基于结构元理论的煤层气输运模糊数学模型及解析解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤层气储量丰富,煤层气的抽采不仅可以缓解我国能源紧缺的局面,同时可以保护环境和防治瓦斯灾害,目前,煤层气的“高储低渗”的特点一直制约我国煤层气工业的发展。当前如何提高低渗透煤层的渗透率是煤层气开采解决的难点,其理论未形成突破。采用微积分、模糊数学、结构元理论,结合渗流力学、岩石力学对煤层气输运进行了建模和求解。通过分析煤层气在煤层中的运移是吸附、解吸、扩散、渗流的过程,建立了煤层气、水两相双重介质的渗流数学模型,稳态、拟稳态、非稳态情况下的煤层气、水两相数学模型,考虑渗透率为模糊数,建立了稳态、拟稳态、非稳态煤层气、水两相稳态运移的模糊数学模型,分别求出解析解、模糊解析解、隶属度、渐进解、短时渐进解和长时渐进解。主要研究成果如下:
     考虑孔隙、裂隙双重介质,分析气相、水相、固体骨架发展过程,建立煤层气输运的数学模型,进行稳态渗流假设,通过化简建立煤层气稳态输运模型,求得稳态解析解。
     对稳态解析解进行数值处理得到压力分布图,图线表明稳态条件下,随着半径的增加,气相压力成等差级数变化。这个规律与国内外已有研究成果相似,也就说明了该解析解的可靠性。而包括流量、渗流速度等影响煤层气生产的重要参数均与压力有直接关系,解释求得压力的重要性。
     由于实际渗透率的不可测定性,将渗透率视为模糊数,建立煤层气、水两相运移稳态模糊数学模型,基于模糊结构元方法进行分析,由于模糊限定微分方程式的解是可表示的,由此求得模糊解析解,并籍此求得隶属度分布。
     在研究水相非稳态渗流时,考虑两种情况,一种是无限大地层,第二种是圆形封闭井。分别建立了无限大地层非稳态渗流数学模型和圆形封闭地层非稳态渗流数学模型,基于波尔兹曼变换法并采用幂积分求得煤层中非稳态水相输运压力和产量的解析解,进而建立了无限大地层非稳态渗流模糊数学模型和圆形封闭地层非稳态渗流模糊数学模型。并求出解析解和模糊解析解。带入实际参数,则可根据每一个隶属度求出符合隶属度范围的渗透率范围,进一步可以求得压力的范围;反之,当给定一个渗透率,就可以知道它的隶属度,从而求出压力的隶属度,即执行值。
     采用拉普拉斯变换和反演方法对建立的无限大地层双重介质煤层气拟稳态渗流数学模型进行研究,在求得解析解的同时求得渐进解为。解析解图线显示当半径值一定的情况下,拟压力是随着时间的增加而增加,井筒附近的压力梯度大,也就是说井筒附近的压力降得很快,气体流动快,而远处地层压力变化较慢,井筒对远处煤层中的煤层气影响较小。当时间值一定的情况下,拟压力是随着半径的增加出现三个区段,首先拟压力出现下降,即初始阶段压力会有一个瞬时提升过程。这是由于打井初期井周突然卸压造成气流急速运动,气相压力骤增。第二阶段孔隙气体开始向裂隙扩散,是一个过渡阶段,压力出现下降,最后压力趋于常值,体现煤层气与骨架处于相对稳定状态。相同时间段气相压力随半径的增大而减小,远处地层压力变化较慢,井筒对远处煤层中的煤层气影响较小。ω因子对压力值具有直接影响。特定因子越小,压力越大。它直接决定不同区段拟压力曲线值,可以加快实现较大压力降。
     渐进解显示立井初期,随着时间的增加拟压力上升,压力下降梯度明显。固定时刻,随着半径增加,拟压力呈递减对数曲线形式。时间较长时,固定位置气相压力稳定,但远处地层受压力影响很小,基本不发生变化。
     建立无限大地层煤层气拟稳态渗流模糊数学模型,分别求得短时、长时渐进模糊解。通过模糊解析求值可以得到不同隶属度下渗透率在不同时间、不同半径的范围,并可得拟压力范围,进而推得压力的范围。这些数据为实际工程提供有利参考。
     研究双重介质煤层气非稳态渗流过程,建立数学模型,求得解析解和渐进解。
     本文的研究为煤层气的输运提供了可靠的理论研究,解析解的求得为煤层气的商业化开发具有很大的实用价值。
Consider the pores, cracks dual media, analysis of the development of gas, water phase and solid skeleton. Establish the mathematical model of methane transport, assumption the steady flow, establishment the model of CBM steady-state transport by simplification, and obtained the steady-state analytical solution.
     Consider the pores, cracks dual media, analysis of the development of gas, water phase and solid skeleton. Establish the mathematical model of methane transport, assumption the steady flow, establishment the model of CBM steady-state transport by simplification, and obtained the steady-state analytical solution.
     Numerical treatment the steady-state analytical solution and got the pressure distribution, the chart shows that under the steady state conditions, as the radius increases, gas pressure changes into the arithmetic progression, this rule similar to the existing research results at home and abroad. Also shows the reliability of the analytical solution. The important parameters of coal bed methane production which including flow, flow speed, etc. are directly related with the pressure. Explain the importance of the pressure obtained.
     As the unpredictable qualitative of actual penetration, take the permeability as a fuzzy number, establishing coal bed methane, water, transport steady-state two-phase mathematical model of fuzzy. Base on the fuzzy structure element method. The solution of fuzzy constraint differential equations can be expressed. Obtain the fuzzy analytical solution, and take calculated distribution of membership.
     In study of non-steady seepage of water phase, two cases considered, one is the infinite ground, the second is a well closed circular. Establish the coal bed methane formation infinite and closed circle formation mathematical model of steady flow. Get the analytical solution of non-steady state transport of water-phase pressure and produce in coal based on Boltzmann transformation and power integrator. Furthermore, establish the coal bed methane formation infinite and closed circle formation fuzzy mathematical model of steady flow. And get the analytical solutions and the fuzzy analytic solution. Take into the actual parameter, can calculated the permeability range consistent with the scope of membership according to each membership. Otherwise, give a penetration to know that it’s membership, and get the membership of pressure, that the implementation of value.
     Based on Laplace transform and inversion, the analytical solution and asymptotic solution were found by studying on the unsteady state percolation mathematical model of double-medium CBM at infinity stratum. The analytical solutions show the quasi-pressure increases along the time pass when radius is definite. The pressure gradient become large what mean the pressure fall down fast nearby the gas well. Gas flowing rapidly and pressure variation slowly in the distance, so the effect on the coal seams by CBM is less. Quasi-pressure appears three sections when time is certain. First, because of the sudden pressure relief, airflow makes haste, quasi-pressure decrease and pressure increase. Then, there will be a transition moment, pore gas diffuse to crack, pressure become less. Finally, pressure becomes constant. At the same time, in-situ rock stress change slowly in the distance. There is straight effect on the pressure byωfactor. Pressure becomes large along the smallω. It decides the quasi-pressure and achieves bigger differential pressure.
     The asymptotic solutions show that at the beginning of vertical shaft construction, the pseudo pressure to be increased as the time increased. The press gradient decreased significantly. At a fixed time, the pseudo pressure decreased by logarithmic curve with the radius increases. As the time longer, gas pressure is stable at a fixed position, but the pressure has little effect formation by far away. Basically does not change.
     Established the coal bed methane formation infinite fuzzy mathematical model of steady flow, obtained the solution of short-time asymptotic solutions and the long-time asymptotic solutions. Through fuzzy analysis evaluated we can got the range of permeability under different membership degrees in different times and different radius. And get the range of pseudo pressure, further push the range of pressure. The data provide a favorable reference to the actual project.
     Study on the unsteady flow process of coal bed gas in double-porosity media. Found mathematical model, got the analytical solution and the asymptotic solution.
     This study provided a reliable theoretical study for the transport of coal bed methane. The obtained of analytical solutions has great practical value for the commercial development of CBM.
引文
[1] BoyerⅡC M,etc.. Methodology of Coalbed Methane Resource Assessment[J]. International Journal of Coal Geology,1998(35):349-368.
    [2]杨锡禄.煤层气勘探开发现状与需要解决的问题[J].中国煤炭,1995(8):39-41.
    [3]孙茂远,杨陆武,刘申平.煤层气基础理论研究的关键科学问题[J].煤炭科学技术, 2002(9):46-48.
    [4]张新民,解光新.我国煤层气开发面临的主要科学技术问题及对策[J].煤田地质及勘探, 2002(2):19-23.
    [5] F.H.波特曼编.提高原油采出率的技术[M].石油工业出版社,1985.
    [6]孟吴峰,罗平亚等.我国煤层气进一步问题探讨[J].中国煤层气,1995(1).
    [7]КринчевскийР.М.О..ЛриродеВнеуалныхВыдененийНвыбросовугляИГаза[J].БюоллетеньМакний,1948(18).
    [8] Sevenster P.G.. Diffusion of Gas Through Coal[J].Fuel,1959(38):409-413.
    [9]抚顺煤研所编.日本北海道大学通口澄志教授部分论文及报告汇编,1984.
    [10] Saghafi,A,eta..煤层瓦斯流动的计算机模拟及其在预测瓦斯涌出和抽放瓦斯中毒应用[C].第22届国际采矿安全会议论文集.北京:煤炭工业出版社,1987.
    [11] Harpalani S.. Gas flow through stressed coal[D]. Univ of California Berkeley, Ph.D.thesis,1985.
    [12] Gawuga J.. Flow of Gas Through Stressed Carboniferous Strata[D]. Univ.of Nottin gham, Ph.D.Thesis,1979
    [13]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-36.
    [14]周世宁,林柏泉.煤层瓦斯附存与流动理论[M].北京:煤炭工业出版社,1999.
    [15]郭勇义.煤层瓦斯一维流场流动规律的完全解[J].中国矿业大学学报,1984,2(2):19-28.
    [16]谭学术等.矿井煤层真实瓦斯渗流方程的研究[J].重庆建筑工程学院学报,1986,(1):106-112.
    [17]孙培德.煤层瓦斯流场流动规律的研究[J],煤炭学报,1987,12(4):74-82.
    [18]余楚新,鲜学福,等.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报,1989, 12(5):1-10.
    [19]孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探,1993, 21(1):32-40.
    [20]罗新荣.煤层瓦斯运移物理模型与理论分析[J].中国矿业大学学报,1991,20(3):36-42.
    [21]邓英尔,谢和平,黄润秋,等.低渗透空隙-裂隙介质气体非线性渗流运动方程[J].四川大学学报(工程科学版),2006,38(4):1-4.
    [22]赵阳升.煤体-瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):229-239。
    [23]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [24]孙可明,梁冰,王锦山.煤层气开采中两相流阶段的流固耦合渗流[J].辽宁工程技术大学学报(自然科学版),2001,20(1):36-39.
    [25]孙培德,万华根.煤层气越流固-气耦合模型及可视化模拟研究[J].岩石力学与工程学报, 2004,23(7):1179-1185.
    [26] Seidle J.P., Arri L.E.. Use of Conventional Reservoir Models for Coalbed Methane Simulation[J]. CIM/SPE paper 90118.
    [27] Thomas Advanced Large-Scale Coalbed Methane Modeling Using Conventional Reservoir Simulator[J]. SPE paper 75672.
    [28] Arri L.E., Yee D.,et al. Modeling Coalbed Methane Production With Binary Gas Sorption[J]. SPE paper 24363.
    [29] Scott Reeves. Advanced Reservoer Modeling In Desorption-Controlled Reservoirs[J]. SPE paper 71090.
    [30]李家春,周显初.数学物理中的渐近方法[M].北京:科学出版社,1998.
    [31] Van Everdingen A. F., Hurst W.. The application of the Laplace transformation to flow problem in resvoirs. Trans. AIME,1965 (186): 305-324.
    [32]李允,张大枢.计算机辅助下的双重介质油气藏试井分析方法[J].西南石油大学学报,1990,12(2):15-26.
    [33]贾永禄,赵必荣.拉普拉斯变换及数值反演在试井分析中的应用[J].天然气工业,1992,12(1):60-64.
    [34]何光渝,王卫红.精确的拉普拉斯变换数值反演方法及其应用[J].石油学报, 1995, 116(1): 96-103.
    [35]何炳全,向开理.分形油藏不稳定渗流有效井径数学模型的解析解[J].西南石油学报, 2000,22(3):37-40.
    [36]梁冰,薛强,刘晓丽.多孔介质非线性渗流问题的摄动解[J].应用力学学报, 2003,20(4):28-32.
    [37]张先敏,同登科.煤层气三孔双渗流动模型及压力分析[J].力学季刊, 2008,29(4):578-582
    [38]陈长华.基于模糊渗流理论的采场自然发火位置顶测模型及其相似模拟研究[D].阜新:辽宁工程技术大学,2004.
    [39]陈长华,郭嗣琮.非均匀孔隙介质工作面气体稳定渗流的模糊解研究[J].煤炭学报, 2002,27(5),487-493.
    [40] Buckley J.J. Fuzzy complex numbers[J]. FSS, 1989, 33: 333—345.
    [41] Buckley J.J. Fuzzy complex analysis I: Differentiation [J]. FSS, 1991, 41: 268-284.
    [42] Buckley J.J. Fuzzy complex analysis II: Integration [J ]. FSS, 1992, 49: 171-179.
    [43]马生全.模糊复围道积分[J].模糊系统与数学,2002,16:199-202.
    [44]马生全,曹纯.模糊复分析[M].北京:民族出版社, 2001.
    [45]马生全,曹纯.复模糊函数的微分法[C]. 98’中国模糊数学与模糊系统第九届年会论文选集.保定:河北大学出版社, 1998, 8: 162-166.
    [46]马生全,纪金水.复区间值函数与复模糊值函数级数的一致收敛性[J].辽宁工程技术大学学报(自然科学版),2001,20(5):615-617.
    [47]张艳菊,郭嗣琮.基于结构元的复模糊数四则运算[J].模糊系统与数学,2008,22(4):124-126.
    [48]朱友益.新结构LHJ浮选柱的分选机理及数学模型研究[D].北京:北京科技大学图书馆,1997.
    [49] Durney, T.E. Fine coal flotation using the flotaire column flotation cell[J]. Society of Mining Engineers of AIME, 1990(4):5559.
    [50]彭寿清.浮选柱的发展和应用[J].湖南有色金属,1998,14(2):14-19.
    [51]冯绍灌.选煤数学模型[M].北京:煤炭工业出版社,1993:120-121.
    [52]金忆丹.复变函数与拉普拉斯变换[M].杭州:浙江大学出版社,1996.
    [53] Nakhle H.Asmar.偏微分方程教程[M].北京:机械工业出版社,2006.
    [54]李海涛,邓樱. MATLAB程序设计教程[M].北京:高等教育出版社,2002.
    [55]李世奇,杜慧琴. Maple计算机代数系统应用及程序设计[M].重庆:重庆大学出版社,1999.
    [56] R.布朗森.全美经典学习指导系列微分方程[M].北京:科学出版社,2002.
    [57] Frank Bowman. Introduction to Bessel Functions [M].New York: Dover Publications Inc., 1958.
    [58]王竹溪,郭敦仁.特殊函数概论[M].北京:北京大学出版社,2000.
    [59] G.N.Watson, Sc.D, F.R.S.. A Treatise on the Theory of Bessel Functions [M].London: CAMBRIDGE UNIVERSITY PRESS, 1922.
    [60] N.N.Lebedev.Special Functions and Their Applications [M].Englewood: Pretice Hall, Inc.,1965.
    [61] Milton Abramowitz,Irene A.Stegun.Handbook of Mathematical Functions: with Formulas, Graphs and Mathematical Tables[M].New York: Dover Publications,1965.
    [62]刘式适,刘式达.特殊函数[M].北京:气象出版社,2002.
    [63]范章群,夏致远.煤基质形状因子理论探讨[J].煤田地质与勘探,2009,37(3):15-18.
    [64]赵刚.煤层气井不稳态压力分析[D].北京:中国地质大学,2010.
    [65]李贵中,白建梅,习铁宏,等. GIS支持下的煤层气目标区模糊综合评价模型[J].现代地质,2008,22(1):103-106.
    [66] Joel L.Schiff. The Laplace Transform Theory and Applications[M]. New York: Springer-Verlag Inc.,1999.
    [67]李高翔.求解拉普拉斯逆变换的一般方法及其应用[J].高等函授学报(自然科学版),2006,20(3):26-28.
    [68] Fred N.Kissell,John C.Edwards. Two-Phase Flow in Coalbeds[M]. Washington: Bureau of Mines,1975.
    [69]张先敏,同登科.低渗透煤层气非线性流动分析[J].工程力学,2010,27(10):219-223.
    [70]张先敏,同登科.考虑井储和表皮效应的分形介质煤层气压力动态分析[J].力学季刊,2009,30(4):602-606.
    [71]周军平,鲜学福,姜永东,等.考虑有效应力和煤基质收缩效应的渗透率模型[J].西南石油大学学报(自然科学版),2009,31(1):4-8.
    [72]郑启明,崔洪庆.煤层气储层模型的建立及其应用[J].辽宁工程技术大学学报,2007,26(增刊):140-142.
    [73]范章群.煤层气解吸研究的现状及发展趋势[J].中国煤层气,2008,5(4):6-10.
    [74]张力,何学秋,李侯全.煤层气流方程及数值模拟[J].天然气工业,2002,22(1):23-25.
    [75]魏志勇,诸永泰.推广约当引理以及Laplace变换与Fourier变换的对应关系[J].应用数学和力学,1997,18(6):531-534.
    [76]张群.煤层气储层数值模拟模型及应用的研究[D].西安:煤炭科学研究总院西安分院,2003.
    [77]张先敏.煤层气储层数值模拟及开采方式研究[D].东营:中国石油大学(华东),2007.
    [78]薛莉莉.煤层气储层压裂数值模拟技术研究[D].东营:中国石油大学(华东),2009.
    [79]张磊.水平井筒与煤层气藏耦合的理论研究[D].东营:中国石油大学(华东),2009.
    [80]刘珊,同登科.有界封闭地层中煤层气渗流问题[J].中国煤层气,2005,2(2):20-25.
    [81]石继平,何应付,耿佳梅.应力敏感性复合煤层气压力动态特征[J].新疆石油天然气,2006,2(3):55-58.
    [82]张瑞,吴林高.双重多孔介质中考虑井损的三维渗流方程的解析解[J].同济大学学报,1987,15(4):457-469.
    [83]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,(1):21-28.
    [84]潘宏宇.复合关键层下采场压力及煤层瓦斯渗流耦合规律研究[D].西安:西安科技大学,2009.
    [85]李祥春,郭勇义,吴世跃.煤吸附膨胀变形与孔隙率、渗透率关系的分析[J].太原理工大学学报,2005,36(3): 264-266.
    [86]秦书玉,陈长华,李健.煤炭自燃早期预报的模糊聚类关联分析法[J].辽宁工程技术大学学报,2003,22(3): 289-291.
    [87]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报,1999,18(6): 397-401.
    [88]李涛,何应付,曹丽丽.煤层气渗流规律与压力特征分析[J].中国煤层气,2006,113(12): 16-20.
    [89]何应付,刘先贵,鲜保安.煤层气藏水平井渗流规律与压力动态分析[J].煤田地质与勘探,2007,35(1):41-45.
    [90]何应付,张亚蒲,鲜保安.煤层气藏垂直裂缝井压力动态分析[J].石油天然气学报,2006,28(5): 113-117.
    [91]郎兆新,张丽华,罗山强.零维煤层气模拟软件的研制[J].石油大学学报(自然科学版),1997,21(5):30-34.
    [92]同登科,蔡郎郎,陈钦雷.考虑二次梯度项影响的双重介质流动分析[J].工程力学,2002,19(3): 99-104.
    [93]王梅英,同登科.考虑二次梯度项及动边界的双重介质低渗透油藏流动分析[J].力学季刊,2007,28(3): 448-454.
    [94]同登科,周德华,陈钦雷.具有应力敏感于地层渗透率的分形油气藏渗流问题的近似解析研究[J].石油勘探与开发,1999,26(3):53-57.
    [95]刘大有.建立两相流方程的动力论方法[J].力学学报,1987,19(3):213-221.
    [96]赵聪,陈长华.基于模糊渗流理论的采场自然发火[J].辽宁工程技术大学学报(自然科学版),2009,28(增刊):31-33.
    [97]王磊.基于模糊结构元的一阶模糊微分方程[J].佳木斯大学学报(自然科学版),2008,26(6):817-819.
    [98]刘曰武,张大为,陈慧新.多井条件下煤层气不定常渗流问题的数值研究[J].岩石力学与工程学报,2005,24(10):1679-1686.
    [99]文延东,曾亿山,唐兵.定产量煤层气井底瞬时压力计算[J].天然气工业,1998,18(3):34-39.
    [100]郭嗣琮,陈刚.不规则介质采场模糊渗流的数学模型[J].辽宁工程技术大学学报(自然科学版),2001,20(5):666-668.
    [101]同登科,刘珊.变形介质煤层气不稳定渗流问题[J].天然气工业,2005,25(1):74-76.
    [102]高慧梅,何应付,曹丽丽.变形介质煤层气压力动态特征分析[J].特种油气藏,2007,14(1):66-79.
    [103] P.G.SAFFMAN.The lift on a small sphere in a slow shear flow[J].Fluid Mech,1965, 22(2): 385-400.
    [104]张永利,邰英楼,徐颖.王营子矿煤层中水2煤层气两相流体渗流规律的研究[J].实验力学,2000,15(1): 92-96.
    [105]孙立东,赵永军,蔡东梅.煤储层渗透率模拟—以沁水盆地太原组为例[J].断块油气田,2007,14(1):8-9.
    [106]郭嗣琮.基于结构元理论的模糊数学分析原理[M].沈阳:东北大学出版社,2004.
    [107]陈伟,段永刚,谢军.煤层气有限导流压裂井的压力动态分析[J].西南石油学院学报,2000,22(1):47-50.
    [108]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [109]同登科,陈钦雷,廖新维,等.非线性渗流力学[M].北京:石油工业出版社,2003.
    [110] Alan Jeffrey,Hui-Hui Dai. Handbook of Mathematical Formulas and Integrals[M]. San Diego: Elsevier Inc,2008.
    [111]刘尉宁.渗流力学基础[M].北京:石油工业出版社,1985.
    [112]李红,谢松法.复变函数与积分变换[M].北京:高等教育出版社,2003.
    [113]翟云芳.渗流力学[M].北京:石油工业出版社,2003.
    [114]冯文光.含低渗透夹层的非均质双重介质垂向干扰的精确解[J].计算物理, 1987,4(4):489-502.
    [115] JACQUES HAGOORT. Fundamentals of Gas Reservoir Engineering[M].New York:ELSEVIER SCIENCE PUBLISHERS B.V.,1988.
    [116] Amanat U.Chaudhry. Gas Well Testing Handbook[M]. Burlington: Elsevier Science., 2003.
    [117]《数学手册》编写组.数学手册[M].北京:高等教育出版社,1979.
    [118]葛家理.现代油藏渗流力学原理[M].北京:石油工业出版社,2003.
    [119]张建国.油气层渗流力学[M].东营:中国石油大学出版社,2009.
    [120]陈长华.基于模糊渗流理论的采场自然发火位置顶测模型及其相似模拟研究[D].阜新:辽宁工程技术大学,2004.
    [121]陈长华,郭嗣琮.非均匀孔隙介质工作面气体稳定渗流的模糊解研究[J].煤炭学报,2002,27(5):487-493.
    [122]郭嗣琮.基于结构元理论的模糊数学分析原理[M].沈阳:东北大学出版社,2004.
    [123]孔祥言,卢德唐.渗流力学的理论应用及其前沿研究[J].中国科学技术大学学报,2007,37(10):1262-1266.
    [124]朱斌,冯曦,刘晓旭.裂缝-孔隙型气藏气井产量变化特征分析[J].天然气勘探与开发,2008,31(2):32-34.
    [125]李爱芬,刘照伟,杨勇.双重介质中有限导流垂直裂缝井试井模型求解的新方法[J].水动力学研究与进展,2006,21(2):217-222.
    [126]张建军,贾永禄.应用正交积分变换求解有界双重介质模型[J].西化师范大学学报(自然科学版),2008,29(2):153-156.
    [127]王惠芸,刘勇,梁冰.煤层气在低渗透储层中传输非线性规律研究[J].辽宁工程技术大学学报,2005,24(4):469-472.
    [128]向开理,李允,李铁军.井筒相再分布的分形油藏不稳定渗流有效井径数学模型的解析解[J].油气井测试,2001,10(3):5-9.
    [129]王晓红. Laplace变换边界积分方程与Schapery数值反演法模拟溶质运移问题[J].水文地质工程地质,1997,(6):19-22.
    [130]刘世常,李闽,巫扬.应用拉普拉斯变换的数值反演并结合生产数据预测水体参数和原始油气地质储量[J].国外油田工程,2007,23(7):15-19.
    [131]郭嗣琮.模糊值函数极限与连续的模糊结构元表述[J].海南师范大学学报(自然科学版),2008,21(4):351-356.
    [132]郭嗣琮,秦书玉.采矿工程中的模糊数学方法(IV)模糊决策[J].阜新矿业学院学报(自然科学版),1993,12(2):121-127.
    [133]同登科,陈钦雷.关于Laplace数值反演Stehfest方法的一点注记[J].石油学报,2001,22(6):91-92.
    [134]骆祖江.煤层甲烷气藏数值模拟[J].煤田地质与勘探,1997,(2):28-30
    [135]陈长华.基于模糊渗流理论的采场自然发火位置顶测模型及其相似模拟研究[D].阜新:辽宁工程技术大学, 2004
    [136]陈长华,郭嗣琮.非均匀孔隙介质工作面气体稳定渗流的模糊解研究[J].煤炭学报,2002,27(5):487-493.
    [137] Stehfest H. Numerical inversion of Laplace transforms, Communications of the ACM.,13(1):47-49.
    [138] Van Everdingen A F, Hurst W, The application of the Laplace transformation to flow problem in resvoirs. Trans. AIME, 1965(186):305-324.
    [139]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [140] Kohler T. E. Ertekin T. Modeling of Undersaturated Coal Seam Gas Reservoirs[J]. SPE paper 29578.
    [141] Airey E.M. Gas emission from broken coal: an experimental and theoretical investigation [J]. International Journal of Rock Mechanics and Mining sciences, 1968, 5: 475-494.
    [142] Price H.S. McCulloch R.C. et al. A computer model study of methane migration in coalbeds[C]. The Canadian Mining and Metallurgical Bulletin,1973,66(737): 103-112.
    [143]崔迪生,徐建平,赵平起,等.拉普拉斯变换与试井分析[M].北京:石油工业出版社,2002.
    [144]饭田嘉宏,大谷茂盛.用拉普拉斯变换法确定扩散系数[J].化学工学论文集,1979,5(2): 321-323.
    [145]张杰,李翠楠,张向阳.试井分析中的离散数据拉普拉斯变换方法[J].天然气工业,2004,3(34):100-101.
    [146]范天佑. Laplace变换的数值反演[J].数学的实践与认识,1987,(03):68-75.
    [147]刘式适,刘式达.特殊函数[M].北京:气象出版社,2002.
    [148] Close J C.Natural fracture in coal[J],In:Hydrocarbons from coal,Law B E. and Rice D D.(eds),AAPG,Studies in Geology.1993(38): 119-132.
    [149] Gamson p.,Beamish B. & Johnson David. Effect of coal microstructure and secondary mineralization on methane recovery[J].Geological Special Publication.1998(199):165-179.
    [150] Gamson p., Beamish B. & Johnson David.夏锁林译,傅雪海校.煤显微构造和次生矿化作用对甲烷回采率的影响[J].煤层气,1998,16(1):21-28.
    [151] Warren J.E., Root P.J.. The behavior of Naturally fractured reservoir. Paper SPE 426, Presented at the Fall Meeting of the Society of Petroleum Engineering, Los Angeles, oct. 7一10, 1952: 245一255.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.