红外窗口金刚石透波涂层沉积设备研制与涂层性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学气相沉积(Chemical Vapour Deposition,CVD)金刚石具有优异的光学性能。近年来,金刚石涂层作为红外窗口增透或者保护涂层的应用成为人们关注的热点。为深入开展红外窗口金刚石涂层的应用基础研究并推动红外窗口金刚石涂层的产业化进程,本文从红外窗口金刚石涂层沉积设备的研制、金刚石涂层的透波及增透机理、涂层制备工艺、涂层的透波性能及膜/基结合性能等方面开展深入研究,分析各种因素对金刚石涂层红外透射率以及膜/基结合性能的影响,为红外窗口金刚石涂层产业化应用奠定基础。
     本文主要开展的研究工作如下:
     1.分析了金刚石沉积过程中反应室内衬底的热交换过程,建立了电子辅助化学气相沉积(Electron-Assisted CVD,EACVD)系统在衬底作无急回特性摆动时的衬底温度场动态模型,根据金刚石成膜过程中对衬底温度的工艺要求,对影响衬底温度场的热丝参数及衬底摆动参数进行了优化设计。根据EACVD系统的几何特点和工艺参数建立了该系统的三维流场有限元模型,利用该模型对摆动衬底表面的流场进行了模拟计算,研究了衬底温度及摆动周期、热丝参数、进气口参数对衬底表面流场均匀性的影响。
     2.在衬底温度场、空间流场仿真的基础上,针对传统多点测温以及现有EACVD设备所存在的一些问题,提出了带摆动衬底工作台的EACVD一体化系统的设计思路,实现系统的一体化、小型化,并满足制备红外窗口金刚石涂层的需要。多点测温实验以及金刚石涂层的沉积实验的结果表明,设备运行稳定,衬底温度场和空间流场可控,完全满足设计要求。
     3.对红外光学系统的透波、增透机理进行了分析,建立了红外窗口和金刚石涂层组成的膜系的透射率模型,根据透射率模型详细分析了影响膜系透射率的主要因素,为制备高质量、高透射率的红外窗口金刚石涂层提供理论指导。
     4.在单晶硅衬底上开展了微米及纳米金刚石透波涂层制备工艺的实验研究,对实验制备机理和工艺过程中的关键问题进行了深入的探讨和分析研究。使用Raman、场发射SEM、XRD、傅立叶红外光谱仪和三维形貌仪等现代理化手段对金刚石涂层的微结构和红外透射率进行表征。得到了工艺参数对金刚石涂层生长以及红外透射率的影响规律。结果表明,即使在最优工艺参数下制备的微米及纳米金刚石涂层在1000 cm-1~4000 cm-1波段范围内,增透效果不很显著,最高红外透射率低于50%,不能满足红外窗口涂层的应用要求。
     5.在微米及纳米金刚石涂层制备的基础上分别采用原位沉积法和交替沉积法进行金刚石红外透波复合涂层的制备研究,结果表明,采用交替沉积法制备的金刚石涂层具有较高的红外透射率,在1000 cm-1~4000 cm-1波段范围内最大透射率达62%,增透率达80%。研究了红外窗口金刚石透波涂层的膜/基结合性能,分析了不同工艺条件对金刚石涂层膜/基结合性能的影响,研究结果表明,采用交替沉积法制备的金刚石红外透波复合涂层具有较高的膜/基结合性能。
Chemical vapor deposited (CVD) diamond film has the outstanding optical property. At present, diamond used for antireflection coating or protective coating in infrared windows becomes the hotspot. To develop the basic research for application of diamond coating for infrared windows and impel its industrialization process, study is carried out in this dissertation. The CVD deposition system, microwave-transparent mechanism, preparation technology, mechanical property and binding ability of the diamond coating are investigated in detail. To study how the factors influence the performance of diamond, modern analytical methods are carried out to analyze and evaluate the surface topography, microstructure and infrared transmittance. All the results of this research lay the foundation for the diamond coating's industrial production application in infrared windows.
     The main work and results obtained in this dissertation are as follows:
     1. Base on heat transfer theory and Energy conservation law, heat exchange process of electron assisted chemical vapor deposition(EACVD)system was analyzed, then the dynamic model of EACVD system was set up when the substrate sways without quick-return characteristics. To satisfy the requirement of temperature for diamond deposition, filament parameters and substrate swing parameters were optimized. Base on the geometric characteristics and process parameters, three-dimension finite element model of the flow field of EACVD was set up, and then the influence of substrate temperature, hunting period, filament parameters and inlet parameter in the uniformity of substrate surface was studied.
     2. Based on the finite element analysis of temperature and flow field, some parts of the EACVD system including the mechanical system and control system were redesigned and improved to meet the need for diamond deposition used in infrared windows. Then performance of the EACVD was studied by multi-point temperature measuring test and diamond deposition experiment. Results showed optimized system provides uniform temperature and flow field which was good for diamond deposition.
     3. Study of the microwave-transparent mechanism of infrared optical system was carried out, the transmittance model made of infrared windows and diamond film was set up to analyzed the optical antireflection mechanism and the relationship between reflectivity and refractive index of infrared windows and thickness of diamond film. Major factors influencing the transmittance were found out to provide the theoretical direction for preparation of high quality diamond coating.
     4. Experimental study on the preparation of Nano-crystalline diamond (NCD) film and Micro-crystalline diamond (MCD) film was carried out on mono-crystalline silicon, and the key technologies in the process were investigated. The microstructure and infrared transmittance were characterized by Raman, SEM, XRD, Fourier transform infrared spectrometer (FTIR) and Three-dimensional topography instrμment. By studying the influence rules of process parameters on infrared transmittance, optimized parameters were obtained. The results showed that the highest infrared transmittivity of the MCD and NCD was below 50% at the range of 1000 cm-1 and 4000 cm-1.The diamond coating can not meet the demands of infrared window application.
     5. Base on the preparation of NCD and MCD, study of the composite diamond films was carried out by In situ deposition method and Alternating deposition method. The results showed that the diamond film obtained using alternating deposition method had high infrared transmittance. At the range of 1000cm-1 and 4000cm-1, the maximum transmission rate and antireflective rate arrived at 62% and 80% respectively. Binding ability of the diamond coating were analyzed to study how the process parameters influence the performance, and the results showed that the diamond film obtained using alternating deposition method had good binding ability. .
引文
[1] R. F. Davis. Diamond films and coatings: development, properties, and applications. New Jersey: Noyes Publications, 1993
    [2] J. Asmussen, D. K. Reinhard. Diamond films Handbook. New York: Marcel Dekker, Inc, 2001
    [3]陈光华,张阳等编著.金刚石薄膜的制备与应用.北京:化学工业出版社,2004
    [4] D. W. Zuo, B. K. Xiang, W. Z. Lu. Diamond thick film prepared by EACVD as cutting-tool material. Progress of Maching Technology, 2002, 23:18-23
    [5]李多生,左敦稳,陈荣发,等.大尺寸金刚石涂层生长中等离子体弧源的稳定性,南京航空航天大学学报, 2007,39(3):338-342
    [6] D. S. Li, D.W.Zuo, R.F.Chen etal. Characterization of Diamond Sperical Shell Thick Film by DC Plasma CVD, Key Engineering Materials, 2008, 375-376:216-220
    [7] D.W. Zuo, X..F. Li, M .Wang, et al. Adhesion improvement of CVD diamond film by introducing electro-deposited interlayer. Journal of Materials Processing Technology, 2003, 138(7):45-457
    [8] I.F. Machado and F.M. Silvia. Figueir?a.500 years of mining in Brazil: a brief review. Resources Policy, 2001, 27(1): 9-24
    [9] Z.Z. Liang, H. Kand, X. Jia, et al. Synthesis of diamond with high nitrogen concentration from powder catalyst-C-additive NaN3 by HPHT. Carbon, 2006, 44(5):913-917
    [10] S.H. Richardson, S.B. Shirey and J. W. Harris. Episodic diamond genesis at Jwaneng, Botswana, and implications for Kaapvaal craton evolution. Lithos, 2004, 77(1-4):143-154
    [11] J.J. Gurney, P.R. Hildebrand, J.A. Carlson, et al. The morphological characteristics of diamonds from the Ekati property. Northwest Territories. 2004, 77(1-4):21-38
    [12] M. L. Chaves, J. Karfunkel, A. Hoppe, et al. Hoover. Diamonds from the Espinha?o Range (Minas Gerais, Brazil) and their redistribution through the geologic record. Journal of South American Earth Sciences, 2001, 14(3):277-289
    [13] H. Kanda and X. Jia. Change of lμminescence character of Ib diamonds with HPHT treatment. Diamond and Related Materials, 2001, 10(9-10):1665-1669
    [14] E. Pace, A. Pini, G. Corti, et al. CVD diamond optics for ultraviolet. Diamond and Related Materials, 2001, 10(3-7): 736-743
    [15] T.H. Chein, J. Wei and Y.Tzeng. Synthesis of diamond in high power-density microwave methane/hydrogen/oxygen plasmas at elevated substrate temperatures. Diamond and Related Materials, 1999, 8(8-9):1686-1696
    [16] Y.C. Zhao, M.Z. Wang. Preparation of polycrystalline cBN containing nanodiamond. Journal of Materials Processing Technology, 2008, 198(1-3):134-138
    [17] T. Hainschwang, F.Notari, E. Fritsch, et al. HPHT treatment of CO2 containing and CO2-relatedbrown diamonds. Diamond and Related Materials, 2008, 17(3):340-351
    [18] W.Q. Liu, H.A. Ma, X.L. Li, et al. Effects of additive Al on the HPHT diamond synthesis in an Fe–Mn–C system. Diamond and Related Materials, 2007, 16(8):1486-1489
    [19] J.K. Lee, M. W. Anderson, F.A. Gray, Phillip John. Explosive oxidation of HPHT diamond particles. Diamond and Related Materials, 2006, 15(9):1206-1209
    [20]刘刚.热丝化学气相沉积金刚石涂层的研究. [硕士论文],阜新:辽宁工程技术大学,2006
    [21]戴达煌,周克崧等.金刚石薄膜沉积制备工艺与应用.北京:冶金工业出版社,2001.1-7,27-37,118~124
    [22]郑伟涛.薄膜材料与薄膜技术.第1版.北京:化学工业出版社,2003.11:248~260
    [23] M.D.Gruen, S.Z. Liu, A. R. Krauss, et al. Buckyball microwave plasmas: Fragmentation and diamond film growth. Journal of Applied Physics, 1994, 75 (3): 1758-1763
    [24]张文华,丁桂甫,王谦,等.用金刚石薄膜制造X射线掩膜板.微细加工技术. 1998(,1):37-41
    [25]郝天亮.热丝化学气相沉积制备超薄纳米金刚石涂层研究. [博士学位论文],2006,杭州:浙江大学:1-192
    [26] Y. J. Baik, J. K. Lee, W. S. Lee and K. Y. Eun. Large area deposition of thick diamond film by direct-current PACVD. Thin Solid Films, 1999, 341(1-2): 202-206
    [27] H. Kanda and K. Watanabe. Distribution of nickel related lμminescence centers in HPHT diamond. Diamond and Related Materials, 1999, 8(8-9):1463-1469
    [28] W. L. Wang, K. J. Liao, R. Q. Zhang and C. Y. Kong. Investigation of organic light emitting devices using boron-doped diamond electrodes. Materials Science and Engineering B, 2001, 85(2-3):169-171
    [29] F. Montilla, P. A. Michaud, E. Morallón, et al. Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes. Electrochimica Acta, 2002, 47(21):3509-3513
    [30] S.Kamiya, H. Takahashi, P.D.Antonio, et al. Quantitative coMParison of adhesive toughness for various diamond films on co-cemented tungsten carbide. Diamond and Related Materials, 2002, 11(3-6):716-720
    [31] J. Krása, L. Juha, V. Vorlíek and A. Cejnarová. Application of CVD diamonds as dosimeters of soft X-ray emission from plasma sources. Nuclear Instrμments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 524(1-3):332-339
    [32] H. Huang and X. P. Xu. Interfacial interactions between diamond disk and granite during vertical spindle grinding. Wear, 2004, 256(6): 623-629
    [33] H. Ohmori, W. Lin, J. Guo, et al. Fabrication process and system for neutron refractive optics. Nuclear Instrμments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 529 (1-3):106-111
    [34]陈荣发.光学级金刚石厚膜应用于红外窗口的关键技术研究. [博士学位论文],2008,南京:南京航空航天大学:1-118
    [35] C. David, T. Weitkamp, B. N?hammer, et al. Diffractive and refractive X-ray optics for microanalysis applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59(10-11):1505-1510
    [36] S. Hirshleifer, J. Hirshleifer. Conflict and rent-seeking success functions: ratio vs difference models of relative success. Public Choice, 1989, 63 (1):101–112
    [37] O. Olsson. Conflict diamonds. Journal of Development Economics, 2007, 82 (1) :267–286
    [38] R.M. Auty. The political economy of resource-driven growth. European Economic Review, 45 (2001):839–846
    [39] R.M. Auty, A.H. Gelb. Political economy of resource-abundant states. In: R.M. Auty. Editor, Resource Abundance and Economic Development, Oxford University Press, 2001:126–145
    [40] H. Isogai, M. Kato and Y.Taniguchi. Effects of pressure and solvents on the infrared absorption intensities of C–I stretching modes of methy and ethyliodides in solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 69(2):327-332
    [41] E. Kohn and A.Denisenko. Concepts for diamond electronics. Thin Solid Films, 2007, 515(10):4333-4339
    [42] P. Dumas, F. Polack, B. Lagarde, et al. Synchrotron infrared microscopy at the French Synchrotron Facility SOLEIL. Infrared Physics & Technology, 2006, 49(1-2):152-160
    [43] S. Chaure, N.B. Chaure, A.K. Hassan, et al, Microstructural and electrical studies on diamond films. Vacuμm, 2005, 77(3):231-235
    [44] C. S. J. Pickles, T. D. Madgwick, R. S. Sussmann ,etal. Optical performance of chemically vapour-deposited diamond at infrared wavelengths. Diamond and Related Materials 2000, 9(3): 916-920
    [45] D.C.Harris. Diamond optics:status for infrared applications. Proceedings of the Applied Diamond Conference 1995. Applications of Diamond Films and Related Materials: Third International Conference, 1995, 1:539-546
    [46] P.M. Menon, A.Edwards,C.S.Feigerle. Filament metal contamination and Raman spectra of hot filament chemical vapor deposited diamond films. Diamond and Related Materials 1999, 8(1): 101-109
    [47] P.W. May. Diamond thin films: a 21st-century material. Philosophical Transactions of the Royal Society London, Series A (Mathematical, Physical and Engineering Sciences) 2000, 358: 473-495
    [48]吕庆敖,邬钦崇.微波等离子体化学气相沉积装置的工作原理.真空与低温,1997, 3(2):74-76
    [49]顾长志,高谷松文,等.微波等离子体CVD方法制备金刚石薄膜.吉林大学自然科学学报, 1997,3(3):67-69
    [50]万静,苟立,冉均国.金刚石涂层表面抛光与平整技术进展.现代技术陶瓷,2003, 24(1):31-34
    [51]陈春林,王成勇,陈君.金刚石涂层机械和机械-化学抛光.金刚石与磨料磨具工程, 2002,127(1):3-6
    [52]吕反修,唐伟忠,刘敬明,等.大面积高光学质量金刚石自支撑膜的制备.材料研究学报2001, 15(1): 41-48
    [53] G. Lu, K. J.Gray, E.F. Borchelt,etal. Free-standing white diamond for thermal and optical application. Diamond and Related Materials, 1993, 2(5):1064-1068
    [54] N. Ohtake, M. Yoshikawa.Nucleation effects and characteristics of diamond film grown by arc discharge plasma jet chemical vapor deposition. Thin Solid Films, 1992,212(1):112-121
    [55] Z.P.Lu,J.Heberlein,E.Pfender. Process study of thermal plasma chemical vapor deposition of diamond. Plasma Chemistry and Plasma Processing, 1992, 12(1): 35-53,55-69
    [56] S.Matsumoto, Y.Manabe, Y.Hibino. Diamond deposition using an X-Y stage in a d.c. plasma jet chemical vapour deposition. Journal of Materials Science, 1992, 27 (21): 5905~5910
    [57] K.J.Gray,H.Windischmann.Free-standing CVD diamond wafers for thermal management by d.c.arc jet technology. Diamond and Related Materials ,1999, 8(2):903-908
    [58]马志斌,王卫红.金刚石薄膜的研究概况.武汉化工学院学报,2000,22(1):37-39
    [59]臧建民,钟国仿等.廉价制备大面积金刚石涂层的高功率直流等离子体喷射设备的研制.河北省科学院学报,1997,14(1):6-8
    [60] D. V.Hahn, M. E.Thomas, W. David, et al. Characterization and modeling of the infrared properties of diamond and SiC. SPIE, 2003,5078:148-158
    [61] D. V.Hahn, M. E.Thomas, W. David, et al. Characterization and modeling of the infrared properties of GaP and GaAs. SPIE, 2003,5078:159-168
    [62] T. P. Mollart, K. L .Lewis, C. Wort, et al. Coatings Technology for CVD diamond Optics. SPIE,2001,4375:199-205
    [63] P.Koidl, C.Wild, E.Worner, et al. Diamond Windows for Infrared and Multispectral Applications. SPIE, 1998,3436:387-395
    [64] C. S. J Pickles, R. S. Sussman, M. Nesladek, et al. Infrared Performance of Chemical Vapour Deposited Diamond. SPIE, 2001,4347:493-501
    [65] E. Michael, Thomas, J. William, et al. Measurement of absorption and scattering properties of CVD diamond. SPIE, 2001,4375:218-223
    [66] N.Company, R. Goddard, Northboro, et al. Properties of CVD diamond for optical applications. SPIE, 1991,1534:60-66
    [67] C.D.Harris. Properties of diamond for window and dome applications. SPIE, 1994,2286:218-228
    [68] C.F.Hickey, J.DeRosa and K.A.Snail. Scattering and absorption of CVD diamond windows.SPIE, 1992,1760:154-165
    [69] T. P. Mollart. The development of CVD infrared optics from planar windows to missile domes SPIE, 2003,5078:127-136
    [70] P.Klocek, J.Hoggins, T.McKenna,J.Trombetta, et al. Optical properties of GaAs,GaP, and CVD diamond. SPIE, 1991,1498:147-157
    [71]孙亦宁,郭晚土,李敬起等。金刚石涂层在宇航应用中的新进展.中国空间科学技术,1997,(3:27-31
    [72]陆炳哲.英国潜艇潜望镜的发展史(续二).舰艇电子工程,2005,25(3):131-140
    [73]吕反修,高旭辉,郭会斌,等.在预涂陶瓷过渡层的多谱段ZnS衬底上沉积金刚石涂层的探索研究.人工晶体学报,2004,33(1):105-108
    [74] K. Uppireddi, B.R. Weiner, G.Morell. Synthesis of nanocrystalline diamond films by DC plasma-assisted argon-rich hot filament chemical vapor deposition, Diamond and Related Materials, 2008,17(1):55-59
    [75] J.G.Buijnsters, P.Shankar, J.J.Ter Merlen. Direct deposition of polycrystalline diamond onto steel substrates, Surface and Coatings Technology, Volμme201, 2007,201(22-23):8955-8960
    [76] L.Sch?fer, M.H?fer, R.Kr?ger. The versatility of hot-filament activated chemical vapor deposition, Thin Solid Films, 2006, 515(3):1017-1024
    [77] D.J.Qiu, A.M.Feng, H.Z.Wu. Structural and optical characterizations of nanostructured diamond films grown on Si(001) substrates, Diamond and Related Materials, 2004, 13(3):419-424
    [78] B.V.Spitysn, L.L.Bouilov, B.V.Derjaguin. Vapor growth of diamond on diamond and other surfaces. J.Cryst. Growth 1981, 52(1):219-266
    [79] J. Wei, H .Kawarada, J. Suzuki and A. Hiraki. Growth of diamond films at low pressure using magneto-microwave plasma CVD. Journal of Crystal Growth, 1990, 99)3):1201-1205
    [80] K.G.Girija, C.A.Betty. Modeling of current transport in hot filament CVD diamond films, Diamond and Related Materials, 2004,13(10):1812-1815
    [81] J.M.B.Carbon nanostructures by Hot Filament Chemical Vapor Deposition:Growth, properties, applications, Thin Solid Films, 2006,501(1-2):8-14
    [82]王丽军.金刚石薄膜CVD制备方法及其评述.真空与低温,2000,6(2):80-85
    [83] K.S.Atsuhito, Sawabe, H.Yasuda, et al. Growth of diamond thin films by DC plasma chemical vapor deposition. Appl Phys Lett, 1987,50(12):728-729
    [84] Kazuakikutihara, Kenichisasaki, M.Kawarada, et al. High rate synthesis of diamond by DC plasma jet chemical vapor deposition. Appl Phys Lett, 1988,52(6):437-438
    [85]饭田修一.物理学常用数表.北京:科学出版社,1979
    [86]朱胤. EACVD金刚石涂层设备的控制技术及实验研究, [硕士学位论文],南京,南京航空航天大学,2004
    [87]徐锋,左敦稳,卢文壮,等.连续多试样纳米金刚石涂层沉积设备及工艺,南京航空航天大学学报,2005,37(11):63~67
    [88]宋胜利.大面积HFCVD金刚石制备的温度控制及其应用研究, [博士学位论文],南京,南京航空航天大学,2004
    [89]张贵锋,耿东生,郑修麟.金刚石薄膜的红外光学性能.激光与红外, 1997,27(1):51-53
    [90]曹振中,左敦稳,王珉,等.硼掺杂金刚石涂层的电火花加工研究.人工晶体学报, 2005,34(3):565-570
    [91]卢文壮,左敦稳,王珉,等.大面积B掺杂CVD金刚石涂层的制备研究.人工晶体学报, 2004,33(5): 726-730
    [92] W. Z. Lu, D.W. Zuo, M. Wang, et al. Study on EDM Polishing of CVD diamond films. Key Engineering Material, 2006, 315-316: 464-486
    [93]陈岩,黄荣芳,闻立时等.温度场对热丝化学气相沉积大面积生长金刚石膜的影响.材料研究学报, 1995, 9 (3): 245-248
    [94] M. W. Geis, N. N. Efremow, D. D. Rathman. J Vac Sci Technol, 1988; A6: 1953
    [95] T. DebRoy, K. Tankala, W.A.Yarbrough, et al. Role of heat transfer and fluid flow in the chemical vapor deposition of diamond. Appl Phys, 1990, 68(5): 2424-2432
    [96] C.Wolden, S.Mitra, K.K.Gleason. Radiative heat transfer in hot-filament chemical vapor deposition diamond reactors. Appl Phys, 1992,72(8): 3750-3758
    [97]戚学贵,陈则韶,王冠中.热丝法化学气相沉积金刚石系统温度分布与薄膜生长关系研究.材料工程, 2001, (11) :31-34
    [98]李建国,刘实,李依依,等.热丝化学气相沉积金刚石薄膜空间场的数值分析.金属学报, 2005, 41 (4): 437-443
    [99]汪爱英,孙超,皱友生,等. HFCVD金刚石薄膜温度场的数值研究.金属学报,2002,38 (11): 1228-1232
    [100]宋胜利,左敦稳,徐锋等.大面积热丝化学气相沉积系统衬底温度自回归模糊神经网络控制技术.机械工程学报, 2005, 41 (7): 136-140
    [101] G. H Song, Sun C, Wang B, et al. Interdiffusion Behavior of Ni–Cr–Al–Y Coatings Deposited by Arc-Ion Plating .Oxidation of metals,2001,56:1-13
    [102] G.H.Song, C .Sun, R .F Huang, L .S .Wen, Simulation of the influence of the filament arrangement on the gas phase during hot filament chemical vapor deposition of diamond films. Vac. Sci. Technol. A ,2000(18):860-863
    [103]程新红,管道热丝化学气相沉积金刚石的辐射场及流场模拟计算. [硕士学位论文].沈阳,中国科学院金属研究所,1997.6
    [104] T. Debroy, K.Tankala, W.A .Yarbrough, R.Messier, Role of heat transfer and fluid flow in the chemical vapor deposition of diamond. Appl. Phys.,1990(68):2424-2432
    [105]王鸿翔,左敦稳,卢文壮,等. EACVD小型化系统摆动衬底设计及温度场仿真研究.中国机械工程, 2009, 20(5): 580-584
    [106]姚仲鹏,王瑞君.传热学.北京:北京理工大学出版社, 1995
    [107]余其铮.辐射换热原理.黑龙江:哈尔滨工业大学出版社, 2000第一版
    [108]宋胜利,左敦稳,王珉.大面积HFCVD系统衬底温度场建模与分析.应用科学学报, 2003, 21: 423-426
    [109] L.Jun. Design of Multi-filament Arrays and Substrate Holders in Hot-filament CVD Reactors for Large Area Diamond Film Deposition. PhD Dissertation ,University of Arkansas ,1997
    [110] D. G. Goodwin, G. G..Gavillet. Numerical modeling of the filament-assisted diamond growth environment. Appl Phys, 1990, 68(12): 6393-6400
    [111] F. Jansen, M. A. Machonkin, D. E. Kuhman. J Vac Sci Technol, 1990; 8A: 3785
    [112]辛晓华,张武,周华.基于Fluent的绕流问题的数值模拟与并行计算.计算机工程与设计, 2005, 26(8):2153-2154
    [113]杨毅峰,樊建春,张来斌.基于FLUENT的气罐泄漏仿真在油气安全中的应用.江汉大学学报(自然科学版), 2006, 12, 34(4): 65-68
    [114]李多生.大尺寸金刚石厚膜球冠制备机理与工艺研究[博士学位论文].南京:南京航空航天大学,2008,10
    [115]韩占忠,王敬,兰小平. FLUENT:流体工程仿真计算机实例与应用.北京:北京理工大学出版社,2004,6
    [116]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004
    [117] J .Yu, R .F .Huang, L .S .Wen, C .X .Shi. Enhancement of the HFCVD diamond gowth process by directed gas flow, Mater. Lett., 1997(32):143-146
    [118] J .Yu, R .F .Huang, L .S .Wen, C .X .Shi, Effects of density of gas flow rate on large area diamond growth in hot filament chemical vapor deposition. Mater. Sci. Lett., 1998(17):1011-1013
    [119] D. W. Zuo, S. L. Song, B.K.Xiang, et al. Some Key Points for EACVD Thick Diamond Film Preparation. Key Engineering Materials. 2004,258-259:517-521
    [120] D.W.Zuo, X. F. Li, M. Wang, et al. Adhesion Improvement of CVD Diamond Film by Introducing an Electro-deposited Interlayer. Journal of Materials Processing Technology. 2003,138: 455-457
    [121] H.X. Wang, D.W. Zuo, W.Z. Lu, et al. Modeling and Analyzing the Temperature Field of the Swing Substrate in Miniature EACVD System. Key Engineering Materials. 2010, 431-432:45-48
    [122]王季陶.非平衡定态相图.北京:科学出版社,2000.3
    [123]郭永存,李植华,张广云.金刚石的人工合成与应用.北京:科学出版社,1984.9
    [124]卢文壮,左敦稳,王珉,等.大面积EACVD金刚石沉积设备的研究,机械设计与制造,2003(6):81-83
    [125] P. K. Bachmann, W..Eberhardt, B. Kessier, et al. Influence of surface modifications on the electronic properties of CVD diamond films. Diamond and related materials. 1996,(5):1378-1383
    [126] A.K.Kulkarni., A. Shrotriya., P. Cheng, et al. Electrical properties of diamond thin films grown by chemical vapor deposition technique. Thin solid films. 1994,253(1):141-145
    [127] G.F.Zhang, V.Buck. Lower filament temperature limit of diamond growth in a hot-filament CVD system, Surface and Coatings Technology,2002,160:14-19
    [128] R.S.Tsang, P.W.May, et al. Simulations of the hot-filament diamond CVD gas-phase environment: Direct coMParison with experimental measurements, Diamond and Related Meterials, 1999,8:1388-1392
    [129] G.H.Song, J.H.Yoon, et al. Influence of hot filaments arranging on substrate temperature during HFCVD of diamond films, Materials Letters, 2002, 56:832-837
    [130]阎承沛.真空热处理工艺与设备设计.北京:机械工业出版社,1998,205-244
    [131]方容川,常超.计算机编程控制CVD金刚石涂层生长系统的研制与应用.材料导报, 2001
    [132]唐晋发,顾培夫,刘旭等.现代光学薄膜技术.浙江:浙江大学出版社,2006
    [133]余怀之.红外光学材料.北京:国防工业出版社,2007
    [134]徐淦卿,陈珏,程东杰.红外物理与技术,北京:人民邮电出版社,1982
    [135] Z. Yin, Z. Akkerman, B.X. Yang, etal. Optical propertids and microstructure of CVD diamond films. Diamond and Rilated Materials, 1997, 6:153-158.
    [136]赵利军,韩柏,李博,等.光学级透明金刚石涂层的性质.吉林大学学报(理学版),2008,1:112-114
    [137] S.Qiang, X.T.YING, Y.H.SHEN. Synthesis of Infrared Optical Constant for Diamond Film[C]//Paper Volμme of Chinese Film Technology Proseminar [SL]: Chinese Optical Society, 1995:103-108
    [138] H..E. Bennett. Scattering characteristics of optical materials. Optical Engineering, 1978, 17:480-488
    [139] J.M. Eastman. Surface Scattering in Optical Inerference Coating [Ph.D.]. Thesis of Univ. Rochester, 1974
    [140] K. PAUL. Window and dome technologies and materials.SPIE, 1990,1326:156
    [141] J.M.Hall. Army Applications for Multi-Spectral windows.Proc.SPIE, 1997, 3060:330-334
    [142] S.Jitendra, Goela, B.Romero. Effects of Defects on ZnSe Absorption and Transmission .SPIE,1997, 3060:366-376
    [143]杨国伟.应用于红外光学中的金刚石薄膜.半导体光电,1993,1:54~57
    [144]宋贵宏,宫骏,孙超等. HFCVD金刚石厚膜的形貌对红外透射率的影响.人工晶体学报,2000, 29(4):390-393
    [145] M. Lee, Goldman, W. Randal.Tustison. High durability infrared transparent coatings.Proc. SPIE, 1994, 2286:316-324
    [146] J.Zimmer, K.V.Ravi, Aspects of scaling CVD diamond reactors. Diamond and Related Materials, 2006, 15(2-3): 229-233
    [147] T. Takeno, T. Komoriya, I. Nakamori. Tribological properties of partly polished diamond coatings . Diamond and Related Materials, 2005, 14(11-12): 2118-2121
    [148] D.M. Grune. Nanocrystalline Diamond Films. Review Material Science,1999 ,29 :2112-2159
    [149] X. T. Zhou, Q. Li, S.T. Lee, et al. Manipulation of the Equilibriμm between Diamond Growth and Renucleation to Form a Nanodiamond/ Amorphous Carbon Composite. Applied Physics Letters , 2002 ,80 (18)
    [150] R.Erz, W.D?tter, K. Jung, et al. Preparation of Smooth and Nanocrystalline Diamond Films. Diamond and Related Materials, 1993, 2:449-453
    [151] J. Lee, B. Hong, R. Messier, et al. Nucleation and Bulk Film Growth Kinetics of Nanocrystalline Diamond Prepared by Microwave Plasma Enhanced chemical vapor deposition on silicon substrate. Appl. Phys. Lett, 1996, 69:1716-1718
    [152] W.L.C.Richard, A.K. Rai, A.Garscadden, et al. Synthesis and characterization of fine grain diamond films. J. App. Phys, 1993, 72:110-116
    [153] D.M.Bhasari, J.R.Yang, T.Y.Wang, et al. Effects of substrate pretreatment and methane fraction on the optial transparency of nanocrystalline diamond thin films. J.Mater. Res. 1998, 13(7):1769-1773
    [154] S.A.Catledge and Y.K.Vohra. High density plasma processing of nanostructured diamond films on metals. J. Appl. Phys, 1998, 84:6469-6471
    [155] B. Mark.Moran, F. Linda.Johnson. Diamond-like-carbon films synthesized by electron cyclotron resonance chemical vapor deposition. SPIE, 1997, 3060:42-54
    [156] Z.T.Liu, N.K.Xu, D.S.Geng, et al. Thermostability of Diamond like Carbon Films. Surface Engineering. 1993,9(2):148-150
    [157] S.T. Lee and Y.W. Lam. Pressure effect on diamond nucleation in a hot-filament CVD system. Phys. Rev. B, 1997, 55:15937-15941
    [158]粱兴勃.硅基纳米金刚石涂层生长及其发光器件. [博士学位论文],杭州,浙江大学,2008
    [159] R.Brunsteiner, R.Haubner and B.Lux. Hot-filament chemical vapor deposition of diamond on SiAlON at pressures up to 500 Torr. Diam. Relat. Mater, 1993, 2:1263-1270
    [160]胡汉泉,王迁.真空物理与技术及其在电子器件中的应用(上册)北京:国防工业出版社,1982:3-25
    [161] C.H.Ku and J.J.Wu. Effects of CCl4 concentration on nanocrystalline diamond film deposition in a hot-filament vapor deposition reactor. Carbon, 2004, 42:2201-2205
    [162] G. H. Song, J. Gong, C. Sun, et al. Influence of the Morphology of Diamond Films by HFCVD on Its Infrared Transmission. Journal of Synthetic Crystals, 2000,29(4):390-393
    [163] J. G,.Li, S. Liu, Y.Y. LI, et al. Hot-Filament-Chemical-Vapor-Deposition Diamond Film and Its Influence Factors. Diamond & Abrasives Engineering, 2004,1:41-44
    [164]杨国伟,毛友德.金刚石薄膜的红外增透性.半导体光电,1992,13(2):148-150
    [165] Shardat, Rahamanmm. Structural and optical properities of diamond and nano-diamond films grown by microwaveplasma chemical vapor deposition .Diamond and Related Materials, 2001 (10) :561-567
    [166] L.Y. Shi, L. J. Wang, L. W. Jiang, et al. Growth and Optical Performance of Diamond FilmsWith Low Surface Roughness. Journal of Shang Hai University(Natural Science), 2007,13(3):023-423
    [167] F.H.Qi, J. Gracio, E. Pereia. Rsidual stresses in chemical vapour deposited diamond films. Diamond and Related Materials, 2000,9 (9-10): 1739-1743
    [168] A.Y.Walter, M.Russell. Current Issues and Problems in the chemical vapor deposition of diamond. Science, 1990, 247 (9) : 688-696
    [169] C.C.Chiu, Y.Liou, Y.D.Juang. Elastic modulus of and residual stress in diamond films. Thin solid film, 1995, 260:118-123
    [170]吕反修.具有广阔应用前景的纳米金刚石薄膜.物理, 2003, 32(6):383-390
    [171] J. Lee, R. W. Collins, and R. Messier. Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition. Applied Physical Letter, 1997,70 (12): 1527-1529
    [172] B. Marcus, L. Fayette, Mermoux, et al. Analysis of the structure of multi-component carbon films by resonant Raman scattering. Journal of Applied Physics, 1994,76 (6): 3463-3470
    [173] F.Zhang, Y.F.Zhang and Q.J.Gao, et al. Synthesis of nano-crystalline diamond films. Chin. Phys. Lett, 2000,17(5):376-378
    [174]张志明,戴永兵,孙芳宏等.热丝CVD法生长纳米金刚石薄膜的研究.微细加工技术,2003,1:27-33
    [175]苏青峰,刘健敏,王林军,等.沉积工艺条件对金刚石薄膜红外椭偏光学性质的影响.物理学报, 2006,55(10):5145-5149
    [176] L.F.Dong, Y.H. Zhang, B.Q.Ma, et al. Monte Carlo simulation of spatial distribution of atomic hydrogen in electron assisted CVD. Diamond and Related Materials, 2002, 11 (7): 1448-1452
    [177]施凌云,王林军,蒋丽雯,等.低粗糙度金刚石薄膜的制备及其光学性能的表征.上海大学学报(自然科学版), 2007,13(3):023-423
    [178]李多生,左敦稳,陈荣发等.直流等离子体CVD金刚石薄膜微观结构分析.稀有金属材料与工程, 2007,36(4):648-651
    [179]黄元盛,邱万奇,罗承萍.甲烷浓度对CVD金刚石膜表面粗糙度的影响.金属热处理, 2004,29(6):15-18
    [180] S..E. Coe, R..S. Sussmann, Optical, thermal and mechanical properties of CVD diamond. Diamond and Related Materials, 2000, 9: 1726-1729
    [181] Z. Yin, Z..Akkerman, B.X. Yang,et al. Optical properties and microstructure of CVD diamond films . Diamond and Related Materials, 1997, 6: 153-158
    [182] Q.F. Su, Y.B. Xia, L.J. Wang, et al. Optical and electrical properties of different oriented CVD diamond films. Applied Surface Science, 2006, 252: 8239–8242
    [183]郭延龙,王淑云,袁孝等.金刚石涂层及类金刚石涂层的光学应用研究进展.激光与光电子学进展, 2008, 45(7): 44-51
    [184]吕反修.CVD金刚石涂层新兴研究方向及市场现状与趋势.金属热处理, 2008,33(11):1-5
    [185]杨班权,陈光南,张坤,等.涂层/基底材料界面结合强度的表征和测量方法的现状与展望.力学进展, 2007, 37(1): 67-79
    [186]杨烈宇,关文铎,顾卓明.材料表面薄膜技术.北京:人民交通出版社, 1991
    [187]王和照,张建军.金刚石薄膜的人工合成及其结合力的评估.微细加工技术,No. 2,1994: 58-62
    [188]李伟,彭立华,沈为,等.测量微米级薄膜厚度与弹性模量的一种新方法.武汉工业大学学报, 1999, 21 (5):56-58
    [189]中科院兰州化学物理研究所,WS - 2000划痕仪使用说明书,2004
    [190]刘志平,王加春,杨育林.类金刚石涂层的力学性能及其工具应用.工具技术, 2005, 39 (12): 30-33
    [191] J.G.Kim, J.Yu. Behavior of residual stress on CVD diamond films. Material science and Engineering, 1998, B57:24-27
    [192]高建明.材料力学性能.武昌:武汉工业大学出版社, 2004.8
    [193]卢文状. CVD金刚石涂层刀具的制备及其切削性能研究.[博士论文],南京,南京航空航天大学,2008
    [194] M. Werner, S. Hein, E. Obermeier, Elastic properties of thin polycrystalline diamond films, Diam. Diam. Relat. Mater. 1993,2,939-942
    [195]王莎莎,陈兢,栗大超等.基于局部基地弯曲法的高灵敏度薄膜应力测试技术.半导体学报,2006,27(6):1129-1134
    [196]朱宏喜,毛为民,冯惠平.金刚石薄膜残余应力的X射线透射测量法.物理测试,2005,23(6):21-24
    [197]方亮,王万录,王健等.金刚石涂层内应力研究现状.材料导报,1999,13(6):39-42
    [198] S.Han, S.G.Prussin, J.E.Ager, et al. Radiation damage study of polycrystalline CVD and natural type IIA diamonds using Raman and photo luminescence spectroscopies. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1993,80-81(2):1446-1450
    [199] M.Wieligor, T.W.Zerda. Surface stress distribution in diamond crystals in diamond-silicon carbide composites. Diamond and Related Materials, 2008,17(1):84-89
    [200] X.Li, B.Bhusan. Development of continuous stiffness measurement technique for composite magnetic tapes. Scr Mater, 2000,42:929-935
    [201] J. D. Finegan, R. W. Hoffman Stress anisotropy in evaporated iron films. Applied Physics, 1959,30 : 597-603
    [202] J. Michler, M. Mermoux, Y. Kaenel, et al. Residual stress in diamond films: origins and modellng. Thin Slid Flim, 1999, 357 (2): 189-201
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.