富水岩层中新型单层冻结井壁关键施工技术与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西部深厚富水岩层中,如何防止井壁在孔(裂)隙水压作用下与围岩相互剥离,避免100%井壁外表面受100%地下水静水压作用,事前如何预防井壁渗漏水通道的产生,事后如何封堵已经出现的渗漏水通道,是新型单层冻结井壁施工过程中急待研究并解决的关键技术与工艺!
     论文首先采用数值计算的研究方法,讨论了因掘砌施工导致的径向相互作用力fa的变化规律,计算结果表明:1) fa可表示为井筒埋深H的函数(fa=KfH);2)冻结壁内缘径向卸载率η的常见值为0.403~0.911。
     基于轴对称平面应变模型,对新型单层冻结井壁进行应力分析,得到了凿井期井壁的应力与位移解析解。通过对总径向相互作用力f x变化规律的研究,提出了避免冻结壁解冻后井壁、基岩界面相互剥离的技术措施。
     针对新型单层冻结井壁可能存在的3个漏水通道,论文首先阐述了凿井期井壁裂纹(缝)产生的机理。尔后,综合采用数值计算与现场实测的研究方法,详细讨论了基岩段新型单层冻结井壁防冻害、防裂以及接茬注浆等关键技术,研究成果表明:1)当冻结管至井帮距离Df≥3m、井帮温度tb≥-5℃时,可确保井壁全断面正温养护时间≥26.7d;2)当混凝土后期趋于稳定的膨胀应变t不小于300μ,28d膨胀应变不小于50%(即150μ)时,可避免井壁产生环向、竖向温度裂纹(缝);3)竖筋预紧力设计值可取为20kN,预紧工序应在混凝土浇筑至施工段高1/2之前完成;4)径向相互作用力fa对抑制井壁温度拉应力,效果较为显著;5)建议采用“下行式集中注浆”的方法进行接茬预注浆,注浆压力宜取为1倍静水压;6)若接茬持续3min不渗漏且注浆压力不下降,可认为注浆效果良好。
     以鄂尔多斯市呼吉尔特矿区葫芦素副立井为工程背景开展实测研究,实测成果表明:1)基岩冻结压力主要受原岩富水条件、强度等因素影响,与井筒埋深H无直接关系;2)基岩冻结压力极值Pmax仅约1.08~1.74MPa,远小于按实测井筒埋深H换算的静水压力值P0,更远小于特厚冲积表土中的冻结压力上限值Pω;3)凿井期竖筋、环筋应力的绝对值最大不超过70.8MPa和101.0MPa,仅接近井壁配筋HRB335强度设计值300MPa的1/3,故新型单层井壁配筋于凿井期具有足够的安全储备;4)实测层位F1~F3混凝土压应变极值均出现在井壁环向,且仅达到各层位混凝土极限压应变估算值max的25.7%、19.2%和19.0%,故凿井期新型单层井壁的混凝土压应变亦处于安全范围。
     最后,论文对基岩段新型单层冻结井壁的关键施工技术与工艺进行了总结,研究成果可为现场技术人员提供参考,对新型单层井壁的后续应用具有重要参考价值。
In deep water-rich bedrock in West China, how should we do to prevent pore water pressurefrom separating shaft lining from surrounding rock when frozen wall thawing, how to avoid totalhydrostatic pressure on whole outer surf_ace of the shaft lining, what measures should we take toprevent leaking cracks in shaft lining in advance and deal with them through grouting technologyafterwards, the key technologies to solve these problems have become an urgent task in theconstruction of the new monolayer freezing shaft lining.
     In this paper, the variation of the radial interaction force f_acaused by shaft lining excavationis firstly discussed through numerical analysis. The results show that:1) f_acan be represented asa function of shaft depth H (f_a=K_fH);2) The common value of radial unloading rate η of frozenwall inner edge is0.403~0.911.
     Based on axisymmetrical plane strain model, stress and displacement analytical solution ofthe new monolayer freezing shaft lining during freeze sinking are obtained through stressanalysis. In addition, after analyzing the variation of total radial interaction forcef_x, thetechnical measures are also promoted to avoid the tensile stress between shaft lining and bedrockwhen frozen wall thawing.
     Aiming at the three probable leaking channels of the new monolayer freezing shaft lining,firstly, the generation mechanism of shaft lining cracks during shaft sinking is described. Then,through numerical analysis and field measurement, the key construction technologies used innew monolayer freezing shaft lining in the bedrock are discussed detailedly. The research resultsshow that:1) When the distance between freezing pipes and sidewall D_f≥3m and sidewalltemperature t_b≥-5℃, the positive temperature curing time of shaft lining can be ensured to begreater than or equal to26.7d;2) When the gradually stabilized concrete expansion strain tisnot less than300μ and the28-day expansion strain is not less than50%(i.e.150μ), thetangential and vertical temperature cracks in shaft lining can be avoided;3) Verticalreinforcement preload can take the value of20kN, and the pre-tightening process should becompleted before concrete is poured to half of construction segment height;4) Radial interactionforce f_aplays a significant role in controling temperature tensile stress of the shaft lining;5)"Top-down concentrated grouting process" is suggested for new-old concrete interf_acegrouting. The grouting pressure should be taken as1times the hydrostatic pressure;6) If thenew-old concrete interf_ace do not leaking for about3minute and grouting pressure do notdecrease, then the effect of grouting can be thought good.
     Based on the project example of Hulusu auxiliary shaft of Hujierte coal mine in Erdos, theconstruction technology and monitoring method of the first new single-layer shaft lining are described in bed rock during freeze sinking in China. The In-situ monitoring results show that:1) The freezing pressure is mainly affected by rock moisture content and rock strength, but therocks buried deep H affects little;2) The measured value of Pmaxis1.08~1.74MPa. Pmaxis muchsmaller than hydrostatic pressure P0and the maximum freezing pressure Pωin deep alluvium;3) The maximum stress of vertical steels is less than70.8MPa and the maximum stress of hoopsteels is less than101.0MPa. The maximum stress is only equal to about1/3of the strengthdesign value300MPa of reinforcement HRB335.4) Among the in-situ measurement stratumsF1~F3, the extreme compressive strain is just only25.7%,19.2%and19.0%of the concreteultimate compressive strainmax.5) In conclusion, the new single-layer shaft lining of Hulusuauxiliary shaft is in safe status during shaft freezing sinking.
     Finally, the key construction technologies are summarized for the new monolayer freezingshaft lining in bedrock. The research results can provide a reference for field technicians andhave important reference value for follow-up application of the new monolayer shaft lining.
引文
[1]姚直书,程桦.西部地区深基岩冻结井筒井壁结构设计与优化[J].煤炭学报,2010,35(5):760-764.
    [2]马亚军.内蒙古自治区东胜煤田葫芦素矿井井筒检查钻孔地质报告[R].鄂尔多斯:中天合创能源有限责任公司,2008.
    [3] Jones R H,Holden J T.Ground freezing88,Vol.1,Proceedings of the fifth international symposiumon ground freezing,Rotterdam,Netherlands,1988.
    [4] Ground Freezing2000.Proceedings of the international symposium on ground freezing and frost actionin soils.A.Balkema,Rotterdam,2000.
    [5]陈文豹,汤志斌.冻结法施工[M].北京:煤炭工业出版社,1993.
    [6]陈湘生.地层冻结技术40年[J].煤炭科学技术,1996,24(1):13-15.
    [7]崔广心,杨维好,吕恒林.深厚表土层中的冻结壁和井壁[M].徐州:中国矿业大学出版社,1998.
    [8]陈朝晖.冻结凿井技术研究进展与存在的问题[J].建井技术,2007,28(3):29-30.
    [9]周晓敏,陈建华,罗晓青.孔隙型含水基岩段竖井井壁厚度拟订设计研究[J].煤炭学报,2009,34(9):1174-1178.
    [10]杨成立.渗流条件下孔隙裂隙岩体冻结温度场初步研究[D].徐州:中国矿业大学,2011.
    [11] GB50384-2007,煤矿立井井筒及硐室设计规范[S].北京:中国计划出版社,2007.
    [12]华召文,刘清宝,王长友.亭南矿井基岩冻结井壁设计浅析[J].建井技术,2010,31(4):18-21.
    [13]陈晓祥.新型单层冻结井壁关键技术与设计理论研究[D].徐州:中国矿业大学,2007.
    [14]杨维好,黄家会,王衍森.带接茬板的单层井壁及其施工方法.中华人民共和国:200610088128.3[P].2009-8-12.
    [15]杨维好,黄家会,杨志江.一种带钢板隔水层的井壁及其施工方法.中华人民共和国:200610096290.x[P].2010-5-12.
    [16]韩涛.富水基岩单层冻结井壁受力规律及设计理论研究[D].徐州:中国矿业大学,2011.
    [17]杨维好.中天合创公司葫芦素矿井副井井筒单层冻结井壁设计方案[R].徐州:中国矿业大学,2009.
    [18]煤炭科学技术编辑部.深井冻结井壁[J].煤炭科学技术,1979,(12):1-10.
    [19]张世芳,杨小林.深厚表土矿井建设技术[M].北京:煤炭工业出版社,2002.
    [20]徐光济,陈文豹.根据冻结井筒的不同情况选择合适的井壁结构[J].煤炭科学技术,1979,(5):3-17.
    [21]庞荣庆.两淮立井冻结施工[J].煤炭科学技术,1982,(10):17-19.
    [22]崔广心.复杂地层中地下工程特殊施工技术发展与展望[J].煤,2000,9(6):3-8.
    [23]王建中.C80-C100高强混凝土井壁力学特性研究[D].徐州:中国矿业大学,2006.
    [24]王衍森.特厚冲积层中冻结井外壁强度增长及受力与变形规律研究[D].徐州:中国矿业大学,2005.
    [25]杨维好.新型单层冻结井壁技术研究与应用[R].徐州:中国矿业大学,2011.
    [26]沈正芳,王德民,郑青林译.立井井壁[M].北京:煤炭工业出版社,1981.
    [27]倪国荣,许焕彬.含水基岩的侧压力及深井井壁设计[J].煤炭科学技术,1983,(5):45-51.
    [28]江新春.冻结基岩井筒井壁结构设计[J].煤炭工程,1992,(1):1-3.
    [29] GBJ213-1990,矿山井巷工程施工及验收规范[S].北京:中国标准出版社,1991.
    [30]李宁,成国栋,谢定义.西部大开发中的岩土力学问题[J].岩土工程学报,2001,23(3):268-272.
    [31] Winkler,E.M.Frost damage to stone and concrete [J].Engineering Geology,1968.2(5):315-323.
    [32] Inada Y,Yokota K.Some studies of low temperature rock strength [J].Int J Rock Mech Min Sci&Geomech Abstr,1984.21(3):145-153.
    [33] Yamabe.T,Neaupane KM.Determination of some thermo-mechanical properties of Sirahamasandstone under subzero temperature conditions [J].International Journal of Rock Mechanics&MiningScience,2001.38(7):1029-1034.
    [34] Park C,Synn JH,Shin DS.Experimental study on the thermal characteristics of rock at lowtemperatures [J].International Journal of Rock Mechanics&Mining Science.2004.4:81-86.
    [35]杨更社,奚家米,王宗金等.胡家河煤矿主井井筒冻结壁岩石力学特性研究[J].煤炭学报,2010,35(4):565-570.
    [36]叶琳昌,沈义.大体积混凝土施工[M].北京:中国建筑工业出版社,1987.
    [37]阮静,叶见曙,谢发祥等.高强度混凝土水化热研究[J].东南大学学报,2001,31(3):53-56.
    [38]蔡正咏.混凝土性能[M].北京:中国建筑工业出版社,1979.
    [39]刘秉京.混凝土技术[M].北京:人民交通出版社,1998.
    [40] De Schutter G,Taerwe L.General hydration model for portland cement and blast furnace slag cement[J].Cement Concrete research,1995,25(3):593-604.
    [41] Kjellsen K O,Lagerblad B,Jennings H M.Hollow-shell formation-an important mode in the hydrationof Portland cement [J].Journal of Materials Science,1997,32:2921-2927.
    [42] Ye G,Lura P,Breugel K,Fraaij A L A.Study on the development of the microstructure cement-basedmaterials by means of numerical simulation and ultrasonic pulse velocity measurement [J].Cement&Concrete Composites,2004,26(5):491-497.
    [43] Ye G,Lura P,Breugel K,Fraaij A L A.Experimental study and numerical simulation on the formationof microstructure in cementations materials at early age [J].Cement and Concrete Research,2003,33:233-239.
    [44] Morin V,Cohen-Tenoudji F,Feylessoufi A.Evolution of the capillary network in a reactive powderconcrete during hydration process [J].Cement and Concrete Research,2002,32:1907-1914.
    [45] John J,Donnell O,Eugene J,Brien O.A new methodology for determining thermal properties andmodeling temperature development in hydrating concrete [J].Construction and Building Materials,2003,17:189-202.
    [46] Bertil Persson.Hydration and strength of high performance concrete [J].Advn Cem Bas Mat,1996,3:107-123.
    [47] McCarter W J,Chrisp M T,Starrs G,Blewett J.Characterization and monitoring of cement-basedsystems using intrinsic electrical property measurements [J].Cement and Concrete Research,2003,33:197-206.
    [48]申爱琴.水泥与水泥混凝土[M].北京:人民交通出版社,2000.
    [49] Feylessoufi A, Cohen F, Tenoudji, Morin V, et al. Early ages shrinkage mechanisms ofultra-high-performance cement-based materials [J].Cement and Concrete Research,2001,31:1573-1579.
    [50] James Andrew Gilliland.Thermal and shrinkage effects in high performance concrete structures duringconstruction [D].The University of Calgary,Calgary,Albert,2002.
    [51] Diss.Schindler, Anton Karel.Concrete hydration,temperature development and setting at early-ages[D].The University of Texas at Austin,2002.
    [52] Miao B,Chaallal O,Perration D,Aitcin P C.On-site early-age monitoring of high-performanceconcrete columns [J].ACI Materials Journal,1993,90(5):415-420.
    [53] Bentz D P,Garboczi E J,Haecker C J,Jensen O M.Effects of cement particle size distribution onperformance properties of Portland cement-based materials [J].Cement and Concrete Research,1999.
    [54] Mills R H.Factors influencing cessation of hydration in water-cured cement pastes[C].Special ReportNo.90,Proceedings of the Symposium on the Structure of Portland cement Paste and Concrete.HighwayResearch Board,Washington D C,1966:406-424.
    [55] Hansen T C.Physical structure of hardened cement paste.A classical approach [J].Materials andStructures,1986,19(114):423-436.
    [56] Van Breugel K.Simulation of hydration and formation of structure in hardening cement basedmaterials[D].Delft University Press,Netherlands,1997.
    [57] Cengiz Duran Atis.Heat evolution of high-volume fly ash concrete [J].Cement and Concrete Research,2002,32:751-756.
    [58] Vagelis G,Papadakis.Effect of fly ash on Portland cement systems.Part II.High-calcium fly ash[J].Cement and Concrete Research,2000,30:1647-1654.
    [59] Tsimas S,Moutsatsou-Tsima A.High-calcium fly ash as the fourth constituent in concrete:problems,solutions and perspectives [J].Cement&Concrete Composites,2005,27:231-237.
    [60] Maria S,Konsta-Gdoutos,Surendra P,Shah.Hydration and properties of novel blended cements basedon cement kiln dust and blast furnace slag [J].Cement and Concrete Research,2003,33:1269-1276.
    [61] Sioulasl B,Sanjayan J G.Hydration temperatures in large high-strength concrete columns incorporatingslag [J].Cement and Concrete Research,2000,30:1791-1799.
    [62] Sanchez de Rojas M I,Frias M.The pozzolanic activity of different materials,its influence on thehydrationheat in mortars [J].Cement and Concrete Research,1996,26(2):203-213.
    [63] Helene Zanni,Marcel Cheyrery,Vincent Maret,et al.Investigation of hydration and pozzolanic reactionin reactive powder concrete using29Si NMR [J].Cement and Concrete Research,1996,26(l):93-100.
    [64] Jamal Shannag M,Asim Yeginobali.Properties of pastes,mortars and concretes containing naturalpozxzolan[J].Cement and Concrete Research,1995,25(3):647-657.
    [65] Suzuki Y,Harada S,Maekawa K,Tsuji Y.Evaluation of adiabatic temperature rise of concretemeasured with the new testing apparatus [J].Concrete Library of JJCE,1988,9:109-117.
    [66] Suzuki Y,Harada S,Maekawa K,Tsujiy.Quantification of hydration-heat generation process of cementin concrete [J].Concrete Library of JSCE,1988.12:155-164.
    [67]蔡正咏.混凝土性能[M].北京:中国建筑工业出版社,1979.
    [68]朱伯芳.水工混凝土结构设计规范[M].北京:中国电力出版社,1996.
    [69]姜福田.碾压混凝土[M].北京:中国铁道出版社,1991.
    [70]张子明,宋智通,黄海燕.混凝土绝热温升和热传导方程的新理论[J].河海大学学报,2002,30(3):1-6.
    [71] Nurse R W.Steam curing of concrete [J].Magazine of Concrete Research,1949,l(2):79-88.
    [72] McIntosh J D.Electric curing of concrete [J].Magazine of Concrete Research,1949,l(2):21-28.
    [73] Saul A G A.Principle underlying the steam curing of concrete at atmospheric pressure [J].Magazine ofConcrete Research,1951,2(6):127-140.
    [74] Rastrup E.Heat of hydration in concrete [J].Magazine of Concrete Research,1954,6(17):79-92.
    [75]张晓飞.大体积混凝土结构温度场和应力场仿真计算研究[D].西安:西安理工大学,2009.
    [76]三峡水利枢纽混凝土工程温度控制研究编辑委员会.三峡水利枢纽混凝土工程温度控制研究[M].北京:中国水利水电出版社.2001.
    [77]杨平,郁楚候.冻结壁与外壁温度和受力实测研究[J].煤炭科学技术,1999,27(4):32-35.
    [78]姚直书,程桦,张国勇等.特厚冲积层冻结法凿井外层井壁受力实测研究[J].煤炭科学技术,2004,32(6):49-52.
    [79]王衍森,黄家会,杨维好等.特厚冲积层中冻结井外壁温度实测研究[J].中国矿业大学学报,2006,35(4):468-472.
    [80]陈晓祥,杨维好.新型单层冻结井壁温度场相似模拟研究[J].中国矿业大学学报,2010,39(2):201-207.
    [81] Poulos H G,Davis E H,孙幼兰译.岩土力学弹性解[M].徐州:中国矿业大学出版社,1990.
    [82]马英明.从井壁受力规律谈深井冻结井壁的结构和设计[J].中国矿业学院学报,1980,(1):59-74.
    [83]王衍森,黄家会,杨维好等.龙固副井冻结凿井期外壁混凝土应变的实测研究[J].煤炭学报,2006,31(3):296-300.
    [84]王衍森,张开顺,李炳胜等.深厚冲积层中冻结井外壁钢筋应力的实测研究[J].中国矿业大学学报,2007,36(3):287-291.
    [85]孙文若,陈明华,姚直书.冻结井应用素砼井壁的研究[J].地层冻结技术工程和应用—中国地层冻结工程40年论文集.北京:煤炭工业出版社,1995.10,335-340
    [86]林鸿苞.高强混凝土及薄壁筒结构在付村矿主井冻结基岩段井壁结构中的应用[J].煤矿设计,1998,(10):5-9.
    [87]杨俊杰.高强素混凝土井壁结构强度的试验研究[J].煤矿设计,1997,(7):10-12.
    [88]姚直书,孙文若.不均匀侧压下冻结井壁结构的有限元分析[J].西安矿业学院学报,1995,15(2):123-126.
    [89]姚直书,孙文若.不均匀侧压力下冻结井壁混凝土井壁结构试验研究[J].阜新矿业学院学报,1995,14(3):30-33.
    [90]孙林柱,杨俊杰.高强素混凝土井壁结构强度的试验研究[J].煤矿设计.1997,(7):10-12.
    [91]李德新,周玖功.浅谈如何缩短立井施工工期[J].建井技术,2001,22(6):34-39.
    [92]傅鹤林.岩土工程数值分析[M].长沙:中南大学出版社,2002.
    [93]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [94]杨志法,王思敬,冯紫良等.岩土工程反分析原理及应用[M].北京:地震出版社,2002.
    [95]徐祖.PHC管桩沉桩引起的超孔隙水压力研究[D].南京:河海大学,2006.
    [96] AUI Commands for ADINA[K].ADINA R&D,2005.
    [97] ADINA Theory and Modeling Guide[K].ADINA R&D,2005.
    [98]高级结构非线性及流固耦合计算系统ADINA软件简介[J].CAE/CAM与制造业信息化,2006,8:32-34.
    [99] WANG Yan-sen,ZHANG Chi,XUE Li-bing,et al.Prediction and safety analysis of additional verticalstress within a shaft wall in an extra-thick alluvium [J].Mining Science and Technology,2010,20:350-356.
    [100]徐秉业,刘信声.应用弹性力学[M].北京:高等教育出版社,1995.
    [101]顾慰慈.渗流计算原理及应用[M].北京:中国建材出版社,1986.
    [102]毛昶熙.渗流计算分析与控制[M].北京:水利电力出版社,1990.
    [103]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,2010.
    [104]徐志英,岩石力学[M],北京:水利电力出版社,1993.
    [105]蒋斌松,王金鸽,周国庆.单管冻结温度场解析计算[J].中国矿业大学学报,2009,38(4):463-466.
    [106]张驰,张涛,韩涛等.管壁温度非恒定条件下单管冻结温度场解析计算[J].煤炭科学技术,2012,40(3):20-23.
    [107] ZHANG Chi,YANG Wei-hao,QI Jia-gen,et al.Analytic computation on the forcible thawingtemperature field formed by a single heat transfer pipe with unsteady outer surface temperature[J].Journal of Coal Science&Engineering,2012,18(1):18-24.
    [108]杨维好,黄家会.外壁恒温条件下冻结管壁热流密度变化规律数值计算研究[J].冰川冻土,2006,28(3):401-405.
    [109]张涛.不同外部隔热条件下单管冻结温度场研究[D].徐州:中国矿业大学,2006.
    [110]杨洪瑞,李胜利.钢筋混凝土构件中钢筋温度数值计算方法讨论[J].武警学院学报,2010,26(2):26-28.
    [111]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社.1999.
    [112] GB50010-2002,混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [113]李东,潘育耕.混凝土水化放热瞬态温度场数值计算过程中的水化放热规律及水化速率问题[J].西安建筑科技大学学报,1999,31(3):277-279.
    [114]穆红英.关于外加剂、混合材料对硅酸盐水泥的水化热影响研究[D].大连:大连理工大学,2000.
    [115]牛富俊.葫芦素井筒检查孔人工冻结土体物理力学参数测定[R].鄂尔多斯:中天合创能源有限责任公司,2008.
    [116]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.
    [117]谭真,郭广文.工程合金热物性[M].北京:冶金工业出版社,1994.
    [118] GB50496-2009,大体积混凝土施工规范[S].北京:中国计划出版社,2009.
    [119]和锋刚.布拉格光栅应变传感器用于既有混凝土结构监测研究[D].徐州:中国矿业大学,2009.
    [120]张驰,杨维好,杨志江等.深厚含水基岩区立井外壁冻结压力的实测与分析[J].煤炭学报,2012,37(1):33-38.
    [121]周小文,龚壁卫,丁红顺等.砾石垫层—混凝土接触面力学特性单剪试验研究[J].岩土工程学报,2005,27(8):876-880.
    [122]张治军,苏华,饶锡保等.砂砾石与结构接触面强度与变形特性试验研究[J].三峡大学学报:自然科学版,2008,30(1):64-68.
    [123]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [124]张驰,王新强,和锋刚等.双层钢板约束混凝土钻井井壁力学性能数值模拟研究[J].建井技术,2008,29(5):22-24.
    [125] GB175-1999,硅酸盐水泥、普通硅酸盐水泥[S].北京:中国标准出版社,1999.
    [126]罗运军,秦本东.温度对砂岩弹性模量影响的试验研究[J].矿山压力与顶板管理,2005(2):97-99.
    [127] GB50017-2003,钢结构设计规范[S].北京:中国计划出版社,2003.
    [128]王伟.钢管核心混凝土膨胀性能研究[D].重庆:重庆交通大学,2009.
    [129]李承木,杨元慧.氧化镁混凝土自生体积变形的长期观测结果[J].水利学报,1999,(5):54-58.
    [130]李鹏辉,刘光廷,高虎等.自生体积变形试验方法研究及应用[J].清华大学学报,2001,41(11):114-117.
    [131]吕慧,邓朝飞,李江华.浅析掺膨胀剂混凝土限制膨胀率的影响因素[J].混凝土,2010,(10):31-33.
    [132]李乃珍,谢敬坦,雷亚光等.全补偿型混凝土膨胀剂及其对高强混凝土干缩的补偿[J].混凝土,2010,(8):21-23.
    [133]沈蒲生.混凝土结构设计[M].北京:高等教育出版社.2003.
    [134]张驰,杨维好,齐家根等.基岩冻结新型单层井壁施工技术与监测分析[J].岩石力学与工程学报,2012.31(2):337-346.
    [135]张民庆,张文强,孙国庆.注浆效果检查评定技术与应用实例[J].岩石力学与工程学报,2006,25(增2):3909-3918.
    [136]杨志江,张驰.葫芦素煤矿井壁接茬注浆材料与工艺[R].徐州:中国矿业大学岩土工程研究所.2010.
    [137]李家康,王巍.高强混凝土在非均匀受力状态下的极限压应变[J].工业建筑,1997,27(2):40-42.
    [138]赵彤,杜峰,戴自强.高强混凝土偏心受压构件的混凝土极限压应变[J].工业建筑,1998,28(11):53-54.
    [139]赵磊.Bragg光纤光栅的应力及温度传感特性研究[D].哈尔滨:哈尔滨工程大学,2005.
    [140]鱼瑛,余震虹,赵玲君等.光纤Bragg光栅温度与应力的测量分析[J].量子电子学报,2010,27(5):632-636.
    [141]任亮,李宏男,胡志强等.一种增敏型光纤光栅应变传感器的开发及应用[J].光电子.激光,2008(11):1437-1441.
    [142]饶云江,义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社,2006.
    [143]李维善.光纤Bragg光栅应变测量中温度分离和补偿的研究[D].南京:南京理工大学,2009.
    [144]汪仁和,亢延民,林斌等.深厚黏土地层冻结压力的实测分析[J].煤炭科学技术,2008,(36)2:30-33.
    [145]盛天宝.特厚黏土层冻结压力研究与应用[J].煤炭学报,2010,(35)4:571-574.
    [146]王衍森,薛利兵,程建平,等.特厚冲积层竖井井壁冻结压力的实测与分析[J].岩土工程学报,2009,(31)2:207-212.
    [147]蔡绍怀,左怀西.高强混凝土的抗裂强度[J].土木工程学报,1992,25(2):23-31.
    [148]田野,金南国,金贤玉.混凝土特征拉应变随龄期发展规律研究[J].浙江大学学报,2008,42(6):1076-1079.
    [149]刘计寒,魏志成,齐家根.单层井壁在超大型高水压基岩冻结井筒中的实践[J].现代矿业,2012,(1):83-85.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.