Sundararajan G. The tribological performance of ultra-hard ceramic composite coatings obtained through micro-arc oxidation, Surface & Coating Technology, 2003, 163~164:484~490
    [55]魏同波,张学俊,电流密度对铝合金微弧氧化膜的生长及结合力的影响,材料保护,2004,37(4):4~6
    [56] Nie X, Meletis E I, Jang J C, et al, Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis, Surface and Coatings Technology, 2002, (149): 245~251
    [57]王吉会,房大然,杨静,镁合金微弧氧化的电解液组分研究,天津大学学报-自然科学与工程技术版,2005, 38 (11):1026~1030
    [58] Fang Daran, Wang Jihui, Yang Jing, Electrolyte optimization of micro-arc oxidation of magnesium alloy, Transactions of materials and heat treatment, 2004, 25(5):1072~1075
    [59] Zhang Yongjun, Yan Chuanwei, Study on environmentally friendly anodizing of magnesium alloy AZ91D, Surface & Coating Technology, 2002, 161(1):37~44
    [60]蒋百灵,张淑芬,镁合金微弧氧化陶瓷层纤维缺陷与相组成及耐蚀性,中国有色金属学报,2002,12(3):454~457
    [61]郝建民,陈宏,镁合金微弧氧化陶瓷层的耐蚀性,中国有色金属学报,2003,13(4):988~991
    [62]卫中领,陈秋荣,镁合金微弧氧化膜的微观结构及耐蚀性研究,材料保护,2003,36(10):11~13
    [63]张淑芬,张先锋,蒋百灵,溶液电导率对镁合金微弧氧化的影响,材料保护,2004,37(4):7~9
    [64]郝建民,陈宏,张荣军,电参数对镁合金微弧氧化陶瓷层致密性和电化学阻抗的影响,腐蚀与防护,2003,24(6):249~251
    [65]胡正前,马晋,硅酸盐电解液中铝合金微弧氧化陶瓷膜层的结构与性能,吉林大学学报(理学版),2005,43(1):68~72
    [66]熊仁章,雷廷权,王永康,铝合金硅酸盐系微弧氧化陶瓷层形成机制的研究,兵器材料科学与工程,2004,27(6):1~3
    [67] Sundararajan G, Rama Krishna L, Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology, Surface and Coatings Technology, 2003, 167:269~277
    [68] Wenbin Xue, Shiwei Deng, Growth regularity of ceramic coatings formed by microarc oxidation on Al-Cu-Mg alloy, Thin Solid Films, 2000, 372:114~117
    [69] Lrama Krishna, Somaraju K R C, Sundararajan G, The tribological performance of ultra-hard ceramic composite coatings obtained through micro-arc oxidation, Surface and Coatings Technology, 2003, 163~164:484~490
    [70] Wenbin Xue, Chao Wang, Effect of micro-arc discharge surface treatment on the tensile properties of Al-Cu-Mg alloy, Mateials Letters, 2002, 56:737~743
    [71]郭洪飞,安茂忠,镁合金微弧氧化配方的优化及膜层耐蚀性能评价,电镀与涂饰,2004,23(6):1~4
    [72]卫中领,陈秋荣,镁合金微弧氧化膜的微观结构及耐蚀性研究,材料保护,2003,26(10):11~13
    [73]李国禄,刘金海,边风刚,镁合金直接化学镀镍的工艺研究,第四届全国表面工程学术交流大会论文集,2004:89~92
    [74]王建泳,成旦红,张炜等,镁合金化学镀镍工艺,轻金属表面装饰,2005,24(12):42~45
    [75]郭长春,成旦红,郭国,AZ91D镁合金直接化学镀镍工艺,2006年电子电镀学术报告会资料汇编,2006:11~16
    [76]叶红,孙智富,张鹏等,镁合金化学镀镍工艺,材料保护,2003,36(3):27~29
    [77]苏绍红,陈晓,谢华等,镁合金直接化学镀镍的研究,电镀与环保,2007,27(1):12~15
    [78]霍宏伟,李瑛,王福会,AZ91D镁合金化学镀镍,中国腐蚀与防护学报,2002,22(1):14~17
    [79]兰伟,王第一,陈亮朝,镁合金磷酸盐转化膜的研究现状,材料导报,2007,5(21):328~329
    [80]王洁,丁毅,镁合金化学转化处理.材料保护,2006,7(39):38~41
    [81]周婉秋,单大勇,镁合金磷酸盐化学转化处理,材料保护,2002,35(2):1~5
    [82]张华云,李华伦,郭伊娜,镁合金转化膜的耐蚀性研究,材料保护,1(40):10~12
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.