基于脂肪醇为氢源的加氢反应体系的构建及诱发机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学工程为人类社会提供了最基本的生产手段与技术。催化加氢(还原)是最基本的化工过程,自1897年由Paul Sabatier提出至今(特别是近六七十年)已在能源、环境、材料和精细化工等各个领域发挥了举足轻重的作用。但是催化加氢必须在H2(高压)气氛下完成,工业上存在一定的安全隐患;而且由于H2较强的还原性,如何实现提高加氢过程目标产物的选择性则是近年来的研究重点和热点。然而却少有人想到“不用H2”的催化加氢,或通过选用弱还原剂代替H2来提高加氢选择性。早在1954年由Braude和Linstead提出的催化氢转移加氢,使用含氢的多原子分子(如仲醇“异丙醇等”、肼、甲酸/盐等)为氢供体,实现一类不用H2的液相还原方法;但是从机理上看,转移加氢和催化加氢存在本质的区别,前者是“H原子”在分子(供体与受体)间的相互转移,而后者是H2在催化剂表面活化形成“吸附H”从而实现加氢。此外,转移加氢的“H原子”利用率较低,且普遍使用均相金属络合物为催化剂,目前在不对称选择性加氢中有较多的应用。
     本论文从苯乙酮(羰基)和苯酚(苯环)两类不同有机物的加氢反应入手,结合脂肪醇的“水相重整制氢”技术,提出了一类以“小分子脂肪醇:甲醇或乙醇”为氢源的液相催化加氢反应体系。脂肪醇的水相重整/脱氢反应在催化剂表面形成“活化H”并原位地用于有机物的催化加氢反应,因此与催化氢转移加氢不同。而且这种由“活化H”参与的催化加氢与传统的H2催化加氢又有不同,因为由脂肪醇原位产生的“活化H”无论在数量、分布还是吸脱附性能上均与H2催化加氢过程不同,这就为提高一些复杂有机物或反应体系的加氢选择性提供了新的可能。
     本论文的具体研究结果如下:
     对苯乙酮加氢合成α-苯乙醇研究发现,Pd/CNTs催化剂上α-苯乙醇选择性明显高于Pd/AC催化剂(~95% vs~5%)。通过对反应机理的探讨和密度泛函理论(DFT)对α-苯乙醇在Pd/CNTs和Pd/AC催化剂上的吸附研究表明,引起两个催化剂上的选择性差异在于:当α-苯乙醇吸附在Pd/CNTs上时,分子中的羟基远离载体(有效地避免了羟基的氢解反应),而吸附在Pd/AC上时α-苯乙醇分子中的羟基靠近载体(羟基在载体与活性金属的界面上发生氢解反应生成了副产物乙苯)。
     对苯酚催化加氢研究发现,以水为溶剂时显著地提高了加氢反应的活性和环己醇选择性。巧妙地利用苯酚在339 K以下为疏水性有机物,而在339 K以上与水任意比互溶的特点,提出了“温控型”水-有机两相苯酚加氢反应体系。苯酚加氢反应温度高于339 K(苯酚与水互溶),反应速率不受传质过程限制,反应结束后(温度低于339 K),原料和产物均不溶于水,简化了溶剂的分离。此外,本论文实验还证明Raney Ni在水中比在甲醇中吸附更多的H和苯酚。
     针对“以脂肪醇为氢源的催化加氢反应”这一新体系,本论文详细地介绍了该体系的提出和验证过程。以“苯酚原位加氢反应”为例,研究了该反应在RaneyNi催化剂上的表观动力学(苯酚与吸附氢对生成环己醇和环己酮的的浓度级数a1和a2分别为0.93和1.09,β1和β2分别为3.82和3.47,表观活化能Ea1和Ea2分别为67.8和80.2kJ.mol-1)。考察了La修饰的Pd/Al2O3催化剂在苯酚液相原位加氢合成环己酮反应中的性能,并揭示了La的修饰作用提高了Pd/Al2O3催化剂在苯酚液相原位加氢反应中的活性和选择性的原因。考察了“以脂肪醇为氢源的加氢反应体系”的普适性;通过催化剂的设计实现了“原位氢化-烷基化”和“原位氢化-胺化”等以脂肪醇为氢源的加氢耦合反应体系(如:在不用H2的情况下,以Pd/Al2O3或Fe-Pd/Al2O3,和Au-Pd/Al2O3为催化剂,分别实现了吡啶加氢/烷基化直接合成N-烷基哌啶,和以甲醇为氢源的芳香硝基物和羰基化合物直接合成亚胺)。更重要的是在这些体系的研究中均发现,利用脂肪醇水相重整/脱氢的方式为加氢反应提供“活化H”比H2催化加氢具有更高的选择性。
     最后,本论文对“以脂肪醇为氢源的加氢反应体系”的催化机制,特别是脂肪醇在该反应中的供氢机理进行了研究。脂肪醇原位产生的催化剂表面“活化H”的程序升温脱附(TPD)和苯酚的液相程序升温表面反应(Liquid phase-TPSR)研究表明,由不同氢源(H2和脂肪醇)产生的催化剂表面“活化H”的脱附及还原性能存在差异,通过氢源种类及供氢方式的改变可以有效地调控催化剂表面的吸附氢浓度及“活化H”在催化剂表面的分布;以脂肪醇为氢源向催化剂表面供氢可以在催化剂表面形成低浓度的吸附氢(催化剂表面对H的吸附未达到饱和),这种H的不饱和吸附/不均匀分布是提高复杂有机物/加氢体系选择性的主要原因。利用D20同位素跟踪实验研究表明,以脂肪醇为氢源加氢反应的供氢受反应条件和催化剂的影响,主要包括:水相重整、脱氢氢转移,以及这两条途径的结合。
Chemical engineering throughout the time enabled many of the fundamental breakthroughs in human society. Catalytic hydrogenation is one of the most important chemical processes, since its first observation by Paul Sabatier (1912 Nobel Prize), have already plays a tremendous role in energy generation, environmental protection, materials and fine chemical production etc. However, catalytic hydrogenation uses pure gaseous H2 as the reactant which makes it a quite risky process in industry. Catalytic transfer hydrogenation (CTH), proposed by Braude and Linstead in 1954, carries out reduction of organics by hydrogen donor (such as secondary alcohols "isopropanol", hydrazine, formic acid/formates etc.) rather than using H2-gas. But CTH is different from catalytic hydrogenation in terms of mechanism, i.e., the CTH is the exchange/transfer of "H atom" between molecules, hydrogen donor and acceptor, while the catalytic hydrogenation forms "adsorbed H" on the surface of catalyst. The CTH using homogeneous metal complex as the catalyst, and present industry application mainly limited to the asymmetry selective hydrogenation.
     In this thesis, based on the study of acetophenone and phenol hydrogenation, and the recent literature work on aqueous-phase reforming for H2 production, we proposed a novel liquid system of catalytic hydrogenation using "aliphatic alcohols:methanol or ethanol" as the hydrogen source. This system is different from that CTH, which also using alcohols (mainly secondary one) as hydrogen donor, because "activated H", as in the catalytic hydrogenation using H2-gas, was identified as the key intermediate for the reaction in the proposed system (desorption of "activated H" result in the production of H2). Although the proposed system involving "activated H" as the catalytic hydrogenation with H2-gas, they are also different since the properties of the "activated H" in terms of amounts, distribution, and adsorption/desorption behavior are different between these two processes. Therefore, the catalytic hydrogenation using aliphatic alcohols as hydrogen source also a potential way improving the catalytic selectivity.
     The detailed results for the present thesis are shown below.
     The carbon nanotube and activated carbon supported Pd catalyst (Pd/CNTs and Pd/C) shown dramatic selectivity difference (~95% vs~5%) in the hydrogenation of acetophenone to a-phenylethanol. The catalytic mechanism and DFT studies on the adsorption of a-phenylethanol suggested that the different selectivity can be explained by the different adsorption model of a-phenylethanol. When a-phenylethanol adsorbed on Pd/CNTs, the hydroxyl-group point-up, far away from the support, which inhibited the occurrence hydrogenolysis. While, when a-phenylethanol adsorbed on Pd/C, the hydroxyl-group point-down, close to the support, which favors the occurrence of hydrogenalysis (usually taken place at the interface between metal and support).
     The hydrogenation of phenol in water solvent shown quite higher activity than that in methanol. "Thermo-regulable" water-organic biphasic system was proposed for the hydrogenation of phenol in aqueous solvent, because phenol is hydrophobic below 339 K, but it is hydrophilic above 339 K. Catalytic hydrogenation of phenol usually carried out at hydrophilic temperature (>339 K), therefore, the reaction rate should not be limited by the solubility problem. While in this thesis, we also observed that the Raney Ni adsorbs more phenol in water than the methanol. After reaction (<339 K), both reactant and products are hydrophobic; the separation of solvent (water) was simplified.
     For the system of "catalytic hydrogenation using aliphatic alcohols as hydrogen sources", the combination of "catalytic hydrogenation of nitrobenzene and phenol" and "aqueous-phase reforming of methanol" was investigated over the commercial Raney Ni catalyst. The feasibility of the proposed system "aliphatic alcohols as hydrogen source for catalytic hydrogenation:liquid phase in-situ hydrogenation" was proved with this initial test/try. In order to understand well of the proposed system, apparent kinetics of phenol in-situ hydrogenation over Raney Ni catalyst were investigated (the reaction order with respect to phenol and hydrogen for cyclohexanolα1 andβ1 are 0.93 and 3.82, respectively, and for cyclohexanoneα2 andβ2 are 1.09 and 3.47, respectively. The activation energy of phenol in-situ hydrogenation for cyclohexanol (Ea1) and cyclohexanone (Ea2) are 67.8 and 80.2 kJ.mol-1, respectively). Additionally, a series of La-promoted Pd/Al2O3 catalyst was prepared for the liquid phase in-situ hydrogenation of phenol to cyclohexanone. The role of lanthanum on the Pd/Al2O3 catalyst was characterized by BET, CO chemisorption, XRD, and H2-TPR. The presence of lanthanum improves the Pd particle dispersion and the TOF for phenol in-situ hydrogenation over the Pd/Lax-Al2O3 catalyst was observed. Moreover, we also observed that the "aliphatic alcohols as hydrogen source for catalytic hydrogenation" is of general applicability. Based on the design of multifunctional catalyst, hydrogenation involved combination reactions, such as "in-situ hydrogenation coupled with alkylation" and "in-situ hydrogenation coupled with amination" etc. were also realized. For example, pyridines hydrogenation/alkylation for N-alkylpiperidines using aliphatic alcohols as hydrogen source was realized over the Pd/Al2O3 or Fe-Pd/Al2O3 catalyst; the use of methanol as hydrogen source for the direct synthesis of imines from nitroarenes and carbonyl compounds was realized over Au-Pd/Al2O3 catalysts. Among these studies, the superiority of using aliphatic alcohols as hydrogen source was well established in terms of the catalytic selectivity.
     Finally, the catalytic mechanism, in particular the hydrogen providing manner, of the "catalytic hydrogenation using aliphatic alcohols as hydrogen source" was investigated. The desorptions and reduction properties of the "activated H" from different hydrogen source were investigated by means of temperature-programmed desorption (TPD) and phenol-temperature programmed surface reaction in liquid phase (liquid phase-TPSR). The results indicated that the amounts of the hydrogen adsorbed on the catalyst could be regulable through the change of hydrogen source and hydrogen providing manner. The use of aliphatic alcohols as hydrogen source could provide limited amount/unsaturated of hydrogen (inhomogeneously distributed) on the surface of the catalyst through the aqueous-phase reforming or dehydrogenation. Isotope tracking studies using D2O suggest that hydrogen providing manner using aliphatic alcohols as hydrogen source including, aqueous phase reforming, dehydrogenation, and the coupling of the two manners, which could also depending on the reaction conditions and properties of the catalyst.
引文
[1]Rylander P.N. Hydrogenation Methods [M]. New York:Academic Press,1985
    [2]Meng X.C., Cheng H.Y., Fujita S., et al. Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO2:Significance of molecular interactions [J]. J. Catal.,2010,269(1):131-139.
    [3]Fan G.Y., Zhang L., Fu H.Y., et al. Hydrous zirconia supported iridium nanoparticles:An excellent catalyst for the hydrogenation of haloaromatic nitro compounds [J]. Catal. Commun., 2010,11(5):451-455.
    [4]Cao F., Liu R.X., Zhou L., et al. One-pot synthesis of flowerlike Ni7S6 and its application in selective hydrogenation of chloronitrobenzene [J]. J. Mater. Chem.,2010,20(6):1078-1085.
    [5]Blaser H.U., Steiner H., Studer M. Selective catalytic hydrogenation of functionalized nitroarenes:An update [J]. ChemCatChem,2009,1:210-221.
    [6]Maegawa T., Takahashi T., Yoshimura M., et al. Development of molecular sieves-supported palladium catalyst and chemoselective hydrogenation of unsaturated bonds in the presence of nitro groups [S].Adv. Synth Catal.,2009,351(13):2091-2095.
    [7]Corma A., Serna P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts [J]. Science,2006,313:332-334.
    [8]Takenaka Y, Kiyosu T., Choi J.C., et al. Selective synthesis of N-aryl hydroxylamines by the hydrogenation of nitroaromatics using supported platinum catalysts [J]. Green Chem.,2009, 11:1385-1390.
    [9]Rong Z.M, Du W.Q., Wang Y. et al. Carbon supported Pt colloid as effective catalyst for selective hydrogenation of nitroarenes to arylhydroxylamines [J]. Chem. Commun.,2010,46: 1559-1561.
    [10]Li B.J., Xu Z. A Nonmetal catalyst for molecular hydrogen activation with comparable catalytic hydrogenation capability to noble metal catalyst [J]. J. Am. Chem. Soc.,2009,131: 16380-16382.
    [11]Huang Y.Y., Sachtler W.M.H. Catalytic hydrogenation of nitriles over supported mono- and bimetallic catalyst [J]. J. Catal.,1999,188:215-225.
    [12]Huang Y.Y., Sachtler W.M.H. On the mechanism of catalytic hydrogenation of nitrile to amines over supported metal. Catalyst [J]. Appl. Catal. A,1999,182:365-378.
    [13]Chatterjee M., Kawanami H., Sato M., et al. Hydrogenation of nitrile in supercritical carbon dioxide:a tunable approach to amine selectivity [J]. Green Chem.,2010,12:87-93.
    [14]Li H.X., Wu Y.D., Luo H.S., et al. Liquid phase hydrogenation of acetonitrile to ethylamine over the Co-B amorphous alloy catalyst [J]. J. Catal.,2003,214:15-25.
    [15]Bell S., Wustenberg B., Kaiser S., et al. Asymmetric hydrogenation of unfunctionalized, purely alkyl-substituted olefins [J]. Science,2006,311:642-644.
    [16]Murillo L.E., Menning C.A., Chen J.G. Trend in the C=C and C=O bond hydrogenation of acrolein on Pt-M (M=Ni, Co, Cu) bimetallic surfaces [J]. J. Catal.,2009,268(2):335-342.
    [17]Kliewer C.J., Bieri M., Somorjai G.A. Hydrogenation of the alpha, beta-unsaturated aldehydes acrolein, crotonaldehyde, and prenal over Pt Single Crystals:A kinetic and sum-frequency generation vibrational spectroscopy study [J]. J. Am. Chem. Soc.,2009,131(29):9958-9966.
    [18]You K.J., Chang C.T., Liaw B.J., et al. Selective hydrogenation of alpha,beta-unsaturated aldehydes over Au/MgxAlO hydrotalcite catalysts [J]. Appl. Catal. A,2009,36(1-2):65-71.
    [19]Reddy B.M., Rao K.N., Reddy G.K. Synthesis of mesoporous Pt/Al2O3 catalysts with high catalytic performance for hydrogenation of acetophenone [J]. Catal. Commun.,2009,10(9): 1324-1329.
    [20]Hara Y., Endou K. The drastic effect of platinum on carbon-supported ruthenium-tin catalyst used for hydrogenation reactions of carboxylic acids [J].Appl. Catal. A,2003,239:181-195.
    [21]Brands D.S., Poels E.K., Bliek A. Ester hydrogenolysis over promoted Cu/SiO2 catalysts [J]. Appl. Catal. A,1999,184:279-289.
    [22]Li H.X., Wang W.J. Deng J.F. Excellent activity of ultrafine Co-B amorphous alloy catalyst in glucose hydrogenation [J]. Chem. Lett.,1999,629-630.
    [23]Blaser H.U., Malan C., Pugin B., et al. Selective hydrogenation for fine chemical:recent trends and new developments [J]. Adv. Synth. Catal.,2003,345:103-151.
    [24]Thomas J.M., Johnson B.F.G., Raja R., et al. High-performance nanocatalysts for single-step hydrogenations [J].Acc. Chem. Res.,2003,36:20-30.
    [25]Goetz J., Volpe M.A., Gigola C.E., et al. Low-loaded Pd-Pb/alpha-Al2O3 catalyst:effect of alloying in the hydrogenation of buta-1,3,-diene and hydrogenation and isomerization of butanes [J]. J. Catal.,2001,199:338-345.
    [26]Tada M., Iwasawa Y. Design of molecular-imprinting metal-complex catalysts [J]. J. Mol. Catal. A,2003,199:115-137.
    [27]Tada M., Sasaka T., Iwasawa Y. Performance and kinetic behavior of a new SiO2-attached molecular-imprinting Rh-dimer catalyst in size- and shape-selective hydrogenation of alkenes [J]. J. Catal.,2002,211:496-510.
    [28]Tada M., Sasaka T., Shido T., Iwasawa Y. Design, characterization and performance of a molecular imprinting Rh-dimer hydrogenation catalyst on a SiO2 surface [J]. Phys. Chem. Chem. Phys.,2002,4:5899-5909.
    [29]Santra P.K., Sagar P. Dihydrogen reduction of nitroaromatics, alkenes, alkynes using Pd(Ⅱ) comples both in normal and high pressure conditions [J]. J. Mol. Catal. A,2003,197:37-50.
    [30]Wei L.L., Wei L.M., Pan W.B., et al. Selective reduction of alkynes catalyzed by palladium acetate with sodium methoxide as the hydride source [J]. Tetrahedron Lett.,2003,44: 1979-1981.
    [31]Miller K.M., Huang W.S., Jamison T.F. Catalytic asymmetric reductive coupling of alkynes and aldehydes:Enantioselective synthesis of allylic alcohols and alpha-hydroxy ketones [J]. J. Am. Chem. Soc.,2003,125:3442-3443.
    [32]Alonso F., Yus M. The NiCl2-Li-arene(cat.) combination as reducing system, part 8-Catalytic hydrogenation of organic compounds using the NiCl2-Li-naphthalene(cat.) combination [J]. Adv. Synth. Catal.,2001,343:188-191.
    [33]Trost B.M., Ball Z.T., Joge T. A chemoselective reduction of alkynes to (E)-alkenes [J]. J. Am. Chem. Soc.,2002,124:7922-7923.
    [34]Ranu B.C., Dutta J., Guchhait S.K. Selective reduction of terminal alkynes to alkenes by indium metal [J]. J. Org. Chem.,2001,66:5624-5626.
    [35]Teschner D., Borsodi J., Wootsch A., et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation [J]. Science,2008,320:86-89.
    [36]Studt F., Pedersen F.A., Bligaard T., et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene [J]. Science,2008,320:1320-1322.
    [37]Kovnir K., Osswald J., Armbriister M., et al. Etching of the intermetallic compounds PdGa and Pd3Ga7:An effective way to increase catalytic activity? [J]. J. Catal.,2009,264:93-103.
    [38]Kovnir K., Armbruster M., Teschner D., et al. In situ surface characterization of the intermetallic compound PdGa-A highly selective hydrogenation catalyst [J]. Surf. Sci.,2009, 603:1784-1792.
    [39]Fang L., Jing L., Jie X., Ruthenium supported catalyats in selective hydrogenation of benzene to cyclohexene [J]. Prog. Chem.,2003,15:338-343.
    [40]Rodrigues M.F.F., Cobo A.J.G.. Influence of the support nature and morphology on the performance of ruthenium catalysts for partial hydrogenation of benzene in liquid phase [J]. Catal. Today,2010,149(3-4):321-325.
    [41]Liu J.L., Zhu Y., Liu J., et al. Discrimination of the roles of CdSO4 and ZnSO4 in liquid phase hydrogenation of benzene to cyclohexene [J]. J. Catal.,2009,268(1):100-105.
    [42]Lu S.L., Lonergan W.W., Zhu Y.X., et al. Support effect on the low-temperature hydrogenation of benzene over PtCo bimetallic and the corresponding monometallic catalysts [J].Appl. Catal. B,2009,91(3-4):610-618.
    [43]Zhao Y.J., Zhou J., Zhang J.G., et al. Preparation and characterization of Ru/Al2O3/cordierite monolithic catalysts for selective hydrogenation of benzene to cyclohexene [J]. Catal. Lett., 2009,131(3-4):597-605.
    [44]Ito K., Tomino T., Ohshima M., et al. Sulfur tolerance of Pd/Al2O3 and Pd/TiO2 in naphthalene hydrogenation in the presence of dimethyldisulfide [J]. Appl. Catal. A,2003,249: 19-26.
    [45]Park K.C., Yim D.J., Ihm S.K. Characteristics of Al-MCM-41 supported Pt catalyst:effect of Al distribution in Al-MCM-41 on its catalytic activity in naphalene hydrogenation [J]. Catal. Today,2002,74:281-290.
    [46]Claus P., Berndt H., Mohr C., et al. Pd/MgO:catalyst characterization and phenol hydrogenation activity [J]. J. Catal.,2000,192:88-97.
    [47]Mahata N., Raghavan K. V., Vishwanathan V., et al. Phenol hydrogenation over palladium supported on magnesia:Relationship between catalyst structure and performance [J]. Phys. Chem. Chem. Phys.,2001,3:2712-2719.
    [48]Mahata N., Vishwanathan V. Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts [J]. J. Catal.,2000,196: 262-270.
    [49]Scire S., Minico S., Crisafulli C. Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts:an investigation on the influence of different supports and Pd precursors [J]. Appl. Catal. A,2002,235:21-31.
    [50]Shore S.G., Ding E., Park C., et al. Vapor phase hydrogenation of phenol over silica supported Pd and Pd-Yb catalysts [J]. Catal. Commum.,2002,3:77-84.
    [51]Park C., Mark A.K. Catalyst support effects:gas-phase hydrogenation of phenol over palladium [J]. J. Colloid. Interface. Sci.,2003,266:183-194.
    [52]Mahata N., Vishwanathan V. Kinetics of phenol hydrogenation over supported palladium catalyst [J]. J. Mole. Catal. A,1997,120:267-270.
    [53]Rode C.V., Joshi U.D., Sato O., et al. Catalytic ring hydrogenation of phenol under supercritical carbon dioxide [J]. Chem. Commum.,2003,1960-1961.
    [54]Liu H.Z., Jiang T., Han B.X. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst [J]. Science,2009,326:1250-1252.
    [55]Campanati M., Vaccari A., Piccolo O. Mild hydrogenation of quinoline 1. Role of reaction parameters [J]. J. Mol. Catal. A,2002,179:287-292.
    [56]Campanati M., Casagrande M., Fagiolino I., et al. Mild hydrogenation of quinoline 2. A novel Rh-containing pillared layered clay catalyst [J]. J. Mol. Catal. A,2002,184:267-272.
    [57]Gross B.H., Mebane R.C., Armstrong D.L. Transfer hydrogenolysis of aromatic alcohols using Raney Ni catalyst and 2-propanol [J]. Appl. Catal. A,2001,219:281-289.
    [58]Perosa A., Tundo P., Zinovyev S. Mild catalyst multiphase hydrogenolysis of benzyl ethers [J]. Green Chem.,2002,4:492-494.
    [59]Tundo P., Perosa A. The action of onium salts and other modifiers on Pt/C, Pd/C, and Raney Ni catalysts in the multiphase reduction system [J] React. Kinet. Polym.,2003,54:95-101.
    [60]Wu G., Huang M.S., Richards M., et al. Novel ZnX2-modulated Pd/C and Pt/C catalysts for chemoselective hydrogenation and hydrogenolysis of halogen-substituted nitroarenes, alkenes, benzyl ethers, and aromatic ketones [J]. Synlett,2003,1657-1660.
    [61]Faucher N., Ambroise Y, Cintrat J.C., et al. High chemoselective by-hydrogenolysis of iodoarenes [J]. J. Org. Chem.,2002,67:932-934.
    [62]Maleczka R.E., Rahaim R.J., Teixeira R.R. Palladium-catalyzed hydrodehalogenation by fluoride activated polymethylhydrosiloxane [J]. Tetrahedron Lett.,2002,43:7078-7090.
    [63]Rahaim R.J., Maleczka R.E. Room temperature dehalogenation of chloroarenes by polymethylhydrosiloxane (PMHS) under palladium catalysis [J]. Tetrahedron Lett.,2002,43: 8823-8826.
    [64]Tundo P., Perosa A., Selva M., et al. A mild catalytic detoxification method for PCDDs and PCDFs [J].Appl. Catal. B,2001,32:L1-L7.
    [65]Ambroise Y., Mioskowski C., Djega-Mariadassou G. et al. Consequences of affinity in heterogeneous catalytic reactions:highly chemoselective hydrogenolysis of iodoarnes [J]. J. Org. Chem.,2000,65:7183-7186.
    [66]Ordonez S., Sastre H., Diez F.V. Hydrodechlorination of aliphatic organochlorinated compounds over commercial hydrogenation catalysts [J]. Appl. Catal. B,2000,25:49-58.
    [67]陈凌霞,刘寿长.不饱和油脂加氢制硬化油催化剂的研究(Ⅰ)——制备条件对催化剂活性的影响[J].中国油脂,2002,27(3):43-46.
    [68]陈凌霞,赵琳,刘寿长.化学混合法制备的油脂加氢催化剂的表征[J].郑州工程学院学报,2004,25(4):24-27.
    [69]刘寿长,刘永红,陈凌霞,王海荣,张洪权,吴予明.食用油脂加氢改性催化剂的研究[J].中国油脂,2000,25(6):102-105.
    [70]师玉荣,刘寿长.油脂催化加氢催化剂的研究进展[J].河南化工,2002,(11):6-8.
    [71]刘寿长,刘蒲,王海荣,陈凌霞,徐润,张俊.油脂碳碳双键加氢高活性镍催化剂的研究[J].分子催化,2000,14(3):209-213.
    [72]刘寿长,刘永红,陈凌霞,李利民.食用油脂工业加氢催化剂的制备与表征[J].郑州大学学报(自然科学版),2000,32(2):73-77.
    [73]陈金芳,贾涛,黄筱玲.4-甲基-2-硝基苯胺常压液相漆原镍催化加氢制备4-甲基邻苯二胺[J].应用化学,2000,17:672-674.
    [74]Jacob I., Fisher M., Hadari Z., et al. The leaching-activation process of Urushibara catalysts [J].JCatal,1986,101:28-34.
    [75]Horikoshi S., Tsuzuki J., Sakai F., et al. Microwave effect on the surface composition of the Urushibara Ni hydrogenation catalyst and improved reduction of acetophenone [J]. Chem Commun,2008,(37):4501-4503.
    [76]Murillo L.E., Menning CA., Chen JG. Trend in the C=C and C=O bond hydrogenation of acrolein on Pt-M (M=Ni,Co,Cu) bimetallic surfaces [J]. J. Catal.,2009,268(2):335-342.
    [77]Liu H.P., Lu G.Z., Guo Y. et al. Synthesis of mesoporous Pt/Al2O3 catalysts with high catalytic performance for hydrogenation of acetophenone [J]. Catal Commun.,2009,10(9):1324-1329.
    [78]Vilella I.M., Borbath I., Margitfalvi J.L. et al. PtSn/SiO2 catalysts prepared by controlled surface reactions for citral hydrogenation in liquid phase [J]. Appl. Catal. A,2007,326(1): 37-47.
    [79]Zhang G., Wang LG., Shen K.H. et al. Hydrogenation of o-chloronitrobenzene on a Pd/C catalyst doped with metal oxide nanoparticles [J]. Chem Eng. J.,2008,141(1-3):368-374.
    [80]Xi C.Y., Cheng H.Y., Hao J.M., et al. Hydrogenation of o-chloronitrobenzene to o-chloroaniline over Pd/C in supercritical carbon dioxide [J]. J. Mol. Catal. A,2008,282(1-2): 80-84.
    [81]Hofman M., Wachowski L. Catalytic activity of Pd/C-N systems in hydrogenation of styrene [J]. Reac. Kinet. Catal. Lett.,2007,92(2):355-360.
    [82]Niwa S., Eswaramoorthy M., Nair J., et al. A one-step conversion of benzene to phenol with a palladium membrane [J]. Science,2002,295:105-107.
    [83]Kobayashi J., Mori Y., Kobayashi S. Hydrogenation reactions using scCO(2) as a solvent in microchannel reactors [J]. Chem. Commun.,2005,(20):2567-2568.
    [84]Noeth H., Wietelmann U. Mixtures of ionic liquid solvent and ionic hydride reducing agent, form stable solutions for use e.g. in hydrogenation reactions or in storage and release of hydrogen [P]. WO2009101201-A2.
    [85]Mekasuwandumrong O, Somboonthanakij S, Praserthdam P. et al. Preparation of nano-Pd/SiO2 by one-step flame spray pyrolysis and its hydrogenation activities:comparison to the conventional impregnation method [J]. Ind. Eng. Chem. Res.,2009,48(6):2819-2825.
    [86]张迪倡;宗保宁;金泽明;田敏;闵恩泽.稀土(Y、Ce、Sm)对Ni-P非晶态合金热稳定性的影响[J].物理化学学报,1993,9(3):325-330.
    [87]Moore J.C., Pollard D.J., Kosjek B., et al. Advances in the enzymatic reduction of ketones [J]. Acc. Chem. Res.,2007,40(12):1412-1419.
    [88]Tsang S.C., Cailuo N., Oduro W., et al. Engineering preformed cobalt-doped platinum nanocatalysts for ultraselective hydrogenation [J]. ACS Nano,2008,2:2547.
    [89]Corma A., Serna P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts [J]. Science,2006,313:332.
    [90]Kuhn J.N., Huang W., Tsung C.K., et al. Structure sensitivity of carbon-nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica [J]. J. Am. Chem. Soc.,2008,130:14026.
    [91]Li J., Ma L., Li X., Lu C., Liu H. Effect of nitric acid pretreatment on the properties of activated carbon and supported palladium catalysts [J]. Ind. Eng. Chem. Res.,2005,44:5478.
    [92]Brieger G., Nestrick T.J. Catalytic transfer hydrogenation [J]. Chem. Rev.,1974,74(5): 567-580.
    [93]Johnstone R.A.W., Wilby A.H. Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds [J]. Chem. Rev.,1985,85: 129-170.
    [94]Mizugaki T., Kanayama Y., Ebitani K., et al. Chemoselective transfer hydrogenation of α,β-unsaturated aldehydes to allylic alcohols using formic acid catalyzed by polymer-bound Rh carbonyl clusters [J]. J. Org. Chem.1998,63,2378-2381.
    [95]姜莉,祝一峰,项益智,李小年.甲醇水相重整制氢原位还原苯乙酮合成α-苯乙醇[J]. 催化学报,2007,28:281-286.
    [96]Xu L., Li X.N., Zhu Y.F. and Xiang Y.Z. One-pot synthesis of N,N-dimethylaniline from nitrobenzene and methanol [J]. New J. Chem.,2009,33:2051-2054.
    [97]杨建峰,孙军庆,李小年,严新焕.利用乙醇重整制氢进行硝基苯原位液相加氢合成苯胺[J].催化学报,2006,27:559-561.
    [98]Zhou L., Gu H.Z., Yan X.H. A novel transfer hydrogenation with high hydrogen utilization for the hydrogenation of halogenated nitrobenzene without hydrodehalogenation [J]. Catal. Lett.,2009,132:16-21.
    [99]Jacobsen H. "Heterogeneous" chemistry:catalysts for hydrogen production from biomass [J]. Angew. Chem. Int. Ed.,2004,43(15):1912-1914.
    [100]Karim A.M., Su Y., and Sun J.M., et al. A comparative study between Co and Rh for steam reforming of ethanol [J]. Appl. Catal. B,2010,96:441-448.
    [101]Hohn K.L. and Lin Y.C. Catalytic partial oxidation of methanol and ethanol for hydrogen generation [J]. CHEMSUSCHEM,2009,2:927-940.
    [102]Iulianelli A., Longo T., and Liguori S., et al. Oxidative steam reforming of ethanol over Ru-Al2O3 catalyst in a dense Pd-Ag membrane reactor to produce hydrogen for PEM fuel cells [J]. Int. J. Hydrogen Energy,2009,34:8558-65.
    [103]Cortright R.D., Davda R.R., Dumesic J.A. Hyderogen from catalytic reforming of biomass-derived hydrogcarbons in liquid water [J]. Nature,2002,418(6901):964-967.
    [104]Davda R.R., Shabaker J.W., Huber G.W., et al. Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts [J].Appl. Catal. B,2003,43(1):13-26.
    [105]Davada R.R., Dumesic J.A. Renewable hydrogen by aqueous-phase reforming of glucose [J]. Chem. Commun.,2004,7(1):36-37.
    [106]Davada R.R., Dumesic J.A. Catalytic reforming of oxygenated hydrocarbons for hydrogen with low levels of carbon monoxide [J]. Angew. Chem. Int. Ed.,2003,42(34):4068-4071.
    [107]Huber G.W., Cortright R.D., Dumesic J.A. Renewable alkanes by aqueous-phase reforming of biomass-oxygenates [J]. Angew. Chem. Int. Ed.,2004,43(12):1549-1551.
    [108]Huber G.W., Shabaker J.W., Dumesic J.A. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons [J]. Science,2003,300(5628):2075-2077.
    [109]Shabaker J.W., Huber G.W., Davda R.R., et al. Aqueous-phase reforming of ethylene glycol over supported platinum catalysts [J]. Catal. Lett.,2003,88(1-2):1-8.
    [110]Shabaker J.W., Davda R.R., Huber G.W., et al. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts [J]. J. Catal.,2003,215(2): 344-352.
    [111]Huber G.W., Dumesic J.A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery [J]. Catal. Today,2006,111(1-2):119-132.
    [112]Shabaker J.W., Huber G.W., Dumesic J.A. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts [J]. J. Catal.,2004,222(1):180-191.
    [113]白赢,卢春山,马磊,陈萍,郑遗凡,李小年.Ce、Mg改性y-A1203负载Pt催化乙二醇水相重整制氢[J].催化学报,2006,27(3):275-280.
    [114]Wawrzetz A., Peng B., Hrabar A., et al. Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol [J]. J. Catal.,2010,269(2): 411-420.
    [115]Tanksale A., Zhou C.H., Beltramini J.N., et al. Hydrogen production by aqueous phase reforming of sorbitol using bimetallic Ni-Pt catalysts:metal support interaction [J]. J. Inclusion Phenom. Mol. Recognit. Chem.,2009,65(1-2):83-88.
    [116]Wen G.D., Xu Y.P., Xu Z.S., et al. Direct conversion of cellulose into hydrogen by aqueous-phase reforming process [J]. Catal. Commun.,2010,11(6):522-526.
    [117]Valiente A., Medrano J.A., Oliva M., et al. Bioenergy Ⅱ:hydrogen production by aqueous-phase reforming [J]. Int. J. Chem. Reac. Eng.,2010, (8):A31.
    [118]Wen G.D., Xu Y.P., Xu Z.S., et al. Characterization and catalytic properties of the Ni/Al2O3 catalysts for aqueous-phase reforming of glucose [J]. Catal. Lett.,129(1-2):250-257.
    [119]Tang Z., Monroe J., Dong J.H., et al. Platinum-loaded NaY zeolite for aqueous-phase reforming of methanol and ethanol to hydrogen [J]. Ind. Eng. Chem. Res.,2009,48(5): 2728-2733.
    [120]Zhu L.J., Guo P.J., Chu X.W., et al. An environmentally benign and catalytically efficient non-pyrophoric Ni catalyst for aqueous-phase reforming of ethylene glycol [J]. Green Chem., 2008,10(12):1323-1330.
    [121]Wen G.D., Xu Y.P., Ma H.J., et al. Production of hydrogen by aqueous-phase reforming of glycerol [J]. Int. J. Hydrogen Energy,2008,33(22):6657-6666.
    [122]Davda R.R., Shabaker J.W., Huber G.W., et al. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts [J]. Appl. Catal. B.2005,56(1-2):171-186.
    [123]Sinfelt J. H., Yates D. J. C. Catalytic hydrogenolysis of ethane over the noble metals of Group Ⅷ [J]. J. Catal.,1967,8(1):82-90.
    [124]Somorjai G. A. Introduction to Surface Chemistry and Catalysis [M], Wiley, New York,1994.
    [125]Iglesia E., Soled S. L., Fiato R. A. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity [J]. J. Catal.,1992,137(1): 212-224.
    [126]Grenoble D. C., Estadt M. M., Ollis D. F. The chemistry and catalysis of the water gas shift reaction:1. The kinetics over supported metal catalysts [J]. J. Catal.,1981,67(1):90-102.
    [127]Alcala R., Mavrikakis M., Dumesic J.A. DFT studies for cleavage of C-C and C-O bond in surface species derived from ethanol on Pt(111) [J]. J. Catal.,2003,218(1):178-190.
    [128]Kellner C.S., Bell A.T. The kinetics and mechanism of carbon monoxide hydrogenation over alumina-supported ruthenium [J].J. Catal.,1981,70(2):418-432.
    [129]王延吉,胡洁,薛伟,赵新强.催化反应过程绿色集成系统[J].化工学报,2007,58(11):2689-2696.
    [130]Hall N. Chemists clean up synthesis with one-pot reactions [J]. Science,1994,266:32-34.
    [131]Felpin F.X., Fouquet E. Heterogeneous multifunctional catalysts for tandem processes:an approach toward sustainability [J]. ChemSusChem,2008,1:718-724.
    [132]杨柏川,张海鹏,李伟.酸改性高岭土在合成气一步法制备二甲醚中的应用[J].石油化工2009,38(3):234-239.
    [133]王莉,李扬,艾珍,吴砚会.固定床合成气一步合成二甲醚复合催化剂失活现象的研究[J].天然气化工,2009,34:56-58.
    [134]Othmer K. Encyclopedia of Chemical Technology, vol.13, Wiley, New York,1979, p.907.
    [135]Higashio Y., Nakayama T., One-step synthesis of methyl isobutyl ketone catalyzed by palladium supported on niobic acid [J]. Catal. Today,1996,28:127-132.
    [136]Chen Y.Z., Hwang C.M., Liaw C.W., One-step synthesis of methyl isobutyl ketone from acetone with calcined Mg/Al hydrotalcite-supported palladium or nickel catalysts [J]. Appl. Catal. A,1998,169:207-214.
    [137]Huber G.W., Cortright R.D., Dumesic J.A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates [J].Angew. Chem. Int. Ed.,2004,43:1549-1551.
    [138]Huber G.W., Chheda J.N., Barrett C.J., et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates [J]. Science,2005,308:1446-1450.
    [139]Leshkov Y.R., Chheda J.N., Dumesic J.A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose [J]. Science,2006,312:1933-1937.
    [140]Leshkov Y.R., Barrett C.J., Liu Z.Y., Dumesic J.A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates [J]. Nature,2007,447:982-985.
    [141]Kunkes E.L., Simonetti D.A., West R.M., et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes [J]. Science,2008,322: 417-421.
    [142]Santos L.L., Serna P., Corma A. Chemoselective synthesis of substituted imines, secondary amines, and β-amino carbonyl compounds from nitroaromatics through cascade reactions on gold catalysts [J]. Chem. Eur. J.,2009,15:8196-8203.
    [143]Rice R.G., Kohn E.J. Raney nickel catalyzed N-alkylation of aniline and benzidine with alcohols [J]. J. Am. Chem. Soc.,1955,77:4052-4054.
    [144]Zhou X.J., Wu Z.W., Lin L., et al. Selective synthesis of N-monoalkyi aryl-amines from nitro aromatic compounds by reduction-alkylation [J]. Dyes and Pigments,1998,36(4):365-371.
    [145]Zhou X.J., Wu Z.W., Lin L., Wang G.J. Studies on the selective synthesis of N-monoalkyl aromatic amines [J]. Dyes and Pigments,1999,40:205-209.
    [146]周小建,吴祖望,林莉,王桂娟,李佳萍.间硝基甲苯还原—烷基化合成N-乙基间甲苯 胺[J].大连理工大学学报,1998,38(2):171-175.
    [147]Norio K., Kazuhiro T. Preparation of N-alkyl-N-phenyl-P-phenylenediamine. JP,58194843, 1983
    [148]Sun H., Su F.Z., Ni J., et al. Gold supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oximes [J]. Angew. Chem. Int. End., 2009,48:4390-4394.
    [149]Ishida T., Kawakita N., Akita T., et al. One-pot N-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers [J]. Gold Bulletin,2009, 42(4):267-274.
    [150]Xi Z.W., Zhou N., Sun Y., Li K.L. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide [J]. Science,2001,292:1139-1141.
    [151]Du Y., He L.N., Kong D.L. Magnesium-catalyzed synthesis of organic carbonate from 1,2-diol/alcohol and carbon dioxide [J]. Catal. Commun.,2008,9(8):1754-1758.
    [152]金松寿,有机催化[M],上海,上海科学技术出版社,1986:46-48.
    [I]Rylander P.N. Hydrogenation Methods [M]. New York:Academic Press,1985
    [2]Masson J., Vidal S., Cividino P., et al. Selective hydrogenation of acetophenone on chromium promoted Raney nickel catalysts. II. Catalytic properties in the hydrogenation of acetophenone, determination of the reactivity ratios as selectivity criteria [J]. Appl. Catal. A,1993,99(2): 147-159.
    [3]Rajashekharam M.V., Bergault I., Fouilloux P., et al. Hydrogenation of acetophenone using a 10% Ni supported on zeolite Y catalyst:kinetics and reaction mechanism [J]. Catal. Today, 1999,48(1-4):83-92.
    [4]Lin S.D., Sanders D.K., Vannice M.A. Influence of metal-support effects on acetophenone hydrogenation over platinum [J].Appl. Catal. A,1994,113(1):59-73.
    [5]Malyala R.V., Rode C.V., Arai M., et al. Activity, selectivity and stability of Ni and bimetallic Ni-Pt supported on zeolite Y catalysts for hydrogenation of acetophenone and its substituted derivatives [J]. Appl. Catal. A,2000,193 (1-2):71-86.
    [6]Claus P., Berndt H., Mohr C., et al. Pd/MgO:catalyst characterization and phenol hydrogenation activity [J]. J. Catal.,2000,192:88-97.
    [7]Mahata N., Raghavan K. V., Vishwanathan V., et al. Phenol hydrogenation over palladium supported on magnesia:Relationship between catalyst structure and performance [J]. Phys. Chem. Chem. Phys.,2001,3:2712-2719.
    [8]Mahata N., Vishwanathan V. Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts [J]. J. Catal.,2000,196: 262-270.
    [9]Scire S., Minico S., Crisafulli C. Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts:an investigation on the influence of different supports and Pd precursors [J]. Appl. Catal. A,2002,235:21-31.
    [10]Shore S.G., Ding E., Park C., et al. Vapor phase hydrogenation of phenol over silica supported Pd and Pd-Yb catalysts [J]. Catal. Commum.,2002,3:77-84.
    [11]Qin F., Shen W., Wang C.C., Xu H.L. Selective hydrogenation of citral over a novel platinum/MWNTs nanocomposites [J]. Catal. Commun.,2008,9:2095-2098.
    [12]Qiu J.S., Zhang H.Z., Wang X.N., et al. Selective hydrogenation of cinnamaldehyde over carbon nanotube supported Pd-Ru catalyst [J]. React. Kinet. Catal. Lett.,2006,88(2): 269-275.
    [13]Hamar-Thibault S., Masson J., Fouilloux P., et al. Selective hydrogenation of acetophenone on chromium promoted raney nickel catalysts:Ⅰ. Characterization of the catalysts [J]. Appl. Catal. A,1993,99(2):131-145.
    [14]Masson J., Cividino P., Court J. Selective hydrogenation of acetophenone on chromium promoted Raney nickel catalysts. III. The influence of the nature of the solvent [J]. Appl. Catal. A,1997,161(1-2):191-197.
    [15]徐长青,朱大建,李光兴.3种镍基催化剂对苯乙酮的催化加氢对比研究[J].化笋试剂,2005,27(3):129-132.
    [16]徐长青,朱大建,李光兴.Ni-B/SiO2非晶态催化剂对苯乙酮的催化加氢研究[J].分子催化,2004,18(4):281-286.
    [17]Chen C.S., Chen H.W., Cheng W.H. Study of selective hydrogenation of acetophenone on Pt/SiO2 [J].Appl. Catal. A,2003,248(1-2):117-128.
    [18]Casagrande M., Storaro L., Talon A., et al. Liquid phase acetophenone hydrogenation on Ru/Cr/B catalysts supported on silica [J]. J. Mol. Catal. A,2002,188(1-2):133-139.
    [19]Ikenaga T., Matsushita K., Shinozawa J., et al. The effects of added ammonium chloride in the reductive amination of some carbonyl compounds over Ru and Pd catalysts [J]. Tetrahedron, 2005,61(8):2105-2109.
    [20]Zaccheria F., Ravasio N., Psarob R., et al. Heterogeneous selective catalytic hydrogenation of aryl ketones to alcohols without additives [J]. Tetrahedron Lett.,2005,46(21):3695-3697.
    [21]Li C J, Chan T H. Organic reactions in aqueous media [M]. New York, John Wiley & Sons, 1997
    [22]Grieco P A, Blackie. Organic synthesis in water [M]. London, Academic and Professional, 1998
    [23]Baker R T, Tumas W. Enhanced:toward greener chemistry [J]. Science,1999,284: 1477-1479.
    [24]金松寿,有机催化[M],上海,上海科学技术出版社,1986:46-48.
    [1]Rylander P.N. Hydrogenation Methods [M]. New York:Academic Press,1985
    [2]Cortright R.D., Davda R.R., Dumesic J.A. Hyderogen from catalytic reforming of biomass-derived hydrogcarbons in liquid water [J]. Nature,2002,418(6901):964-967.
    [3]Davda R.R., Shabaker J.W., Huber G.W., et al. Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts [J]. Appl. Catal. B,2003,43(1):13-26.
    [4]Davada R.R., Dumesic J.A. Renewable hydrogen by aqueous-phase reforming of glucose [J]. Chem. Commun.,2004,7(1):36-37.
    [5]Davada R.R., Dumesic J.A. Catalytic reforming of oxygenated hydrocarbons for hydrogen with low levels of carbon monoxide [J]. Angew. Chem. Int. Ed.,2003,42(34):4068-4071.
    [6]白赢,卢春山,马磊,陈萍,郑遗凡,李小年.Ce、Mg改性γ-Al2O3负载Pt催化乙二醇水相重整制氢[J].催化学报2006,27(3):275-280.
    [7]Rice R.G., Kohn E.J. Raney nickel catalyzed N-alkylation of aniline and benzidine with alcohols [J]. J. Am. Chem. Soc.,1955,77:4052-4054.
    [8]Zhou X.J., Wu Z.W., Lin L., et al. Selective synthesis of N-monoalkyi aryl-amines from nitro aromatic compounds by reduction-alkylation [J]. Dyes and Pigments,1998,36(4):365-371.
    [9]Zhou X.J., Wu Z.W., Lin L., Wang G.J. Studies on the selective synthesis of N-monoalkyl aromatic amines [J]. Dyes and Pigments,1999,40:205-209.
    [10]Kim W.B., Voitl T., Rodriguez-Rivera G.J., Dumesic J.A. Powering fuel cells with CO via aqueous polyoxometalates and gold catalysts [J]. Science,2004,305:1280-1283.
    [11]Hilaire S., Wang X., Luo T., Gorte R.J., Wagner J. A comparative study of water-gas shift reaction over ceria supported metallic catalysts [J]. Appl. Catal. A,2001,215:271-278.
    [1]Claus P., Berndt H., and Mohr C., et al. Pd/MgO:Catalyst Characterization and Phenol Hydrogenation Activity [J]. J. Catal.,2000,192:88-97
    [2]Mahata N., Raghavan K.V., and Vishwanathan V., et al. Phenol hydrogenation over palladium supported on magnesia:Relationship between catalyst structure and performance [J]. Phys. Chem. Chem. Phys.,2001,3:2712-2719
    [3]Mahata N., and Vishwanathan V. Influence of Palladium Precursors on Structural Properties and Phenol Hydrogenation Characteristics of Supported Palladium Catalysts [J]. J. Catal.,2000,196: 262-270
    [4]Scire S., Minico S. and Crisafulli C. Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts:an investigation on the influence of different supports and Pd precursors [J]. Appl. Catal. A,2002,235:21-31
    [5]Shore S.G., Ding E., Park C., and Keane M A. Vapor phase hydrogenation of phenol over silica supported Pd and Pd-Yb catalysts [J]. Catal. Commum.,2002,3:77-84
    [6]Park C., and Mark A.K. Catalyst support effects:gas-phase hydrogenation of phenol over palladium [J]. J. Colloid Interface Sci.,2003,266:183-194
    [7]Mahata N., and Vishwanathan V. Kinetics of phenol hydrogenation over supported palladium catalyst [J]. J. Mole. Catal. A,1997,120:267-270
    [8]Rode C.V., Joshi U.D., Sato O., and Shirai M. Catalytic ring hydrogenation of phenol under supercritical carbon dioxide [J]. Chem. Commum.,2003,1960-1961
    [9]Chatterjee M., Kawanami H., and Sato M. et al. Hydrogenation of Phenol in Supercritical Carbon Dioxide Catalyzed by Palladium Supported on Al-MCM-41:A Facile Route for One-Pot Cyclohexanone Formation [J].Adv. Synth. Catal,2009,351:1912-1924.
    [10]Liu H.Z., Jiang T., Han B.X. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst [J]. Science,2009,326:1250-1252.
    [11]Shin E.J., Keane M.A. Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts [J]. Ind. Eng. Chem. Res.,2000,39:883-892.
    [12]Grabowska H., Syper L., Zawadzki M. Vapour phase alkylation of ortho-, meta- and para-cresols with isopropyl alcohol in the presence of sol-gel prepared alumina catalyst [J]. Appl Catal A,2004, 277:91-97.
    [13]Mahata N., Vishwanathan V. Kinetics of phenol hydrogenation over supported palladium catalyst [J]. J. Mole. Catal. A,1997,120:267-270.
    [14]Shabaker J.W., Dumesic J.A. Kinetics of Aqueous-phase reforming of oxygenated hydrocarbons: Pt/Al2O3 and Sn-modified Ni catalysts [J]. Ind Eng Chem Res,2004,43(12):3105-3112
    [15]Delle L.S., Alavi A., Abrams C.F. Adsorption energies and geometries of phenol on the (111) surface of nickel:an ab initio study [J]. Phys. Rev. B,2003,67:193406-1-3.
    [16]Neri G., Viso A.M., Donato A., et al. Hydrogenation of phenol to cyclohexanone over palladium and alkali-doped palladium catalysts [J]. Appl. Catal. A,1994,110:49-59.
    [17]Chen Y.Z., Liaw C.W., Lee L.I. Selective hydrogenation of phenol to cyclohexanone over palladium supported on calcined Mg/Al hydrotalcite [J]. Appl. Catal. A,1999,177:1-8.
    [18]Liberatori J.W.C., Ribeiro R.U., and Zanchet D., et al. Steam reforming of ethanol on supported nickel catalysts [J]. Appl Catal A,2007,327:197-204
    [19]Iriondo A., Barrio V.L., and Cambra J.F., et al. Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La [J]. Top. Catal.,2008,49:46-58
    [20]Choudhary T.V., Banerjee S., Choudhary V.R. Catalysts for combustion of methane and lower alkanes [J]. Appl. Catal. A.,2002,234:1-23
    [21]Scire S., Minico S., Crisafulli C. Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts:an investigation on the influence of different supports and Pd precursors [J]. Appl. Catal. A.,2002,235:21-31
    [22]Jiang R.X., Xie Z.K., and Zhang C.F., et al. Preparation and properties of Pd-La/Al2O3 catalyst for gas-phase amination of 2,6-diisopropylphenol [J]. React. Kinet. Catal. Lett.,2005,84:215-221
    [23]Chou T.Y., Leu C.H., Yeh C.T. Effects of the addition of lanthana on the thermal-stability of alumina-supported palladium [J]. Catal. Today,1995,26:53-58.
    [24]Blom R., Dahl I.M., Slagtern A., et al. Carbon-dioxide reforming of methane over lanthanum-modified catalysts in a fluidized-bed reactor [J]. Catal. Today,1994,21(2-3):535-543.
    [25]Ahn I.Y., Kim W.J., Moon S.H. Performance of La2O3- or Nb2O5-added Pd/SiO2 catalysts in acetylene hydrogenation [J]. Appl. Catal. A,2006,308:75-81.
    [26]Figoli N.S., L'argentiere P.C., Arcoya A., et al. Modification of the properties and sulfur resistance of a Pd/SiO2 catalyst by La addition [J]. J. Catal.1995,155:95-105.
    [27]Yang C., Ren J., Sun Y. Role of La2O3 in Pd-supported catalysts for methanol decomposition [J]. Catal. Lett,2002,84(1-2):123-129.
    [1]Bhattacharyya, A.K., Nandi D.K. Pressure synthesis of N,N-diethylanlline [J]. Ind. Eng. Chem. Prod. Res. Dev.,1975,14(3):162-167.
    [2]Hargis, Duance C. Cataytic alkylation of aromatic amines with alkanols [P]. US 4613705, 1986
    [3]Chen P.Y., Chen M.C., Chu H.Y., et al. The selective alkylation of aniline with methanol over ZSM-5 zeolite [J]. Stud. Surf. Sci. Catal.,1986,28:739-746.
    [4]Su B.L., Barthomeuf D. Alkylation of aniline with methanol:change in selectivity with acido-basicity of faujasite catalysts [J].Appl. Catal. A,1995,124:73-80.
    [5]Chivadze G.O., Chkheidze L.Z. Alkylation of aniline by methanol on modified synthetic zeolites [J]. J. Am. Chem. Soc,1984,10(3):232-234.
    [6]Bautista F.M., Campelo J.M., Garcia A., et al. N-Alkylation of aniline with methanol over AlPO4-Al2O3 catalysts [J]. Appl. Catal. A,1998,166:39-45.
    [7]Ko A.N., Yang C.L., Zhu W., Lin H. Selective N-alkylation of aniline with methanol over y-alumina [J].Appl. Catal. A,1996,134:53-66.
    [8]Narayanan S., Deshpande K. Aniline alkylation over solid acid catalysts [J]. Appl. Catal. A, 2000,199:1-31.
    [9]Kamiguchi S., Takahashi I., Nagashima S., et al. Catalytic N-Alkylation of amines with primary alcohols over halide clusters [J]. J. Clust. Sci.,2007,18:935-945.
    [10]Doye S. Development of the Ti-catalyzed intermolecular hydroamination of alkynes [J]. Synlett.,2004,15(10):1653-1672.
    [11]Haskelberg L. Aminative reduction of ketones [J]. J. Am. Chem. Soc.,1948,70:2811-2812.
    [12]Wiener H., Blum J., Sasson Y. Studies on the mechanism of transfer hydrogenation of nitroarenes by formate salts catalyzed by Pd/C [J]. J. Org. Chem.,1991,56(14):4481-4486.
    [13]Cavinato G., Toniolo L. Highly selective transfer hydrogenation from formates to the C=C double bond of gamma-keto-alpha, beta-unsaturated carboxylic acids catalyzed by Pd/C [J]. J. Mol. Catal. A,1996,106(1-2):25-30.
    [14]Wiener H., Blum J., Sasson Y. Transfer hydrogenolysis of aryl halides and other hydrogen acceptors by formate salts in the presence of Pd/C catalyst [J]. J. Org. Chem.,1991,56(21): 6145-6148.
    [15]Davda R.R., Shabaker J.W., Huber G.W., et al. Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts [J]. Appl. Catal. B,2003,43:13-26.
    [16]Huber G.W., Shabaker J.W., Evans S.T., et al. Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts [J]. Appl. Catal. B,2006,62:226-235.
    [17]Johnstone R.A.W., Wilby A.H., Entwistle I.D. Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds [J].Chem. Rev.,1985,85: 129-170.
    [18]Sydnes M.O., Isobe M. One-pot reductive monoalkylation of nitro aryls with hydrogen over Pd/C [J]. Tetrahedron Lett.,2008,49(7):1199-1202.
    [1]Kimura M., Tamaki T., Nakata M., et al. Convenient synthesis of pyrrolidines by amphiphilic allylation of imines with 2-methylenepropane-1,3-diols [J]. Angew. Chem. Int. Ed.,2008, 47(31):5803-5805.
    [2]Bennett J.S., Charles K.L., Miner M.R., et al. Ethyl lactate as a tunable solvent for the synthesis of aryl aldimines [J]. Green Chem.2009,11(2):166-168.
    [3]Zhu B., Lazar M., Trewyna B.G., et al. Aerobic oxidation of amines to imines catalyzed by bulk gold powder and by alumina-supported gold [J]. J. Catal.,2008,260(1):1-6.
    [4]Porta F., Crotti C., Cenini S. Oxidation of amines in the presence of ruthenium complexes: molecular oxygen and iodosylbenzene as oxidants [J]. J. Mol. Catal.1989,50:333-341.
    [5]Sun H., Su F.Z., Ni J., et al. Gold supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oximes [J]. Angew. Chem. Int. Ed.,2009, 48:4390-4394.
    [6]Santos L.L., Serna P., Corma A. Chemoselective synthesis of substituted imines, secondary amines, and β-amino carbonyl compounds from nitroaromatics through cascade reactions on gold catalysts [J]. Chem. Eur. J.,2009,15:8196-8203.
    [7]Zheng Y., Ma K., Li H., et al. One-pot synthesis of imines from aromatic nitro compounds with a novel Ni/SiO2 magnetic catalyst [J]. Catal. Lett.,2009,128:465-474.
    [8]Akazome M., Kondo T., Watanabe Y. Palladium complex-catalyzed reductive N-heterocyclization of nitroarenes:novel synthesis of indole and 2H-indazole derivatives [J]. J. Org. Chem.,1994,59:3375-3380.
    [9]Korich A.L., Hughes T.S. A facile, one-pot procedure for forming diarylimines from nitroarenes and benzaldehydes [J]. Synlett,2007,2602-2604.
    [10]Wang D., Villa A., Porta F., et al. Bimetallic gold/palladium catalysts:correlation between nanostructure and synergistic effects [J]. J. Phys. Chem. C,2008,112:8617-8622.
    [11]Corma A., Serna P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts [J]. Science,2006,313:332-334.
    [1]王鸿静,项益智,徐铁勇,周汉君,马磊,李小年.Ba修饰Pd/Al2O3对苯酚液相原位加氢合成环己酮反应的催化性能[J].催化学报,2009,30,933-938.
    [2]Li X.N., Zhang J.H., and Xiang Y.Z., et al. One pot symthesis of N-ethylaniline from nitrobenzene and ethanol [J]. Sci. China Ser-B.,2008,51(3):248-256.
    [3]姜莉,祝一峰,项益智,李小年.甲醇水相重整制氢原位还原苯乙酮合成α-苯乙醇[J].催化学报[J].2007,28:281-286.
    [4]Xu L., Li X.N., Zhu Y.F. and Xiang Y.Z. One-pot synthesis of N,N-dimethylaniline from nitrobenzene and methanol [J]. New J. Chem.,2009,33,2051-2054.
    [5]杨建峰,孙军庆,李小年,严新焕.利用乙醇重整制氢进行硝基苯原位液相加氢合成苯胺[J].催化学报,2006,27:559-561.
    [6]Zhou L., Gu H.Z. Yan X.H. A novel transfer hydrogenation with high hydrogen utilization for the hydrogenation of halogenated nitrobenzene without hydrodehalogenation [J]. Catal. Lett., 2009,132:16-21.
    [7]Roland U., Braunschweig T., Roessner F. On the nature of spilt-over hydrogen [J]. J. Mol. Catal. A,1997,127(1-3):61-84.
    [8]Conner W.C., Falconer J.L. Spillover in heterogeneous catalysis [J]. Chem. Rev.,1995,95(3): 759-788.
    [9]Wojcieszak R., Monteverdi S., Ghanbaja J., Bettahar M.M. Study of Ni-Ag/SiO2 catalysts prepared by reduction in aqueous hydrazine [J]. J. Colloid Interface Sci.,2008,317(1): 166-174.
    [10]Bhat V., Rougier A., Aymard L., et al. Enhanced hydrogen storage property of magnesium hydride by high surface area Raney nickel [J]. Int. J. Hydrogen Energy,2007,32(18): 4900-4906.
    [11]Chen B., Falconer J.L. Alcohol decomposition by reverse spillover [J].J. Catal.,1993,144(1): 214-226.
    [12]Polychronopoulou K., Efstathiou A.M. Spillover of labile OH, H, and 0 species in the H-2 production by steam reforming of phenol over supported-Rh catalysts [J]. Catal. Today,2006, 116(3):341-347.
    [13]Li X.N., Kong L.N., Xiang Y.Z., et al. A resource recycling technique of hydrogen production from the catalytic degradation of organics in wastewater [J]. Sci. China B,2008,51(11): 1118-1126.
    [14]Johnstone R.A.W., Wilby A.H., Entwistle I.D. Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds [J].Chem. Rev.,1985,85: 129-170.
    [15]Tani K., Iseki A., Yamagata T. Efficient transfer hydrogenation of alkynes and alkenes with methanol catalysed by hydrido(methoxo)iridium(iii) complexes [J].Chem. Commun.,1999, 1821-1822.
    [16]Luo Y.R., in:Hand Book of Bond Dissociation Energies in Organic Compounds, CRC Press, 2005,22 & 189.
    [17]Ruf S., May A., Emig G. Anhydrous formaldehyde by sodium catalysis [J]. Appl. Catal. A, 2001,213(2):203-215.
    [18]王鸿静,项益智,徐铁勇,周汉君,马磊,李小年.Ba修饰的Pd/Al2O3对苯酚液相原位加氢制环己酮反应的催化性能[J].催化学报,2009,30(9):933-938.
    [19]Pirrung M.C. Acceleration of organic reactions through aqueous solvent effects [J]. Chem. Eur. J.,2006,12(5):1312-1317.
    [20]Xiang Y.Z., Ma L., Lu C.S., et al. Aqueous system for the improved hydrogenation of phenol and its derivatives [J]. Green Chem.,2008,10(9):939-943.
    [21]Wu X.F., Li X.G., Hems W., et al. Accelerated asymmetric transfer hydrogenation of aromatic ketones in water [J]. Org. Biomol. Chem.,2004,2(13):1818-1821.
    [22]Wu X.F., Li X.G., King F., et al. Insight into and practical application of pH-controlled asymmetric transfer hydrogenation of aromatic ketones in water [J]. Angew. Chem. Int. Ed., 2005,44(22):3407-3411.
    [23]Wu X.F., Vinci D., Ikariya T., Xiao J. A remarkably effective catalyst for the asymmetric transfer hydrogenation of aromatic ketones in water and air [J]. Chem. Commun.,2005, 4447-4449.
    [24]Wiener H., Blum J., Sasson Y. Studies on the mechanism of transfer hydrogenation of nitroarenes by formate salts catalyzed by Pd/C [J]. J. Org. Chem.,1991,56(14):4481-4486.
    [25]Cavinato G., Toniolo L. Highly selective transfer hydrogenation from formates to the C=C double bond of gamma-keto-alpha, beta-unsaturated carboxylic acids catalyzed by Pd/C [J]. J. Mol. Catal. A,1996,106(1-2):25-30.
    [26]Wiener H., Blum J., Sasson Y. Transfer hydrogenolysis of aryl halides and other hydrogen acceptors by formate salts in the presence of Pd/C catalyst [J]. J. Org. Chem.,1991,56(21): 6145-6148.
    [27]Jeroro E., Vohs J.M. Zn modification of the reactivity of Pd(111) toward methanol and formaldehyde [J]. J. Am. Chem. Soc.,2008,130(31):10199-10207
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.