基于表面等离子体共振增强的聚合物太阳能电池研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭导电聚合物材料由于其具有柔韧性、易加工性,又具有半导体特性及导电特性等优点被人们所关注。随着人们对导电聚合物的不断深入探索,把它应用于太阳能电池器件,研究和开发低成本的聚合物太阳能电池成为了热点。但是,聚合物材料的吸收光谱较窄,且利用率较低,导致电池器件的光电转换效率低;另外,聚合物材料相对于无机半导体材料存在载流子迁移率低,且容易复合,扩散距离短等等问题。解决这些问题方法之一是重点研究吸收光谱宽且吸收系数高的聚合物材料;另一种方法就是设计陷光结构来提高光吸收,包括等离子体陷光、光子晶体陷光、光栅结构等,这些方法是通过限制入射光的传输特性,将光有效的限制在聚合物有源层材料之中,以达到增强光吸收,提高器件光电转换效率的目的。金属纳米粒子的表面等离子体陷光效应引起了科研工作者们的极大兴趣。
     在本论文中,通过对金属纳米粒子制作工艺的研究,创新性的采用高真空蒸镀方法制备金属纳米结构,将该方法应用到聚合物太阳能电池中,系统的研究了金属纳米粒子的表面等离子体效应对聚合物太阳能电池光利用率的影响,通过优化制作工艺以及金属纳米粒子大小、位置,有效提升了器件的短路电流密度和能量转换效率。
     Ag纳米粒子应用于正型聚合物太阳能器件中。首先,研究正型聚合物体异质结太阳能电池中有源层与电子传输层之间用蒸镀的方式加入Ag纳米粒子(1nm),通过实验观察到Ag纳米粒子(1nm)对正型聚合物体异质结太阳能电池器件的光电流和能量转换效率的提升作用;其次利用热蒸发的方式制备银纳米粒子,将其应用在正型器件的空穴传输层中,通过实验观察到Ag纳米粒子(1nm)使得正型器件的光电流和能量转换效率都有所提升;再次,然后我们用热蒸发的方式制备银纳米粒子,并将Ag纳米粒子(1nm)同时应用在正型器件的空穴传输层与电子传输层中,并对纳米粒子在空穴传输层中的位置进行优化。通过实验得到双纳米粒子的局域表面等离子体作用以及强散射作用,使器件性能得到了大幅度提高,器件的效率为2.31%,提高了约200%。为了进一步验证实验的准确性,我们对器件进行了原子力表面形貌分析表征、紫外-可见吸收分析表征、导电性提高的验证。论证了金属纳米粒子的引入对有机光伏器件光吸收性能和导电性能的作用。
     Ag纳米粒子应用在反型聚合物太阳能电池中。简单介绍了TiO2电子传输层,以及运用溶胶-凝胶方法制备TiO2纳米层的过程;利用热蒸发的方式制备银纳米粒子,将其应用在基于TiO2薄膜的反型聚合物太阳能电池器件的空穴传输层中,通过实验验证了Ag纳米粒子对器件的短路电流密度和能量转换效率的提升作用;比较了不同厚度(1nm、3nm、5nm、8nm、10nm)Ag薄膜对器件性能的不同影响,得出当Ag薄膜为1nm时器件的性能得到了最大的提高器件的光电转换效率,效率提高到了3.35%,提高了约24%;并且对电池器件进行了紫外-可见吸收分析表征、复阻抗分析分析表征以及用FDTD软件模拟了Ag纳米粒子近场强度分布情况,有力的验证了银纳米粒子的加入器件性能的改善。
     Ag纳米粒子与Au纳米粒子加入到基于PSBTBT:PC71BM的体异质反型聚合物太阳能器件的空穴传输层中。制作了PSBTBT:PC71BM不同质量比下的器件,优化纳米薄膜的厚度来最大限度的改善器件的性能。首先,Ag纳米粒子加入基于PSBTBT:PC71BM(质量比1:1.5)的体异质结的反型器件中,对器件的短路电流密度和能量转换效率的提升作用;比较了不同厚度(1nm、3nm)Ag薄膜对器件性能的不同影响,得出当Ag薄膜为1nm时器件的性能得到了最大的提高:器件的光电转换效率提高到了3.55%,提高了约52%。其次,Ag纳米粒子加入基于PSBTBT:PC71BM(质量比1:1)的体异质结的反型器件中,对器件的短路电流密度和能量转换效率的提升作用;在空穴传输层MoO3中引入1nm Ag(即Ag纳米粒子)后,器件的光电转换效率提高到了3.15%,提高了约41%。最后,Au纳米粒子加入基于PSBTBT:PC71BM(质量比1:1)的体异质结的反型器件中,对器件的短路电流密度和能量转换效率的提升作用;比较了不同厚度(1nm、3nm)Au薄膜对器件性能的不同影响,得出当Au薄膜为1nm时器件的性能得到了最大的提高,能量转换效率提高到了3.26%。
Conjugating conductive polymer materials have been absorbed attentionsbecause of its flexible, fabricability, semiconductor and conductivity properties。Withthe in-depthstudy of conductive polymers and application in the scope of solar cellcomponents, research and development of low-cost polymer solar cells has beenbecoming an investigation focus. But the power conversion efficiency of polymersolar cells is still lower than inorganic solar cells due to the narrow absorptionspectrum of polymer and the low utilization rate. In addition, comparison to inorganicsemiconductor material, low carrier mobility and short diffusion distancethe polymermaterials cannot be avoidable. One significant method is synthesising new polymermaterials with low bandgap, wide absorption spectrum and high absorptioncoefficient. Another method is designing light trapping structure to improve the lightabsorption, including plasma, photonic crystals and grating structure. By limiting thetransmission characteristics of the incident light and effectively limiting the lightinside the polymer active layer materials, light absorption and the efficiency of devicecan be improved obviously.Recently, some researchers have been interested in thelight trapping effect of metal nanoparticles surface plasma.
     In this dissertation, by studying the production process of metal nanoparticles,one ingenious way of thermal evaporation depositon in vacuum is utilized to producemetallic nanostructures. We have investigated the improvement of polymer solar cellslight utility via the metal nanoparticles surface plasma effect systematicially.
     Ag nanoparticles areapplied in positive polymer solar cells. Firstly, we haveintroduced Ag nanoparticles (1nm) into the heterojunctions polymer solar cellbetween the active layer and electron transport layer by evaporation. Ag nanoparticleswere observed through the experiment (1nm) for heterojunction polymer solar celldevice to improve photocurrent and power conversion efficiency. Secondly thethermal evaporation method is used to produce silver nanoparticles. Then, the Agnanoparticles are applied in hole transport layer of positive device. It was observed inexperiment that optical current and power conversion efficiency of the device are improved due to the Ag nanoparticles (1nm). The thermal evaporation method is usedto produce silver nanoparticles. Then the Ag nanoparticles (1nm) are applied in holetransport layer and electronic transport layer of positive device. Meanwhile theposition of Ag nanoparticles in hole transport layer is optimized. Local surfaceplasmon effect and strong scattering phenomenonof double nanoparticles have beenobtained in experiment can significantly improve the performance of the device. Theefficiency was achieved2.31%, increased by roughly200%. In order to further verifythe accuracy of the experiment, we analyzed the atomic force surface morphologycharacterization, ultraviolet-visible absorption analysis characterization and validationof electrical conductivity. It is demonstrated that introducing the metal nanoparticlesin to device is beneficial to light absorption performance and electric conductivity oforganic photovoltaic devices.
     Ag nanoparticles are applied in inverted polymer solar cells. The TiO2electrontransport layer and preparation of TiO2nano layer using sol-gel method are brieflyexplaination. The thermal evaporation method is used to produce silver nanoparticles.The Ag nanoparticles (1nm) are applied to hole transport layer of inverted polymersolar device based on TiO2film. Short circuit current density and power conversionefficiency enhancement can be verified in experiment. Comparing with the influencein device performance of Ag film thickness (1nm,3nm,5nm,8nm,10nm), we canconcluded that1nm Ag film can improve the power conversion efficiency of deviceto3.35%significantly, increased and the enhancement is about24%. The devices areanalyzed in ultraviolet-visible absorption, complex impedance and simulated inFDTD for nearby field intensity distribution of Ag nanoparticles. It is clearly verifythat silver nanoparticles introduction can improve the performance of the device.
     Ag and Au nanoparticles are added into the hole transport layer of polymer solarcells device based on PSBTBT: PC71BM activel layer. We optimized the nanometerthin film thickness by producing PSBTBT: PC71BM device with different mass ratiofor the sake of maximizing the performance of the device. Firstly, Ag nanoparticleswere applied into the bulk heterojunction inverted polymer solar cells based on PSBTBT: PC71BM (mass ratio of1:1.5) to improve the shortcircuit current densityand power conversion efficiency. Comparing with the influence in deviceperformance of different Ag film thickness (1nm,3nm), it can be concluded that1nm Ag film can improve the power conversion efficiency3.55%of devicesignificantly and increased by about52%. Secondly, Ag nanoparticles are applied intothe bulk heterojunction device based on PSBTBT: PC71BM (mass ratio of1:1) topromote the short circuit current density and energy conversion efficiency. Afterintroducing1nm (i.e., Ag nanoparticles) into hole transport layer MoO3, the powerconversion efficiency of the device increased to3.15%, increased about41%. Finally,Au nanoparticles are applied into the bulk heterojunction device based on PSBTBT:PC71BM (mass ratio of1:1) to promote the short circuit current density and powerconversion efficiency. Comparing with the influence in device performance ofdifferent Au film thickness (1nm,3nm), it can be concluded that1nm Au film cansignificantly improve the power conversion efficiency of device to3.26%.
引文
[1]林红,张永昌,李鑫,李建保.聚合物太阳能电池发展与展望[J].新材料产业,2011,5:33-39.
    [2]刘鉴民.太阳能利用原理.技术.工程[M].北京:电子工业出版社,2010,第1版:3-4.
    [3]张正华.有机太阳电池与塑料太阳电池[M].北京:化学工业出版社,2006,第1版:31-32.
    [4] Harald Hoppea, Niyazi Serdar Sariciftci. Organic solar cells: An overview [J]. J.Mater. Res.,2004,19(7):1924-1945.
    [5]戴松元.薄膜太阳能电池关键科学和技术[M].上海:上海科学技术出版社,2013,第1版:302-303.
    [6] Jingbi You, Letian Dou, Ken Yoshimura, Takehito Kato, Kenichiro Ohya, TomMoriarty, Keith Emery, Chun-Chao Chen, Jing Gao, Gang Li and Yang Yang. Apolymer tandem solar cell with10.6%power conversion efficiency [J]. NATURECOMMUNICATIONS,2013:1-10.
    [7] Serap Gunes, Helmut Neugebauer, and Niyazi Serdar Sariciftci. ConjugatedPolymer-Based Organic Solar Cells [J]. Chem. Rev.,2007,107:1324–1338.
    [8] Barry C. Thompson and Jean M. J. Frechet. Organic photovoltaicsPolymer-fullerene composite solar cells [J]. Angewandte Chemie-InternationalEdition,2008,47(1):58-77.
    [9] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D.Meissner, N. S. Sariciftci. Nanoscale morphology of conjugatedpolymer/fullerene-based bulk-heterojunction solar cells [J]. Adv. Func. Mater.,2004,14(10):1005-1011.
    [10] H. Hoppe, T. Glatzel, M. Niggemann, W. Schwinger, F. Schaeffler, A. Hinsch,M. Ch. Lux-Steiner, N. S. Sariciftci. Efficiency limiting morphological factors ofMDMO-PPV:PCBM plastic solar cells [J]. Thin Solid Films,2006,511:587-592.
    [11] T. Martens, J. D’Haen, T. Munters, Z. Beelen, L. Goris, J. Manca, M.D’Olieslaeger, D. Vanderzande, L. De Schepper, R. Andriessen. Disclosure of thenanostructure of MDMO-PPV:PCBM bulk heterojunction organic solar cells by acombination of SPM and TEM [J]. Syn. Met.,2003,138:243-247.
    [12] L. Mattias, Andersson, Fengling Zhang, and Olle Ingan s. Stochiometry, mobility,and performance in bulk heterojunction solar cells [J]. Appl. Phys. Lett.,2007,91(7):071108-071108-3.
    [13] Douglas W. Sievers, Vishal Shrotriya, and Yang Yang. Modeling optical effectsand thickness dependent current in polymer bulk-heterojunction solar cells [J]. J. Appl.Phys.,2006,100(11):114509-114509-07.
    [14] Christoph J. Brabec, Antonio Cravino, Dieter Meissner, N. Serdar Sariciftci,Thomas Fromherz, Minze T. Rispens, Luis Sanchez, and Jan C. Hummelen. Origin ofthe open circuit voltage of plastic solar cells [J]. Adv. Func. Mater.,2001,11(5):374-380.
    [15] Mihailetchi V. D., Blom P. W. M., Hummelen J. C., Rispens M. T.. Cathodedependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solarcells [J]. J. Appl. Phys.,2003,94(10):6849-6854.
    [16] Abay Gadisa, Mattias Svensson, Mats R. Andersson, and Olle Ingan s.Correlation between oxidation potential and open-circuit voltage of composite solarcells based on blends of polythiophenes/fullerene derivative [J]. Appl. Phys. Lett.,2004,84(9):1609-1611.
    [17] Christian Melzer, Erik J. Koop, Valentin D. Mihailetchi, and Paul W. M. Blom.Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunctionsolar cells [J]. Adv. Func. Mater.,2004,14(9):865-870.
    [18] Chu-Jung Ko, Yi-Kai Lin, Fang-Chung Chen, and Chi-Wei Chu. Modified bufferlayers for polymer photovoltaic devices [J]. Appl. Phys. Lett.,2007,90(6):063509-063509-3.
    [19] Kallman H, Pope M. Photovoltaic effect in organic crystals [J]. J. Chem. Phys.,1959,30,585-586.
    [20] B. R. Weinberger, E. Ehrenfreund, A. Pron, A. J. Heeger, and A. G. MacDiarmid.Electron spin resonance studies of magnetic soliton defects in polyacetylene [J]. J.Chern. Phys.1980,72(9):4749-4755.
    [21] C. W. Tang. Twolayer organic photovoltaic cell [J]. Applied Physics Letters.48(2).1986:183-185.
    [22] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudi. Photoinduced ElectronTransfer from a Conducting Polymer to Buckminsterfullerene [J]. SCIENCE.1992,258(27):1474-1476.
    [23] G. Yu, J. C. Hummelen, F. Wudl, A. J. Heeger. Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions [J].SCIENCE.1995,270(5243):1789-1791.
    [24] Martijn M.Wienk, Jan M. Kroon, Wiljan J. H. Verhees, Joop Knol, Jan C.Hummelen, Paul A. van Hal, and Rene A. J. Janssen. Efficient Methano
    [70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells [J]. Angew.Chem.,2003,115:3493–3497.
    [25] Gang Li, Vishal Shrotriya, Yan Yao, and Yang Yang. Investigation of annealingeffects and film thickness dependence of polymer solar cells based onpoly(3-hexylthiophene)[J]. Journal of Applied Physics,2005,98(4):043704-043704-5.
    [26] Sung Heum Park, Anshuman Roy, Serge Beaupré, Shinuk Cho, Nelson Coates, JiSun Moon, Daniel Moses, Mario Leclerc, Kwanghee Lee&Alan J. Heeger. Bulkheterojunction solar cells with internal quantum efficiency approaching100%[J]. NATURE PHOTONICS,2009,3:297-303.
    [27] Jingbi You, Chun-Chao Chen, Ziruo Hong, Ken Yoshimura, Kenichiro Ohya,Run Xu, Shenglin Ye, Jing Gao, Gang Li, and Yang Yang.10.2%Power ConversionEfficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells [J].Adv. Mater.,2013,25:3973–3978.
    [28] Jingbi You, Letian Dou, Ken Yoshimura, Takehito Kato, Kenichiro Ohya, TomMoriarty, Keith Emery, Chun-Chao Chen, Jing Gao, Gang Li and Yang Yang. Apolymer tandem solar cell with10.6%power conversion efficiency [J]. NATURECOMMUNICATIONS,2013:1-10.
    [29]王彦涛,韦玮,刘俊峰,张辉.聚合物本体异质结型太阳能电池研究进展[J],高分子通报,2004,6:69-71.
    [30]鲁厚芳,阎康平,涂铭旌.影响染料敏化二氧化钛纳米晶太阳能电池的因素[J],现代化工,2004,2:16-18.
    [31] Chunhe Yang, Hongmei Li, Qingjiang Sun, Jing Qiao, Yuliang Li, Yongfang Li,and Daoben Zhu. Photovoltaic cells based on the blend of MEH-PPV and polymerswith substituents containing C60moieties [J]. Solar Energy Materials&Solar Cells,2005,85:241–249.
    [32] Yun Zhao, Zhiyuan Xie, Yao Qu, Yanhou Geng, and Lixiang Wang,Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells [J]. Appl.Phys. Lett.,2007,90:043504-043504-3.
    [33] Wenli Wang, HongBin Wu, CuiYing Yang, Chan Luo, Yong Zhang, JunWu Chen,and Yong Cao, High-efficiency polymer photovoltaic devices fromregioregular-poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C-61-butyric acidmethyl ester processed with oleic acid surfactant [J]. Appl. Phys. Lett.,2007,90:183512-183512-3.
    [34] Zhan’ao Tan, Chunhe Yang, Erjun Zhou, Xiang Wang, and Yongfang Li.Performance improvement of polymer solar cells by using a solution processibletitanium chelate as cathode buffer layer [J]. Appl. Phys. Lett.,2007,91:023509-023509-3.
    [35] Youjun He, Hsiang-Yu Chen, Jianhui Hou, and Yongfang Li, Indene-C60Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells [J]. J. AM.CHEM. SOC.,2010,132:1377–1382.
    [36] Guangjin Zhao, Youjun He, and Yongfang Li.6.5%Efficiency of Polymer SolarCells Based on poly(3-hexylthiophene) and Indene-C60Bisadduct by DeviceOptimization [J]. Adv. Mater.,2010,22:4355–4358.
    [37] Yu Huang-Zhong and Peng Jun-Biao. Self-organization effect in poly(3-hexylthiophene):methanofullerenes solar cells [J]. Chinese Physics B,2008,17(8):3143-3148.
    [38] Xiaoyang Guo, Fengmin Liu, Wei Yue, Zhiyuan Xie, Yanhou Geng, LixiangWang. Efficient tandem polymer photovoltaic cells with two subcells in parallelconnection [J]. Organic Electronics,2009,10:1174–1177.
    [39] Xuanhua Li, Wallace C. H. Choy, Lijun Huo, Fengxian Xie, Wei E. I. Sha,Baofu Ding, Xia Guo, Yongfang Li, Jianhui Hou, Jingbi You, and Yang Yang. DualPlasmonic Nanostructures for High Performance Inverted Organic Solar Cells [J].Adv. Mater.,2012,24:3046–3052.
    [40] Zhicai He, Chengmei Zhong, Shijian Su, Miao Xu, Hongbin Wu and Yong Cao.Enhanced power-conversion efficiency in polymer solar cells using an inverted devicestructure [J]. NATURE PHOTONICS,2012,190:1-5.
    [41] Kai Li, Zuojia Li, Kui Feng, Xiaopeng Xu, Lingyan Wang, and Qiang Peng.Development of Large Band-Gap Conjugated Copolymers for Efficient RegularSingle and Tandem Organic Solar Cells [J]. J. Am. Chem. Soc.,2013,135:1354913557.
    [42] R. W. Wood. On a remarkable case of uneven distribution of light in a diffractiongrating spectrum [J]. Philoso Phieal Magazine,1902,4:396-402.
    [43] U. Fano, The Theory of Anomalous Diffraction Gratings and of Quasi-StationaryWaves on Metallic Surfaces [J]. Journal of the Optical Society of America,1941.31(3):213-222.
    [44] E. A. Stern, R. A. Ferrell. Surface plasma oscillations of a degenerate electrongas [J]. Physical Review,1960,120:130-136.
    [45] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface Plasmon subwavelength optics[J]. Nature,2003,424:824-830.
    [46] O. Stenzel, A. Stendal, K. Voigtsberger, C. von Borczyskowski. Enhancementof the photovoltaic conversion efficiency of copper phthalocyanine thin film devicesby incorporationof metal clusters [J]. Solar Energy Materials and Solar Cells,1995,37:337-348.
    [47] Westphalen M Kreibig U, Rostalski J LuKth H, Meissner D,Metal clusterenhanced organic solar cells [J]. Solar Energy Materials&Solar Cells,2000,61:97-105.
    [48] Barry P. Rand, Peter Peumans, and Stephen R. Forrest. Long-range absorptionenhancement in organic tandem thin-film solar cells containing silver nanoclusters [J].J. Appl. Phys.,2004,96:7519-7526.
    [49] Linfang Qiao, Dan Wang, Lijian Zuo, Yuqian Ye, Jun Qian, Hongzheng Chen,Sailing He. Localized surface plasmon resonance enhanced organic solar cell withgold nanospheres [J]. Applied Energy,2011,88:848–852.
    [50] Dong Hwan Wang, Do Youb Kim, Kyeong Woo Choi, Jung Hwa Seo, SangHyuk Im, Jong Hyeok Park, O Ok Park, and Alan J. Heeger. Enhancement ofdonor–acceptor polymer bulk heterojunction solar cell power conversion efficienciesby addition of Au nanoparticles [J]. Angew. Chem. Int. Ed.,2011,123:5633-5637.
    [51] Charlie C. D. Wang, Wallace C. H. Choy, Chunhui Duan, Dixon D. S. Fung, WeiE. I. Sha, Feng-Xian Xie, Fei Huang and Yong Cao. Optical and electrical effects ofgold nanoparticles in the active layer of polymer solar cells [J]. J. Mater. Chem.,2012,22:1206-1211.
    [52] Harry A. Atwater and Albert Polman. Plasmonics for improved photovoltaicdevices [J]. nature materials,2010,9:205–213.
    [53] K. R. Catchpole, A. Polman. Plasmonic solar cells [J]. Opt. Express,2008,16:21793-21800.
    [54] J Mertz. Radiative absorption, fluorescence, and scattering of a classical dipolenear a lossless interface: a unified description [J]. J. Opt. Soc. Am. B,2000,17:1906-1913.
    [1] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger. Polymer photovoltaic cells:Enhanced efficiencies via anetwork of internal donor-acceptor heterojunctions [J].Science,1995,270:1789-1791.
    [2] S. B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, P. Peumans. An effective lighttrapping configuration for thin-film solar cells [J]. Appl. Phys. Lett.,2007,91:1-3.
    [3] S. I. Na, S. S. Kim, S. S. Kwon, J. Jo, J. Kim, T. Lee, D. Y. Kim. Surface reliefgratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solarcells [J]. Appl. Phys. Lett.,2007,91:1-3.
    [4] Jin Young Kim, Sun Hee Kim, Hyun-Ho Lee, Kwanghee Lee, Wanli Ma, XiongGong, and Alan J. Heeger. New Architecture for High-Efficiency PolymerPhotovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer[J]. Adv. Mater.,2006,18(5):572–576.
    [5] Doo-Hyun Ko, John R. Tumbleston, Lei Zhang, Stuart Williams, Joseph M.DeSimone, Rene Lopez, and Edward T. Samulski. Photonic Crystal Geometry forOrganic Solar Cells [J]. Nano Lett.,2009,9(7):2742–2746.
    [6] Jae Hyun Lee, Dae Woo Kim, Hong Jang, Jong Kil Choi, Jianxin Geng, Jae WookJung, Sung Cheol Yoon, and Hee-Tae Jung. Enhanced Solar-Cell Efficiency inBulk-Heterojunction Polymer Systems Obtained by Nanoimprinting withCommercially Available AAO Membrane Filters [J]. Small,2009,5(19):2139–2143.
    [7] Seok-In Na, Seok-Soon Kim, Jang Jo, Seung-Hwan Oh, Juhwan Kim, andDong-Yu Kim. Efficient Polymer Solar Cells with Surface Relief Gratings Fabricatedby Simple Soft Lithography [J].Adv. Funct. Mater.,2008,18:3956–3963.
    [8] W. L. Barnes, A. Dereux, T. W. Ebbesen, Surface Plasmon subwavelength optics[J]. Nature,2003,424:824-830.
    [9]Xi Chen, Baohua Jia, Jhantu Kumar Saha, Nicholas Stokes, Qi Qiao, YongqianWang, Zhengrong Shi, and Min Gu, Strong broadband scattering of anisotropicmorphology [J]. OPTICAL MATERIALS EXPRESS,2013,3(1):27-34.
    [10] J. J. Mock, M. Barbic, D.R. Smith, D. A. Schultz, S. Schultz, Shape effects inplasmon resonance of individual colloidal silver nanoparticles [J]. J. Chem. Phys.,2002,116:6755-6759.
    [11] P. Royer, J. P. Goudonnet, R. J. Warmack, T. L. Ferrell, Substrate effects onsurface-plasmon spectra in metal-island films [J]. Phys. Rev. B,1987,35:3753-3759.
    [12] G. Xu, M. Tazawa, P. Jin, S. Nakao, K. Yoshimura, Wavelength tuning of surfaceplasmon resonance using dielectric layers on silver island films [J]. Appl. Phys. Lett.,2003,82:3811-3813.
    [13] V. E. Ferry, J. N. Munday, H. A. Atwater, Design Considerations for PlasmonicPhotovoltaics [J]. Adv. Mater.,2010,22:4794-4808.
    [14] M. A. Green, S. Pillai, Harnessing plasmonics for solar cells [J]. Nat. Photon.,2012,6:130-132.
    [15] J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi. Plasmonic excitation oforganic double heterostructure solar cells [J]. Appl. Phys. Lett.,2007,90:121102-121102-3.
    [16] A. J. Morfa, K. L. Rowlen, T. H. R. III, M. J. Romero, and J. v. d. Lagemaat.Plasmon enhanced solar energy conversion in organic bulk heterojunctionphotovoltaics [J]. Appl. Phys. Lett.,2008,92:013504-013504-3.
    [17] K. R. Catchpole, S. Pillai. Surface plasmons for enhanced silicon light-emittingdiodes and solar cells [J]. Journal of Luminescence,2006,121:315-318.
    [18]王振林.表面等离激元研究新进展[J].物理学进展,2009,29(3):287-324.
    [19]陈敬中,刘剑洪.纳米材料科学与导论[M].北京:高等教育出版社,2006,第1版:83-93.
    [20] Gleiter H. Study in Gonultr a Fine Par ticles. Crystallography. Methods ofPreparation and Technological Application [J]. Pr og.Mater. Sci.,1989,33:223-315.
    [21]张立德,牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社,1994,第1版:79-106.
    [22]喻强,郝保红.纳米粒子的制备方法及应用[J].北京石油化工学院学报,2003,11(4):61-64.
    [23]李喜波,唐晓红,吴卫东,唐永建,王红艳,杨向东.磁控溅射法制备金团簇纳米粒子及性能表征[J].强激光与粒子束,200,18(6):1023-1026..
    [24] G. Frens. Controlled Nucleation for the Regulation of the Particle Size inMonodisperse Gold Suspensions [J]. Nature,1973,24:20-22.
    [25]李国龙,何力军,李进,李学生,梁森,高忙忙,袁海雯.纳米银增强聚合物太阳能电池光吸收的研究[J].物理学报Acta Phys. Sin.,2013,62(19):197202-197202-6.
    [26] By David Nilsson, Miaoxiang Chen, Thomas Kugler, Tommi Remonen, M rtenArmgarth, and Magnus Berggren. Bi-stable and Dynamic Current Modulation inElectrochemical Organic Transistors [J]. Adv. Mater.,2002,14(1):51-54.
    [27] P. Y. Emelie, E. Cagin, J. Siddiqui, J. D. Phillips, C. Fulk, J. Garland, S.Sivananthan. Electrical Characteristics of PEDOT:PSS Organic Contacts to HgCdTe[J]. Journal of ELECTRONIC MATERIALS,2007,36(8):841-845.
    [28] Florent Monestier, Jean-Jacques Simon, Philippe Torchio, Ludovic Escoubas,Francois Flory, Sandrine Bailly, Remi de Bettignies, Stephane Guillerez, ChristopheDefranoux. Modeling the short-circuit current density of polymer solar cells basedon P3HT: PCBM blend [J]. Sol. Energy Mater. Sol. Cells,2007,91:405-410.
    [29] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger. Thermally stable efficientpolymer solar cells with nanoscale control of the interpenetrating networkmorphology [J]. Advanced Functional Materials,2005,15(10):1617-1622.
    [30] Michael D. Irwin, D. Bruce Buchholz, Alexander W. Hains, Robert P. H. Chang,and Tobin J. Marks. P-Type semiconducting nickel oxide as an efficiency-enhancinganode interfacial layer in polymer bulk-heterojunction solar cells [J]. PNAS,2008,105:2783–2787.
    [31] Yongye Liang, Yue Wu, Danqin Feng, Szu-Ting Tsai, Hae-Jung Son, Gang Liand Luping Yu. Development of New Semiconducting Polymers for HighPerformance Solar Cells [J]. J. Am. Chem. Soc.,2009,131(1):56-57.
    [32]Arbogast J W, Foote C S, Kao M. Electron transfer to triplet fullerene C60[J].J.Am.Chem.Soc.,1992,114:2277-2279.
    [33] Jianhui Hou, Hsiang-Yu Chen, Shaoqing Zhang, Gang Li, and Yang Yang.Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap PolymerBased on Silole-Containing Polythiophenes and2,1,3-Benzothiadiazole [J]. J. Am.Chem. Soc.,2008,130:16144-16145.
    [34] Sung Heum Park, Anshuman Roy, Serge Beaupré, Shinuk Cho, Nelson Coates, JiSun Moon, Daniel Moses, Mario Leclerc, Kwanghee Lee, and Alan J. Heeger. Bulkheterojunction solar cells with internal quantum efficiency approaching100%[J]. Nat.Photonics,2009,3:297-302.
    [35] Than Z. Oo, Nripan Mathews, Guichuan Xing, Bo Wu, Bengang Xing, Lydia H.Wong, Tze Chien Sum, and Subodh G. Mhaisalkar. Ultrafine Gold NanowireNetworks as Plasmonic Antennae in Organic Photovoltaics [J]. J. Phys. Chem. C,2012,116:64536458.
    [36] Mihee Heo, Heesook Cho, Jae-Woo Jung, Jong-Ryul Jeong, Soojin Park, and JinYoung Kim. High-Performance Organic Optoelectronic Devices Enhanced by SurfacePlasmon Resonance [J]. Adv. Mater.,2011,23:5689–5693.
    [37] Zhu, Jinfeng, Huajun Shen, Xue, Mei, Wang, K.L., Zhibin Yu, Lu Li, JeongHun Park,Qibing Pei. Plasmonic organic solar cell and its absorption enhancement analysisusing cylindrical Ag nano-particle model based on finite difference time domain(FDTD). CLEO, Baltimore, MD, USA,2011.
    [38]李贵芳,全威,刘金锁,陈磊,张吉东,闫东航,秦大山.加入NPB提高P3HT:PCBM聚合物太阳能电池光伏性能[J].高分子通报,2012,8:92-97.
    [39]李璐,于军胜,黎威志,李青,李伟,蒋亚东.基于NPB的未掺杂高效蓝色有机电致发光器件[J].半导体光电,2007,28(6):785-788.
    [40] Z. Q. Xu, F. Z. Sun, J. Li, S. T. Lee, Y. Q. Li. Irradiation-induced moleculardipole reorientation in inverted polymer solar cell using small molecular electroncollection layer [J]. Appl. Phys. Lett.,2011,99:203301-203301-3.
    [1] G. Li, R. Zhu, Y. Yang. Polymer solar cells [J]. Nat. Photon.,2012,6:153-161.
    [2] S. Gunes, H. Neugebauer, N. S. Sariciftci. Conjugated Polymer-Based OrganicSolar Cells [J]. Chem. Rev.,2007,107(4):1324-1338.
    [3] B. C. Thompson, J. M. J. Fréchet. Polymer–Fullerene Composite Solar Cells[J]. Angew. Chem. Int. Ed.,2008,47:58-77.
    [4] H.-L. Yip, A. K.-Y. Jen. Recent advances in solution-processed interfacialmaterials for efficient and stable polymer solar cells [J]. Energy Environ. Sci.,2012,5:5994-6001.
    [5] Li Gang, Yan Yao, Chu Chih-Wei, Yang Yang. Transition metal oxide as the bufferlayer for polymer photovoltaic cells [J]. Appl. Phys. Lett.,2006,88(7):073508-073508-3.
    [6] Seungchan Han, Won Suk Shin, Myungsoo Seo, Dipti Gupta, Sang-Jin Moon,Seunghyup Yoo. Improving performance of organic solar cells using amorphoustungsten oxides as an interfacial buffer layer on transparent anodes [J]. Org. Electron.,2009,10(5):791-797.
    [7] M. P. de Jong, L. J. van IJzendoorn and M. J. A. de Voigt. Stability of the interfacebetween indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfo-nate) in polymer light-emitting diodes [J]. Appl. Phys. Lett.,2000,77(14):2255-2257.
    [8] Yun-Ho Kim, Soo-Hyoung Lee, Jaegeun Noh,Sung-Hwan Han. Performance andstability of electroluminescent divice with self-assembled layers of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and polyelectrolytes [J]. Thin SolidFilms,2006,510(1-2):305-310.
    [9] G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang. Efficient inverted polymer solarcells [J]. Appl. Phys. Lett.,2006,88:253503-253503-3.
    [10]Xi Yang, Chu-Chen Chueh, Chang-Zhi Li, Hin-Lap Yip, Peipei Yin, HongzhengChen, Wen-Chang Chen, and Alex K-Y. Jen. High-Efficiency Polymer Solar CellsAchieved by Doping Plasmonic Metallic Nanoparticles into Dual Charge SelectingInterfacial Layers to Enhance Light Trapping [J]. Adv. Energy Mater.,2013:1-8
    [11] S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole. Designing periodicarrays of metal nanoparticles for light-trapping applications in solar cells [J]. AppliedPhysics Letters,2009,95(5),053115:1-3
    [12] S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green. The effect ofdielectric spacer thickness on surface plasmon enhanced solar cells for front and rearside depositions [J]. Journal of Applied Physics,2011,109(9),073105:1-8.
    [13]张立德,牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社,1994.
    [14] M Gr tzel. Heterogeneous photochemical electron transfer [M]. CRCPress,Baton Rouge, FL,1998.
    [15] E. Haro-Poniatowski, R. Rodríguez-Talavera, Heredia M. de la Cruz, O.Cano-Corona, R. Arroyo-Murillo. Crystallisation Of Nanosized Titania ParticlesPrepared By The Sol-Gel Process [J]. Journal of Materials Research,1994,9(8):2102-2108.
    [16]李春燕,李懋强等. TiO2的溶胶凝胶过程研究[J].硅酸盐学报,1996,24(3):338-341.
    [17] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger. Thermally stable efficientpolymer solar cells with nanoscale control of the interpenetrating networkmorphology [J]. Advanced Functional Materials,2005,15(10):1617-1622.
    [18] Michael D. Irwin, D. Bruce Buchholz, Alexander W. Hains, Robert P. H. Chang,Tobin J. Marks. P-Type semiconducting nickel oxide as an efficiency-enhancinganode interfacial layer in polymer bulk-heterojunction solar cells [J]. PNAS,2008,105:2783–2787.
    [19] Yongye Liang, Yue Wu, Danqin Feng, Szu-Ting Tsai, Hae-Jung Son, Gang Li,Luping Yu. Development of New Semiconducting Polymers for High PerformanceSolar Cells [J]. J. Am. Chem. Soc.,2009,131(1):56-57.
    [20] J Mertz. Radiative absorption, fluorescence, and scattering of a classical dipolenear a lossless interface: a unified description [J]. J. Opt. Soc. Am. B,2000,17:1906-1913.
    [21] P. C. Waterman. Symmetry, unitarity, and geometry in electromagnetic scattering[J]. Phys. Rev. D.,1971,3:825-829.
    [22] L. Novotny, D. W. Pohl, B. Hecht. Scanning near-field optical probe with ultrasmall spot size [J]. Opt. Lett,1995,20:970-972
    [23] Esteban Moreno, Daniel Erni, Christian Hafner, and Rüdiger Vahldieck. Multiplemultipole method with automatic multipole setting applied to the simulation ofsurface plasmons in metallic nanostructures [J]. J. Opt. Soc. Am. A.,2002,19:101-111.
    [24] K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz. TheOptical Properties of Metal Nanoparticles: The Influence of Size, Shape, andDielectric Environment [J]. J. Phys. Chem. B.,2003,107(3):668–677.
    [25] J. C. Kasher, K. S. Yee. A numerical example of a two dimensional scatteringproblem using a subgrid [J]. Applied Computational Electromagnetics Society Journaland Newsletter,1987,2:75-102.
    [26]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2005.
    [1] F. C. Krebs. Fabrication and processing of polymer solar cells: a review ofprinting and coating techniques [J]. Sol. Energy Mater. Sol.Cells,2009,93:394–412.
    [2] C.-D. Park, T. A. Fleetham, J. Li, B. D. Vogt, High performancebulkheterojunction organic solar cells fabricated with non-halogenated solventprocessing [J]. Org. Electron.,2011,12:1465–1470.
    [3] Ragip A. Pala, Justin White, Edward Barnard, John Liu, and Mark L. Brongersma.Design of plasmonic thin-film solar cells with broadband absorption enhancements [J].Adv. Mater.,2009,21:3504-3509.
    [4] S. Link, M. A. El-Sayed. Spectral properties and relaxation dynamics of surfacePlasmon electronic oscillations in gold and silver nanodots and nanorods [J]. J. Phys.Chem. B,1999,103:8410-8426.
    [5] Srinivas Sista, Mi-Hyae Park, Ziruo Hong, Yue Wu, Jianhui Hou, Wei Lek Kwan,Gang Li, and Yang Yang. Highly Efficient Tandem Polymer Photovoltaic Cells[J].Adv. Mater.,2009,21:1–4.
    [6] Hongying Lv, Xiaoli Zhao, Wentao Xu, Hui Li, Jiayue Chen, Xiaoniu Yang.Improving performance of polymer solar cells based on PSBTBT/PC71BM viacontrolled solvent vapor annealing [J]. Organic Electronics,2013,14:1874–1881.
    [7] Brian A. Collins, Zhe Li, John R. Tumbleston, Eliot Gann, Christopher R. McNeill,and Harald Ade Absolute Measurement of Domain Composition and Nanoscale SizeDistribution Explains Performance in PTB7:PC71BM Solar Cells [J]. Adv. EnergyMater.,2013,3:65–74.
    [8] Zhicai He, Chengmei Zhong, Xun Huang, Wai-Yeung Wong, Hongbin Wu, LiweiChen, Shijian Su, and Yong Cao. Simultaneous Enhancement of Open-CircuitVoltage,Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells [J]. Adv.Mater.,2011,23:4636–4643.
    [9] Nicolas Blouin, Alexandre Michaud, David Gendron, Salem Wakim, Emily Blair,Rodica Neagu-Plesu, Michel Bellete te, Gilles Durocher, Ye Tao, and Mario Leclerc,Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells [J]. J.AM. CHEM. SOC.,2008,130:732-742.
    [10] Michael F. G. Klein, Felix M. Pasker, Stefan Kowarik, Dominik Landerer,Marina Pfaff, Matthias Isen, Dagmar Gerthsen, Uli Lemmer, Sigurd Ho ger, andAlexander Colsmann. Carbazole Phenylbenzotriazole Copolymers as AbsorberMaterial in Organic Solar Cells [J]. Macromolecules,2013,46:38703878.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.