麻疹病毒属6种重要病毒目视化基因芯片检测方法的建立及其初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻疹病毒属在病毒学分类上位于单负链RNA病毒目,副粘病毒科,副粘病毒亚科。根据国际病毒学委员会第8次分类会议的病毒分类目录,犬瘟热病毒、麻疹病毒、小反刍兽疫病毒、牛瘟病毒、海豹瘟热病毒和海豚瘟热病毒等六种病毒属于麻疹病毒属,这六种病毒分别在各自的宿主中引起重要的疾病,造成严重的公共卫生危害、社会影响和经济损失。上述病毒宿主范围广泛,致病性强,病死率高,已经引起了研究人员的重视,RT-PCR,实时定量PCR以及免疫学和血清学检测等多种方法被应用于上述病毒检测,但是这些方法多数是检测一种病毒或区分两种病毒,目前没有一种方法能同时检测麻疹病毒属上述六种重要病毒。本文研究目的是建立麻疹病毒属6种重要病毒的快速、准确、灵敏、高通量的基因芯片检测技术平台,同时完成麻疹病毒、犬瘟热病毒、小反刍兽疫病毒、牛瘟病毒、海豹瘟热病毒、海豚瘟热病毒等麻疹病毒属病毒的种特异性检测,为疫病临床诊断、人畜传染病防控及反恐怖活动等提供有效的诊断手段。
     在NCBI网站下载上述病毒基因组序列信息,利用生物学软件对6种病毒下载的序列进行比对,获得每种病毒长度在200bp以上的种保守性特异核苷酸序列,以此作为设计oligo探针的备选序列,利用分子生物学软件PrimerPremier5.0设计特异性好、长度均一、Tm值相近的寡核苷酸探针。待检样品经荧光引物扩增后与基因芯片在优化的条件下杂交,激光扫描荧光信号分布和强度,Genepix软件分析结果;麻疹病毒属种特异性检测基因芯片制备后,用参比样品检验本基因芯片的敏感性、特异性、重复性和稳定性。麻疹病毒属种特异性基因芯片检测方法建立后,对来自吉林、辽宁和黑龙江的38例疑似犬瘟热病毒感染的临床病料进行了检测。在建立麻疹病毒属核酸检测基因芯片基础上,利用生物素-链霉亲和素的结合,引入胶体金显色及银染放大系统,建立麻疹病毒属的目视化基因芯片检测系统,使用目视化基因芯片对东北三省的48例临床病料进行了检测,共检测到38例犬瘟热病毒阳性样品,基因芯片方法和PCR方法的检测符合率为94.7%。
     本实验主要完成了以下四部分工作
     一、麻疹病毒属病毒种特异性寡核苷酸探针的设计
     从NCBI网站的Genome数据库下载麻疹病毒、犬瘟热病毒、小反刍兽疫病毒、牛瘟病毒、海豹瘟热病毒、海豚瘟热病毒的基因组序列,从该网站的Oligonucleotide数据库下载上述病毒的核酸序列信息。每种病毒的下载序列分别比对后得到种特异性病毒保守区,在各自保守区内以Primer Premier5.0软件设计种特异性寡核苷酸探针及对应的PCR引物。遵循探针的设计原则,探针长度为25士5mer,TM值为48士5℃,使所有探针具有相近的杂交动力学参数。利用生物信息学技术在线比对,通过与公开发表的所有已知病毒序列进行比较,进行了病毒保守区和寡核苷酸探针的特异性验证,包括病毒属内序列同源性、种间序列的特异性、种内毒株的保守性。经过筛选与验证,从一千余条备选探针中确定了6条麻疹病毒属种特异性鉴定短寡核苷酸探针。
     二、麻疹病毒属病毒多重PCR扩增方法的建立
     上述实验确定了各病毒探针,在探针的两端分别设计麻疹病毒属各病毒特异性PCR扩增上下游引物,在上游引物的5′端标记HEX荧光染料,该染料可以被基因芯片扫描仪检测呈现绿色荧光。经优化各病毒引物比例,建立了麻疹病毒属多重PCR扩增方法。以细胞毒、合成模拟毒、质粒和病料为模板,验证了该多重PCR方法的特异性。实验结果显示,所建立的多重反应体系对麻疹病毒、犬瘟热病毒、小反刍兽疫病毒、牛瘟病毒、海豹瘟热病毒、海豚瘟热病毒等均能扩增出与预期设计大小一致的特异条带,而对犬副流感病毒、VERO细胞和健康犬组织等无特异扩增,该结果与特异PCR方法检测结果一致。
     三、麻疹病毒属病毒种特异性基因芯片检测方法的建立及初步应用
     探针用MG2-610型点样仪通过机械手臂分别以夹缝针接触式点样方式印迹于醛基玻片上,探针浓度为40pmol/μl,点样温度为25℃,点样湿度为70%,点样后经NaBH4封闭。经优化杂交条件,初步建立了麻疹病毒属种水平鉴定基因芯片。基因芯片检测犬瘟热病毒、麻疹病毒、海豹瘟热病毒、海豚瘟热病毒、小反刍兽疫病毒和牛瘟病毒的细胞毒和质粒结果均为阳性,而检测犬副流感病毒、VERO细胞和健康犬组织的结果为阴性,证明本基因芯片具有良好的麻疹病毒属种检测特异性。将TCID50为10-4的以犬瘟热病毒细胞毒10倍比稀释,分别用基因芯片和PCR方法梯度检测,基因芯片能检测到10-2TCID50的犬瘟热病毒,检测灵敏度是PCR方法100倍。分别使用同一批次和不同批次的多张芯片检测犬瘟热病毒,结果均为阳性,证明本芯片具有良好的重复性。制备的基因芯片放置1年以上仍然具有良好的检测活性。
     犬瘟热病毒能够感染犬科、鼬科、浣熊科、大熊猫科、猫科等多种动物,且传染性强、致死率高,对我国家养犬类、宠物、经济动物、野生动物、动物园以及实验动物等危害极大。在基因芯片制备完成后,使用基因芯片对吉林、辽宁和黑龙江等省送检的犬、狐狸和貉子病料进行检测,38例标本中,普通PCR方法和基因芯片方法检测犬瘟热病毒均是阳性结果的为24例,而单独基因芯片方法检测为犬瘟热病毒阳性结果的有2例,两种方法的检测符合率为92.7%。
     四、麻疹病毒属目视化基因芯片检测方法的建立及其初步应用
     根据上述实验得到的各病毒种特异性探针,在5’端连接短臂后按照规律的阵列点样在玻璃片上,水合之后形成可以长期保存的芯片。在PCR引物的5’端引入生物素,于胶体金上引入链霉亲和素,利用生物素-链霉亲和素反应使胶体金在点样探针上特异性的结合与聚集,最后利用银染放大信号,形成肉眼可见的结果。该检测平台特异性好,通量高,灵敏度与基因PCR方法相仿,能应用于临床样品,与麻疹病毒属核酸检测基因芯片相互补充,更加适用于基础实验室及临床检测。
     本实验建立了四步法探针设计方法,建立了麻疹病毒属6种重要病毒探针数据库,制备了能同时检测12份样品、每份样品能同时检测6种病毒的基因芯片。在探针两端设计PCR扩增引物,建立了麻疹病毒属6种重要病毒多重PCR扩增方法,在此基础上,建立了麻疹病毒属种特异性鉴定扫描芯片和目视化芯片技术,并初步应用于犬瘟热病毒临床病料检测,该技术具有良好的灵敏度和特异性,在出现传染病疫情时,结合临床症状及流行病学特征等,可在种水平上快速鉴定上述六种病毒。
Morbillivirus belongs to Mononegavirales,Paramyxoviridae,Paramyxovirinae.According to the8thof international classification of Virology Committee meeting,there are six major viruses in morbillivirus. They are canine distemper virus,measles virus, Peste des petits ruminants virus, rinderpest virus, phocine distempervirus and dolphin morbillivirus virus. All of them may cause serious viral disease intheir respective host. Morbillivirus may cause public health danger, social impactand economic loss seriously. They had broad-spectrum Virus host, highpathogenicity and high mortality which have attracted the attention of researchers.There are some method such as ordinary RT-PCR, real-time quantitative PCR,serological and immunological means that have been applied to scan morbillivirus,but most of them are designed to test one or two viruses. There is not one processcan identify all the six virus in a route. The purpose of this study is to establish arapid, accurate and sensitive high-throughput microarray platform to detect measlesvirus, canine distemper virus, Peste des petits ruminants virus, rinderpest virus,phocine distemper virus and dolphin morbillivirus virus in one assay. Thismicroarray could be a rapid and effective diagnostic tool for clinical diagnosis,prevention and control of infectious diseases and anti-terrorism.
     All the six virus genome sequence were download from NCBI website,meaningful species-specific sequence of each virus were found by using biologicalsoftware clustal w which is important for oligo probe design. Probe ofspecies-specific, uniform length, similar Tm values were designed using molecularbiology software Primer Premier5.0. Samples were hybridized to microarray afterbeing amplified by fluorescent primers. Pictures were scanned by laser and datawere analyzed by Genepix4100A. Sensitivity, specificity, reproducibility andstability of microarray were proved by both cultured virus and clinical specimens.38clinical specimens with suspected disease of canine distemper were detected bygene chip of Jilin, Liaoning and Heilongjiang province.
     The chief results of the study were listed as following:
     1. The designment of morbillivirus oligo probes on species level and theirvalidation by bioinformatics.
     Species-specific sequence was selected after comparing the downloadedgenome of morbillivirus. Six25mer probes were designed by Primer Premier5.0forevery virus with Tm value about48±5℃. All probes have similar hybridizationparameters. The validation of conserved sequence and species-specific probedesignation were tested by bioinformatics. At last, six species-specific oligo probeswere designed and selected.
     2. Multiplex PCR amplification for morbillivirus
     Primers for the six major morbillivirus were designed according to the sameconserved sequence with probe. All six pare of primers were mixed to detectcultured virus, clinical specimens and synthesized virus in one assay. There werepositive signal for CDV, MV, DMV, PDV, PPRV and RpV while the signals ofcontroled Vero, CPIV and healthy dog were not detected.
     3. The establishment of microarray for morbillivirus species-specific detection.
     Microarray was prepared by MG2-610. Probes of40pmol/μl were spotted ontothe aldehyde slides at25℃and70%humidity. Before it can be used forhybridization, the chip must be disposed by NaBH4. Hybridization condition wasoptimized and microarray for species-spefic morbillivirus identification was set up.To test the species-specificity of the probes in the microarray, the target CDV,PPRV, CPIV, Vero, synthesized MV, RPV, PDV, DMV, and tissue of healthy dogwere prepared according to the method mentioned above and hybridized onto themicroarray. The probes only hybridized with their respective target viruses andnon-specific or cross-reactive signal was not observed CDV with TCID50as10-4wasdiluted by10folds and detected by microarray and PCR, and microarray can detectCDV as a minimum level as10-6TCID50which is103times higher than PCRmethord.
     4. Application of microarray
     CDV can infect dogs, ferret, Raccoon, giant panda, cat and other animals. Itwas a great harm for domestic dogs, pets, economic animals, wild life, zoo andlaboratory animals. Microarray were used to detect22simulated unknown clinical specimens, and the detection ration of chip is100%. Clinical specimens of dog, foxand raccoon which were sent from Jilin, Liaoning and Heilongjiang province weretested for CDV by the microarray. Among the38specimens there were24samplewhich were tested as CDV positive by both microarray and PCR methord.26weredetected CDV positive by microarray only,and it is the same with virus isolation.
     5. Establishment of visual microarray
     According to the above experimental, the short arm are connected to the5'endof virus species-specific probes,then probes are spotted on the glass, visualdetection chip could be long-term preservati after hydration. biotin were introducedto5'end of the PCR primers. the colloidal gold-streptavidin-avidin biotin reactionsystem are used to get specific binding and visual signal. Finally use silver stainingto amplify the signal. The detection platform are specific, high-throughput, highsensitivity.The visual microarray and the usual chip of virus are complement to eachother.The former are more suitable for the basic laboratory and clinical testing
     In short, six25mer oligo probes were designed on species level formorbillivirus and the specificity of them was validated by both bioinformatics andexperiments. Then low-density micorarray was prepared using the oligo probes.PCR primers were designed within the same conservation that has been used to planprobes, and multiplex PCR assay was launched to amplify the six majormorbillivirus. Microarray for morbillivirus species-specific detection was initiated.Cell culture supernatants and clinical specimen could be detected by the microarrayto test morbillivirus rapidly. Morbillivirus could be detected on species levelreferring to clinical symptoms and epidemiological characteristics when infectiousdisease outbreaks.
引文
1. Grant, R.J., et al., Real-time RT-PCR assays for the rapid and differentialdetection of dolphin and porpoise morbilliviruses. J Virol Methods,2009.156(1-2): p.117-23.
    2. Cleaveland, S., et al., Serological and demographic evidence for domesticdogs as a source of canine distemper virus infection for Serengeti wildlife.Vet Microbiol,2000.72(3-4): p.217-27.
    3. Almberg, E.S., et al., A serological survey of infectious disease inYellowstone National Park's canid community. PLoS One,2009.4(9): p.e7042.
    4. van de Bildt, M.W., et al., Distemper outbreak and its effect on African wilddog conservation. Emerg Infect Dis,2002.8(2): p.211-3.
    5. Pedersen, A.B., et al., Infectious diseases and extinction risk in wildmammals. Conserv Biol,2007.21(5): p.1269-79.
    6. Guiserix, M., et al., The canine distemper epidemic in Serengeti: are lionsvictims of a new highly virulent canine distemper virus strain, or is pathogencirculation stochasticity to blame? J R Soc Interface,2007.4(17): p.1127-34.
    7. Williams, E.S., et al., Canine distemper in black-footed ferrets (Mustelanigripes) from Wyoming. J Wildl Dis,1988.24(3): p.385-98.
    8. Woo, G.H., Y.S. Jho, and E.J. Bak, Canine Distemper Virus Infection inFennec Fox (Vulpes zerda). J Vet Med Sci,2010Aug;72(8):1075-9.
    9. Megid, J., et al., First identification of canine distemper virus in hoary fox(Lycalopex vetulus): pathologic aspects and virus phylogeny. J Wildl Dis,
    2010.46(1): p.303-5.
    10. Roelke-Parker, M.E., et al., A canine distemper virus epidemic in Serengetilions (Panthera leo). Nature,1996.379(6564): p.441-5.
    11. Ferreyra, H., et al., Canine distemper infection in crab-eating fox(Cerdocyon thous) from Argentina. J Wildl Dis,2009.45(4): p.1158-62.
    12. Soares, R.M., et al., Crab-eating fox (Cerdocyon thous), a South Americancanid, as a definitive host for Hammondia heydorni. Vet Parasitol,2009.162(1-2): p.46-50.
    13. Sekulin, K., et al., Emergence of canine distemper in Bavarian wildlifeassociated with a specific amino acid exchange in the haemagglutininprotein. Vet J,2011Mar;187(3):399-401.
    14. Perpinan, D., et al., Outbreak of canine distemper in domestic ferrets(Mustela putorius furo). Vet Rec,2008.163(8): p.246-50.
    15. Elia, G., et al., Detection of canine distemper virus in dogs by real-timeRT-PCR. J Virol Methods,2006.136(1-2): p.171-6.
    16. Cho, H.S. and N.Y. Park, Detection of canine distemper virus in bloodsamples by reverse transcription loop-mediated isothermal amplification. JVet Med B Infect Dis Vet Public Health,2005.52(9): p.410-3.
    17. Shin, Y.J., et al., Comparison of one-step RT-PCR and a nested PCR for thedetection of canine distemper virus in clinical samples. Aust Vet J,2004.82(1-2): p.83-6.
    18. Haines, D.M., et al., Immunohistochemical detection of canine distempervirus in haired skin, nasal mucosa, and footpad epithelium: a method forantemortem diagnosis of infection. J Vet Diagn Invest,1999.11(5): p.396-9.
    19. Hoyland, J.A., et al., A comparison of in situ hybridisation, reversetranscriptase-polymerase chain reaction (RT-PCR) and in situ-RT-PCR forthe detection of canine distemper virus RNA in Paget's disease. J VirolMethods,2003.109(2): p.253-9.
    20. Barben, G., et al., Detection of IgM antibodies against a recombinantnucleocapsid protein of canine distemper virus in dog sera using a dot-blotassay. Zentralbl Veterinarmed A,1999.46(2): p.115-21.
    21. Seki, F., et al., Efficient isolation of wild strains of canine distemper virus inVero cells expressing canine SLAM (CD150) and their adaptability tomarmoset B95a cells. J Virol,2003.77(18): p.9943-50.
    22. Blixenkrone-Moller, M., et al., Detection of IgM antibodies against caninedistemper virus in dog and mink sera employing enzyme-linkedimmunosorbent assay (ELISA). J Vet Diagn Invest,1991.3(1): p.3-9.
    23. Kinne, J., et al., Peste des petits ruminants in Arabian wildlife. EpidemiolInfect,2010: p.1-4.
    24. Dhar, P., et al., Recent epidemiology of peste des petits ruminants virus(PPRV). Vet Microbiol,2002.88(2): p.153-9.
    25. Muthuchelvan, D., et al., Sequence analysis of the nucleoprotein gene ofAsian lineage peste des petits ruminants vaccine virus. Vet Res Commun,
    2006.30(8): p.957-63.
    26. Raghavendra, A.G., et al., Seroepidemiology of peste des petits ruminants insheep and goats of southern peninsular India. Rev Sci Tech,2008.27(3): p.861-7.
    27. Zahur, A.B., et al., The epidemiology of peste des petits ruminants inPakistan. Rev Sci Tech,2008.27(3): p.877-84.
    28. Hussain, M., et al., The epidemiology of peste des petits ruminants inPakistan and possible control policies. Rev Sci Tech,2008.27(3): p.869-76.
    29. Kwiatek, O., et al., Peste des petits ruminants (PPR) outbreak in Tajikistan. JComp Pathol,2007.136(2-3): p.111-9.
    30. Wang, Z., et al., Peste des petits ruminants virus in Tibet, China. EmergInfect Dis,2009.15(2): p.299-301.
    31.包静月,王志亮,等.,一步法实时定量RT2PCR检测小反刍兽疫病毒方法的建立.中国动物检疫,2007.24(8): p.27~29.
    32. Chandran, N.D., K. Kumanan, and R.A. Venkatesan, Differentiation of pestedes petits ruminants and rinderpest viruses by neutralisation indices usinghyperimmune rinderpest antiserum. Trop Anim Health Prod,1995.27(2): p.89-92.
    33. Abu Elzein, E.M. and A. Al-Naeem, Utilization of protein-A inimmuno-histochemical techniques for detection of Peste des PetitsRuminants (PPR) virus antigens in tissues of experimentally infected goats.Trop Anim Health Prod,2009.41(1): p.1-4.
    34. Osman, N.A., et al., Rapid detection of Peste des Petits Ruminants (PPR)virus antigen in Sudan by agar gel precipitation (AGPT) andhaemagglutination (HA) tests. Trop Anim Health Prod,2008.40(5): p.363-8.
    35. Couacy-Hymann, E., et al., Rapid and sensitive detection of peste des petitsruminants virus by a polymerase chain reaction assay. J Virol Methods,
    2002.100(1-2): p.17-25.
    36. Bao, J., et al., Development of one-step real-time RT-PCR assay fordetection and quantitation of peste des petits ruminants virus. J VirolMethods,2008.148(1-2): p.232-6.
    37. Raj, G.D., et al., Detection of peste des petits ruminants virus antigen usingimmunofiltration and antigen-competition ELISA methods. Vet Microbiol,
    2008.129(3-4): p.246-51.
    38. Balamurugan, V., et al., Development of an indirect ELISA for the detectionof antibodies against Peste-des-petits-ruminants virus in small ruminants.Vet Res Commun,2007.31(3): p.355-64.
    39. Balamurugan, V., et al., One-step multiplex RT-PCR assay for the detectionof peste des petits ruminants virus in clinical samples. Vet Res Commun,
    2006.30(6): p.655-66.
    40. Saravanan, P., et al., Development of a N gene-based PCR-ELISA fordetection of Peste-des-petits-ruminants virus in clinical samples. Acta Virol,
    2004.48(4): p.249-55.
    41. Nakayama, T.,[Measles virus]. Nippon Naika Gakkai Zasshi,2009.98(1): p.159-66.
    42. Plemper, R.K. and J.P. Snyder, Measles control--can measles virusinhibitors make a difference? Curr Opin Investig Drugs,2009.10(8): p.811-20.
    43. Furuse, Y., A. Suzuki, and H. Oshitani, Origin of measles virus: divergencefrom rinderpest virus between the11th and12th centuries. Virol J,2010.7:p.52.
    44. Ito, M., et al., Detection of Measles Virus RNA by SYBR Green Real-TimeRT-PCR Assay. Pediatr Int,2010.
    45. Hubschen, J.M., et al., A multiplex TaqMan PCR assay for the detection ofmeasles and rubella virus. J Virol Methods,2008.149(2): p.246-50.
    46. Bar-On, S., et al., Detection of measles virus by reverse-transcriptasepolymerase chain reaction in a placenta. J Matern Fetal Neonatal Med,2010Aug;23(8):935-7.
    47. Zhou, J.H., et al.,[Application of a simple method for the detection ofmeasles virus genome by loop-mediated isothermal amplification (LAMP)].Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi,2008.22(6): p.403-5.
    48. Chakravarti, A., D. Rawat, and S. Yadav, Whole blood samples as analternative to serum for detection of immunity to measles virus by ELISA.Diagn Microbiol Infect Dis,2003.47(4): p.563-7.
    49. Mosquera Mdel, M., et al., Simultaneous detection of measles virus, rubellavirus, and parvovirus B19by using multiplex PCR. J Clin Microbiol,2002.40(1): p.111-6.
    50. Brooksbank, R., SLAM the door on measles. Mol Med Today,2000.6(11):p.414.
    51. Condorelli, F. and T. Ziegler, Dot immunobinding assay for simultaneousdetection of specific immunoglobulin G antibodies to measles virus, mumpsvirus, and rubella virus. J Clin Microbiol,1993.31(3): p.717-9.
    52. Muller, G., et al., Phocine distemper virus: characterization of themorbillivirus causing the seal epizootic in northwestern Europe in2002.Arch Virol,2008.153(5): p.951-6.
    53. Osterhaus, A.D. and E.J. Vedder, Identification of virus causing recent sealdeaths. Nature,1988.335(6185): p.20.
    54. Wohlsein, P., et al., Antigenic characterization of phocine distemper viruscausing mass mortality in2002and its relationship to other morbilliviruses.Arch Virol,2007.152(8): p.1559-64.
    55. Visser, I.K., et al., Continued presence of phocine distemper virus in theDutch Wadden Sea seal population. Vet Rec,1993.133(13): p.320-2.
    56. Jauniaux, T., et al., Morbillivirus in common seals stranded on the coasts ofBelgium and northern France during summer1998. Vet Rec,2001.148(19):p.587-91.
    57. Lipscomb, T.P., et al., Morbilliviral dermatitis in seals. Vet Pathol,2001.38(6): p.724-6.
    58. Daoust, P.Y., et al., Phocine distemper in a harp seal (Phoca groenlandica)from the Gulf of St. Lawrence, Canada. J Wildl Dis,1993.29(1): p.114-7.
    59. Duignan, P.J., et al., Phocine distemper in harbor seals (Phoca vitulina) fromLong Island, New York. J Wildl Dis,1993.29(3): p.465-9.
    60. Blixenkrone-Moller, M., et al., Comparative analysis of the gene encodingthe nucleocapsid protein of dolphin morbillivirus reveals its distantevolutionary relationship to measles virus and ruminant morbilliviruses. JGen Virol,1994.75(Pt10): p.2829-34.
    61. Liess, B., H.R. Frey, and A. Zaghawa, Morbillivirus in seals: isolation andsome growth characteristics in cell cultures. Dtsch Tierarztl Wochenschr,
    1989.96(4): p.180-2.
    62. Borisova, T.I., et al.,[Neutralizing morbillivirus antibodies in the populationof the Baikal seal Phoca sibirica]. Vopr Virusol,1993.38(1): p.28-30.
    63. Cook, A.J., Morbillivirus infections in seals. Vet Rec,1989.125(18): p.465.
    64. Liess, B., et al., Morbillivirus infection among seals (Phoca vitulina) duringthe1988epidemic in the Bay of Heligoland. II. Serogological investigationsreflecting a previous phocine distemper epidemic in a seal orphanage.Zentralbl Veterinarmed B,1989.36(9): p.709-14.
    65. Kennedy, S., A review of the1988European seal morbillivirus epizootic.Vet Rec,1990.127(23): p.563-7.
    66. Osterhaus, A., A morbillivirus causing mass mortality in seals. Vaccine,
    1989.7(6): p.483-4.
    67. Domingo, M., et al., Morbillivirus in dolphins. Nature,1990.348(6296): p.
    21.
    68. Van Bressem, M.F., et al., Dolphin morbillivirus infection in different partsof the Mediterranean Sea. Arch Virol,1993.129(1-4): p.235-42.
    69. Muller, G., et al., Immunohistological and serological investigation ofmorbillivirus infection in harbour porpoises (Phocoena phocoena) from theGerman Baltic and North Sea. Vet Microbiol,2000.75(1): p.17-25.
    70. McCullough, S.J., et al., Isolation and characterisation of a porpoisemorbillivirus. Arch Virol,1991.118(3-4): p.247-52.
    71. Domingo, M., et al., Pathologic and immunocytochemical studies ofmorbillivirus infection in striped dolphins (Stenella coeruleoalba). VetPathol,1992.29(1): p.1-10.
    72. Saliki, J.T. and T.W. Lehenbauer, Monoclonal antibody-based competitiveenzyme-linked immunosorbent assay for detection of morbillivirus antibodyin marine mammal sera. J Clin Microbiol,2001.39(5): p.1877-81.
    73. Taylor, W.P., et al., The control of rinderpest in Tanzania between1997and
    1998. Trop Anim Health Prod,2002.34(6): p.471-87.
    74. Roeder, P.L. and W.P. Taylor, Rinderpest. Vet Clin North Am Food AnimPract,2002.18(3): p.515-47, ix.
    75. Forsyth, M.A., et al., Rinderpest virus lineage differentiation using RT-PCRand SNAP-ELISA. J Virol Methods,2003.107(1): p.29-36.
    76. Choi, K.S., et al., Monoclonal antibody-based competitive ELISA forsimultaneous detection of rinderpest virus and peste des petits ruminantsvirus antibodies. Vet Microbiol,2003.96(1): p.1-16.
    77. Singh, G. and I. Singh, Use of dot-immunobinding assay for visual detectionof rinderpest antibodies in vaccinated cattle. Trop Anim Health Prod,1997.29(2): p.73-6.
    78. Brown, C.C., L. Ojok, and J.C. Mariner, Immunohistochemical detection ofrinderpest virus: effects of autolysis and period of fixation. Res Vet Sci,
    1996.60(2): p.182-4.
    79. Bansal, R.P., et al., Detection of rinderpest antigen by latex agglutinationtest. Acta Virol,1988.32(3): p.275-7.
    80. Shah, R.A., et al., Detection of rinderpest virus using N-protein monoclonalantibodies. Trop Anim Health Prod,2004.36(1): p.11-25.
    81. Singh, R.P., et al., Development and evaluation of a monoclonal antibodybased competitive enzyme-linked immunosorbent assay for the detection ofrinderpest virus antibodies. Rev Sci Tech,2000.19(3): p.754-63.
    82. Zhang, X., et al., Expression profiles of early esophageal squamous cellcarcinoma by cDNA microarray. Cancer Genet Cytogenet,2009.194(1): p.23-9.
    83. Binder, H., J. Brucker, and C.J. Burden, Nonspecific hybridization scaling ofmicroarray expression estimates: a physicochemical approach forchip-to-chip normalization. J Phys Chem B,2009.113(9): p.2874-95.
    84. Roepman, P., et al., A gene expression profile for detection of sufficienttumour cells in breast tumour tissue: microarray diagnosis eligibility. BMCMed Genomics,2009.2: p.52.
    85. Liao, Y., S.Q. Peng, and L.S. Zhang,[Gene expression profile of isoniazidliver-injured rat using cDNA microarray]. Zhongguo Yi Xue Ke Xue YuanXue Bao,2009.31(3): p.308-14.
    86. Du, D., Y.H. Shi, and G.W. Le, Microarray analysis of high-glucosediet-induced changes in mRNA expression in jejunums of C57BL/6J micereveals impairment in digestion, absorption. Mol Biol Rep,2010.37(4): p.1867-74.
    87. Hwang, B.H. and H.J. Cha, Pattern-mapped multiple detection of11pathogenic bacteria using a16s rDNA-based oligonucleotide microarray.Biotechnol Bioeng,2010Jun1;106(2):183-92.
    88. Nocker, A., et al., Selective detection of live bacteria combining propidiummonoazide sample treatment with microarray technology. J MicrobiolMethods,2009.76(3): p.253-61.
    89. Mitterer, G. and W.M. Schmidt, Microarray-based detection of bacteria byon-chip PCR. Methods Mol Biol,2006.345: p.37-51.
    90.朱晓光,杨银辉,康晓平,刘洪,胡玉杨,曾海攀,祝庆余,13种虫媒病毒基因芯片检测方法的建立.解放军医学杂志,2007.32(8): p.832-835.
    91.杨银辉,杨瑞馥,常国辉等,基因芯片技术检测10种烈性RNA病毒.解放军医学杂志,2006.31(3): p.203-206.
    92. Chizhikov, V., et al., Detection and genotyping of human group Arotaviruses by oligonucleotide microarray hybridization. J Clin Microbiol,
    2002.40(7): p.2398-407.
    93. Pagotto, F., et al., Development of a DNA microarray for the simultaneousdetection and genotyping of noroviruses. J Food Prot,2008.71(7): p.1434-41.
    94. David Wang*, L.C., Maxine Zylberberg*, Pedro C. Avila, Homer A.Boushey, Don Ganem§,and Joseph L. DeRisi*, Microarray-baseddetection and genotyping of viral pathogens. PNAS,2002.99(11): p.15687–15692.
    95. Cheng-Chung Chou1, T.-T.L., Chun-Houh Chen3, Hsiang-YunHsiao1,Yi-Ling Lin2, Mei-Shang Ho2, Pan-Chyr Yang*1,2and KonanPeck*2, Design of microarray probes for virus identification and detectionof emerging viruses at the genus level. BMC Bioinformatics,2006Apr28;7:232.
    96. Xia, X.Q., et al., Evaluating oligonucleotide properties for DNA microarrayprobe design. Nucleic Acids Res,2010Jun;38(11):e121.
    97. Redman, J.C., et al., Development and evaluation of an Arabidopsis wholegenome Affymetrix probe array. Plant J,2004.38(3): p.545-61.
    98. He, W. and C.Y. Huang,[Cloning and preparation of cDNA probe fromBAlb/c mice]. Sichuan Da Xue Xue Bao Yi Xue Ban,2005.36(6): p.808-11.
    99. Rouillard, J.M. and E. Gulari, OligoArrayDb: pangenomic oligonucleotidemicroarray probe sets database. Nucleic Acids Res,2009.37(Databaseissue): p. D938-41.
    100. Sheng, H. and B.C. Ye, Different strategies of covalent attachment ofoligonucleotide probe onto glass beads and the hybridization properties.Appl Biochem Biotechnol,2009.152(1): p.54-65.
    101. Al-Mulla, F., R. Al-Tamimi, and M.S. Bitar, Comparison of two probepreparation methods using long oligonucleotide microarrays. Biotechniques,
    2004.37(5): p.827-33.
    102. Loy, A., et al., probeCheck--a central resource for evaluatingoligonucleotide probe coverage and specificity. Environ Microbiol,2008.10(10): p.2894-8.
    103. Leiske, D.L., et al., A comparison of alternative60-mer probe designs in anin-situ synthesized oligonucleotide microarray. BMC Genomics,2006.7: p.
    72.
    104. Nino-Soto, M.I., et al., CDNA microarray analysis of gene expressionpatterns in blood mononuclear cells of SLA-DRB1-defined Yorkshire pigs.Dev Biol (Basel),2008.132: p.321-5.
    105. Chen, S., et al., Oligo-microarray analysis reveals the role of cyclophilin Ain drug resistance. Cancer Chemother Pharmacol,2008.61(3): p.459-69.
    106. Zhang, W., et al., cDNA microarray analysis of the expression profiles ofTrichophyton rubrum in response to novel synthetic fatty acid synthaseinhibitor PHS11A. Fungal Genet Biol,2007.44(12): p.1252-61.
    107. Andrade, E., et al., cDNA microarray analysis of differentially expressedgenes in penile tissue after treatment with tadalafil. BJU Int,2008.101(4): p.508-12.
    108. Park, E.C., et al., Xenopus cDNA microarray identification of genes withendodermal organ expression. Dev Dyn,2007.236(6): p.1633-49.
    109. Oshita, F., et al., Genome-wide cDNA microarray screening of genes relatedto the benefits of paclitaxel and irinotecan chemotherapy in patients withadvanced non-small cell lung cancer. J Exp Ther Oncol,2006.6(1): p.49-53.
    110. Vijaya Satya, R., et al., In silico microarray probe design for diagnosis ofmultiple pathogens. BMC Genomics,2008.9: p.496.
    111. Li, W. and X. Ying, Mprobe2.0: computer-aided probe design foroligonucleotide microarray. Appl Bioinformatics,2006.5(3): p.181-6.
    112. Rimour, S., et al., GoArrays: highly dynamic and efficient microarray probedesign. Bioinformatics,2005.21(7): p.1094-103.
    113. Benson, D.A., et al., GenBank. Nucleic Acids Res,2006.34(Database issue):p. D16-20.
    114. Benson, D.A., et al., GenBank. Nucleic Acids Res,2007.35(Database issue):p. D21-5.
    115. Lagnel, J., C.S. Tsigenopoulos, and I. Iliopoulos, NOBLAST andJAMBLAST: New Options for BLAST and a Java Application Manager forBLAST results. Bioinformatics,2009.25(6): p.824-6.
    116. Komen, N., et al., Detection of colon flora in peritoneal drain fluid aftercolorectal surgery: can RT-PCR play a role in diagnosing anastomoticleakage? J Microbiol Methods,2009.79(1): p.67-70.
    117. Vidal, R., et al., Multiplex PCR for diagnosis of enteric infections associatedwith diarrheagenic Escherichia coli. J Clin Microbiol,2004.42(4): p.1787-9.
    118. Panicker, G., M.C. Vickery, and A.K. Bej, Multiplex PCR detection ofclinical and environmental strains of Vibrio vulnificus in shellfish. Can JMicrobiol,2004.50(11): p.911-22.
    119. Aridgides, L.J., et al., Multiplex PCR allows simultaneous detection ofpathogens in ships' ballast water. Mar Pollut Bull,2004.48(11-12): p.1096-101.
    120. Mata, A.I., et al., Multiplex PCR assay for detection of bacterial pathogensassociated with warm-water Streptococcosis in fish. Appl Environ Microbiol,
    2004.70(5): p.3183-7.
    121. Bonjoch, X., E. Balleste, and A.R. Blanch, Multiplex PCR with16S rRNAgene-targeted primers of bifidobacterium spp. to identify sources of fecalpollution. Appl Environ Microbiol,2004.70(5): p.3171-5.
    122. Roeb, E., et al., Simultaneous determination of matrix metalloproteinase(MMP)-7, MMP-1,-3, and-13gene expression by multiplex PCR incolorectal carcinomas. Int J Colorectal Dis,2004.19(6): p.518-24.
    123. Kim, Y.H., et al., Detection of canine distemper virus (CDV) through onestep RT-PCR combined with nested PCR. J Vet Sci,2001.2(1): p.59-63.
    124. Kremer, J.R., et al., Measles virus genotyping by nucleotide-specificmultiplex PCR. J Clin Microbiol,2004.42(7): p.3017-22.
    125. George, A., et al., The M and N genes-based simplex and multiplex PCRsare better than the F or H gene-based simplex PCR forPeste-des-petits-ruminants virus. Acta Virol,2006.50(4): p.217-22.
    126. Gorelenkov, V., et al., Set of novel tools for PCR primer design.Biotechniques,2001.31(6): p.1326-30.
    127. Bray, E.A., Classification of genes differentially expressed duringwater-deficit stress in Arabidopsis thaliana: an analysis using microarray anddifferential expression data. Ann Bot,2002.89Spec No: p.803-11.
    128. Roy, S. and C.K. Sen, cDNA microarray screening in food safety.Toxicology,2006.221(1): p.128-33.
    129. Yergeau, E., et al., Microarray and real-time PCR analyses of the responsesof high-arctic soil bacteria to hydrocarbon pollution and bioremediationtreatments. Appl Environ Microbiol,2009.75(19): p.6258-67.
    130. Jaaskelainen, A.J., et al., Multiplex-PCR and oligonucleotide microarray fordetection of eight different herpesviruses from clinical specimens. J ClinVirol,2006.37(2): p.83-90.
    131. Gonzalez, S.F., et al., Simultaneous detection of marine fish pathogens byusing multiplex PCR and a DNA microarray. J Clin Microbiol,2004.42(4):p.1414-9.
    132. Bystricka, D., et al., DNA microarray: parallel detection of potato viruses.Acta Virol,2003.47(1): p.41-4.
    133. Gurrala, R., et al., Development of a DNA microarray for simultaneousdetection and genotyping of lyssaviruses. Virus Res,2009.144(1-2): p.202-8.
    134. Wong, C.W., et al., Optimization and clinical validation of a pathogendetection microarray. Genome Biol,2007.8(5): p. R93.
    135. Wang, D., et al., Microarray-based detection and genotyping of viralpathogens. Proc Natl Acad Sci U S A,2002.99(24): p.15687-92.
    136. Zhang, M.J., et al.,[Multi-PCR identification and virulence genes detectionof Campylobacter jejuni isolated from China]. Zhonghua Liu Xing Bing XueZa Zhi,2007.28(4): p.377-80.
    137. Farfan, M.J., et al., A new multiplex PCR for differential identification ofShigella flexneri and Shigella sonnei and detection of Shigella virulencedeterminants. Epidemiol Infect,2010.138(4): p.525-33.
    138. Beuret, C., Simultaneous detection of enteric viruses by multiplex real-timeRT-PCR. J Virol Methods,2004.115(1): p.1-8.
    139. Kirschberg, O., et al., A multiplex-PCR to identify hepatitis Bvirus--enotypes A-F. J Clin Virol,2004.29(1): p.39-43.
    140. Zhang, W., et al., Identification of aberrant cell cycle regulation inEpstein-Barr virus-associated nasopharyngeal carcinoma by cDNAmicroarray and gene set enrichment analysis. Acta Biochim Biophys Sin(Shanghai),2009.41(5): p.414-28.
    141. Wolter, T.R., et al., DNA microarray analysis for the identification of innateimmune pathways implicated in virus-induced autoimmune diabetes. ClinImmunol,2009.132(1): p.103-15.
    142. Martin, V., et al., Microarray-based identification of antigenic variants offoot-and-mouth disease virus: a bioinformatics quality assessment. BMCGenomics,2006.7: p.117.
    143. Chou, C.C., et al., Design of microarray probes for virus identification anddetection of emerging viruses at the genus level. BMC Bioinformatics,2006.7: p.232.
    144. Khadijah, S., et al., Identification of white spot syndrome viruslatency-related genes in specific-pathogen-free shrimps by use of amicroarray. J Virol,2003.77(18): p.10162-7.
    1. Zhang, W., et al., Identification of aberrant cell cycle regulation inEpstein-Barr virus-associated nasopharyngeal carcinoma by cDNAmicroarray and gene set enrichment analysis. Acta Biochim Biophys Sin(Shanghai),2009.41(5): p.414-28.
    2. Wolter, T.R., et al., DNA microarray analysis for the identification of innateimmune pathways implicated in virus-induced autoimmune diabetes. ClinImmunol,2009.132(1): p.103-15.
    3. Martin, V., et al., Microarray-based identification of antigenic variants offoot-and-mouth disease virus: a bioinformatics quality assessment. BMCGenomics,2006.7: p.117.
    4. Chou, C.C., et al., Design of microarray probes for virus identification anddetection of emerging viruses at the genus level. BMC Bioinformatics,2006.7: p.232.
    5. Khadijah, S., et al., Identification of white spot syndrome viruslatency-related genes in specific-pathogen-free shrimps by use of amicroarray. J Virol,2003.77(18): p.10162-7.
    6. Morey, J.S., J.C. Ryan, and F.M. Van Dolah, Microarray validation: factorsinfluencing correlation between oligonucleotide microarrays and real-timePCR. Biol Proced Online,2006.8: p.175-93.
    7. Kallioniemi, O.P., Biochip technologies in cancer research. Ann Med,2001.33(2): p.142-7.
    8. Dalma-Weiszhausz, D.D., et al., The affymetrix GeneChip platform: anoverview. Methods Enzymol,2006.410: p.3-28.
    9. Frigon, D., et al., Oligonucleotide probe hybridization and modeling resultssuggest that populations consuming readily degradable substrate have highcellular RNA levels. Water Sci Technol,2002.45(6): p.115-26.
    10. Hwang, T.S., et al., Detection and typing of HPV genotypes in variouscervical lesions by HPV oligonucleotide microarray. Gynecol Oncol,2003.90(1): p.51-6.
    11. Neverov, A.A., et al., Genotyping of measles virus in clinical specimens onthe basis of oligonucleotide microarray hybridization patterns. J ClinMicrobiol,2006.44(10): p.3752-9.
    12. Sergeev, N., et al., New mosaic subgenotype of varicella-zoster virus in theUSA: VZV detection and genotyping by oligonucleotide-microarray. J VirolMethods,2006.136(1-2): p.8-16.
    13. Payungporn, S., et al., Single step multiplex real-time RT-PCR for H5N1influenza A virus detection. J Virol Methods,2006.131(2): p.143-7.
    14. Mehlmann, M., et al., Robust sequence selection method used to develop theFluChip diagnostic microarray for influenza virus. J Clin Microbiol,2006.44(8): p.2857-62.
    15. Dawson, E.D., et al., MChip: a tool for influenza surveillance. Anal Chem,
    2006.78(22): p.7610-5.
    16. Dankbar, D.M., et al., Diagnostic microarray for influenza B viruses. AnalChem,2007.79(5): p.2084-90.
    17. Mehlmann, M., et al., Comparison of the MChip to viral culture, reversetranscription-PCR, and the QuickVue influenza A+B test for rapid diagnosisof influenza. J Clin Microbiol,2007.45(4): p.1234-7.
    18. Li, X., et al., Detection and subtyping of influenza A virus based on a shortoligonucleotide microarray. Diagn Microbiol Infect Dis,2009.65(3): p.261-70.
    19. Pasquini, G., et al., Oligonucleotide microarray-based detection andgenotyping of Plum pox virus. J Virol Methods,2008.147(1): p.118-26.
    20. Baxi, M.K., et al., Microarray-based detection and typing of foot-and-mouthdisease virus. Vet J,2006.172(3): p.473-81.
    21.赖建华,余敏,吴新伟,任永富,谭德勇,一种SARS冠状病毒诊断基因芯片的研制.生物工程医学杂志,2006.23(2): p.266~270.
    22. Jack, P.J., et al., Microarray-based detection of viruses causing vesicular orvesicular-like lesions in livestock animals. Vet Microbiol,2009.133(1-2): p.145-53.
    23. Zheng, Z.B., et al., DNA microarray technology for simultaneous detectionand species identification of seven human herpes viruses. J Med Virol,2008.80(6): p.1042-50.
    24. Baner, J., et al., Microarray-based molecular detection of foot-and-mouthdisease, vesicular stomatitis and swine vesicular disease viruses, usingpadlock probes. J Virol Methods,2007.143(2): p.200-6.
    25. Bystricka, D., et al., Oligonucleotide-based microarray: a new improvementin microarray detection of plant viruses. J Virol Methods,2005.128(1-2): p.176-82.
    26. Engel, E.A., et al., A diagnostic oligonucleotide microarray for simultaneousdetection of grapevine viruses. J Virol Methods,2009.
    27. Grinev, A., et al., Microarray-based assay for the detection of geneticvariations of structural genes of West Nile virus. J Virol Methods,2008.154(1-2): p.27-40.
    28. Wang, D., et al., Microarray-based detection and genotyping of viralpathogens. Proc Natl Acad Sci U S A,2002.99(24): p.15687-92.
    29. Cheng-Chung Chou1, T.-T.L., Chun-Houh Chen3, Hsiang-YunHsiao1,Yi-Ling Lin2, Mei-Shang Ho2, Pan-Chyr Yang*1,2and KonanPeck*2, Design of microarray probes for virus identification and detectionof emerging viruses at the genus level. BMC Bioinformatics,2006.7(232).
    30. Li, H., et al., Simultaneous detection and high-throughput identification of apanel of RNA viruses causing respiratory tract infections. J Clin Microbiol,
    2007.45(7): p.2105-9.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.