电解质脉冲法测量坡面薄层恒定水流速度的研究及其初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡面薄层水流速度是研究坡面土壤侵蚀的基础,但由于坡面水流很浅,同时含有泥沙,其水流速度测量一直是一个没有很好解决的问题。示踪法测量结果需采用经验系数修订才能得到水流速度;而经验系数受多种因素的影响,在不同的条件下如何使用,有较大的随意性。同时经验系数与水流速度有关,这样就出现了循环引用的问题。因此从理论作进一步的探索开发其测量原理,研制和开发新的、相应简单的适用仪器,具有理论和实际意义。
     本项研究在对坡面侵蚀动力学分析的基础上,结合有关的理论,创立了电解质脉冲法测量薄层水流流速的方法和相应的测量系统。具体研究内容和结果如下:
     (1)利用溶质在恒定水流中对流-扩散运移理论,通过坡面薄层水流的形态分析了电解质在水流中迁移的动力学特征,建立了电解质脉冲在坡面薄层水流中运移的动力学模型。建模过程中,假定坡面薄层水流为一维的,降雨与入渗的影响忽略不计;水流恒定或变化可以忽略不计;盐液的注入水流时历时很短,可以认为是一个电解质脉冲输入。由此,建立了一维的电解质脉冲在坡面薄层水流中的迁移数学模型,包括控制微分方程及其定解条件。采用Laplace变换方法,求得了溶质迁移的解析解。解析解图示分析表明,解析解从定性地看是合理的,体现了溶质在水流中弥散的基本规律。理论分析发现,利用溶质浓度在观测点达到最大值的时间计算得到的速度无法推算出实际水流速度,以此为基础的染色示踪法或盐液示踪法都缺乏理论依据。同时溶质的弥散系数对示踪法测量水流速度也有较大的影响,弥散系数越大,质心到达观测点的时间与浓度最大值到达该点的时间偏离越远。说明在采用示踪法测量水流速度时,经验修正系数的选取必须考虑水流中泥沙含量或其它水质的差异。
     (2)利用电子技术、计算机技术、仪器设计与开发技术,设计了薄层水流速度测试系统。用Visual Basic语言编写了操作/控制系统,实现了数据采集、参数计算和分析自动化。系统实现流速测量的原理如下:通过测量与数据采集系统,测量得到溶质迁移过程中浓度随时间的变化曲线,采用最小二乘法和溶质迁移数学模型的解析解对测量得到的溶质迁移曲线进行拟合,得到模型的相关参数,即水流速度和溶质扩
    
    电解质脉冲法测量坡面薄层恒定水流速度的研究及其初步应用
    散系数。该系统操作简单,具有较好的稳定性和防水性能,通过大量室内试验验证了
    此电解质脉冲法测量坡面薄层水流速度系统的可靠性。
     (3)将坡面薄层水流中的电解质脉冲分布看成为一个质点,利用运动学理论中质
    心运动速度公式对电解质迁移数学模型进行比较分析,证明了电解质脉冲数学模型的
    解析解中的水流速度与溶质的质心运动速度是一致的,从而证明了溶质迁移模型的解
    析解在运动学理论上的准确性。在没有盐液损失的条件下,质心速度可以表示坡面水
    流速度。利用质心运动力学、电解迁移模型法和流量法对不同坡度和不同泥沙含量下
    的薄层水流流速测量结果进行比较,证明了电解质脉冲法不仅在理论上是正确的,而
    且在实际测量中也是可行的。
     (4)通过不同泥沙含量下示踪法经验系数分析表明,泥沙含量对示踪法经验系数
    的影响不可忽略,示踪法的经验系数随泥沙含量增加而增大,呈线性相关关系,用示
    踪法测量坡面水流流速必须考虑水流中的泥沙含量。
     (5)冲刷与降雨条件下用电解质脉冲法测量坡面水流速度为土壤侵蚀机理的动力
    学分析提供了基础。通过冲刷和降雨条件下水流速度和泥沙含量的测量和分析,发现
    了坡面的水流速度与泥沙含量存在同步的关系,水流速度越大,径流的剥离与输沙能
    力越强。土壤表面细沟的形成过程也是径流能量消耗的过程,随着细沟的发育,水流
    的动能减小,水流速度变小;细沟形成后,细沟为了进一步向浅沟或切沟发育,坡面
    径流的一部分动能仍消耗在细沟的进一步发育中。这使得细沟形成后,在不同的坡度
    下,相同降雨强度下水流速度相差不大。在较短的时间间隔内测量水流速度能解释细
    沟发育过程中的瞬态突发特性,电解质脉冲法达到了示踪法和流量法无法比拟的效
    果。
The velocity of sheet flow is the basic in the research of soil erosion on slope, but there is no sound method of measuring it so far for the flow is very shallow and sediment contained in the flow has great influences on the measurement. In the conventional tracer method, the flow velocity is determined by the time for the tracer to cover a certain distance, and an arbitrarily chosen empirical correction coefficient. The empirical coefficient is influenced by many factors. Further the empirical coefficient is a function of velocity; therefore inter-dependence of the two arises. The measurement of sheet flow velocity on hillslope needs more theoretical research, for the development of new instrument.
    On the base of erosion research and related theories, an electrolyte pulse method for measuring velocity of sheet flow is advanced. The detailed outcomes are as follows.
    (l)The dynamic convective-dispersion transfer theories of electrolyte solute in steady sheet flow on slope were used to analyze the dynamic transport of solute in flowing water. Mathematical models were outlined for the transfer of solutes in sheet flow. The basic assumptions of solute transport were: the flow is one-dimensional with the influences of rainfall and infiltration neglected; the flow is steady or its fluctuation is negligible; and the time interval for solute injection is so short that the input of electrolyte can be treated as a pulse input. The 1-D models, including the governing equation and the initial and boundary conditions were given. Laplace's transformation method was used to obtain the analytical solution ton the convective-dispersion process of solute transport. The analytical
    
    
    solution was graphically shown to illustrate the conceptual validation of solution, which describes the main characteristics of solute transport in flowing water. Theoretical analysis of the analytical solution indicates that the velocity of flow can not be calculated with the estimated velocity by the time for the solution peak to cover a distance from the injection location to the measuring point, as used in color or salt tracer method. The conventional tracer methods for velocity determination have their theoretical faults. The dispersion coefficient of solute has significant effect on the velocity measured by the tracer method. The bigger the dispersion coefficient, the larger the time interval between the peak and centroid arriving time. Therefore, the sediment content should be considered and different correction coefficient should be used while measuring the velocity of flow using tracer method.
    (2)A experimental prototype was developed to measure the velocity of sheet flow, with the integration of electronics technique, compute application knowledge and instrumentation techniques. A Visual Basic based operation and control system were developed for automated data logging, parameters (including velocity) estimation, and file management. The system estimates the velocity with the following procedures. The sensors and data logging system were used to measure the temporal concentration changes of the transporting solute. The least square method was used to fit the analytical solution to the measured solute transport data and the related model parameters, i.e. the velocity and the dispersion coefficient were determined. And the velocity was so \determined. This operation system was found to be easy to use and reliable as well as stable, by numerous laboratory experiments.
    (3)Taking distribution of solute in the flowing water of sheet flow as a system of particles, the centroid velocity of the system of particles was calculated with kinematics theory and found to be equal to the velocity calculated by the method outlined above. Therefore, it was proved that the analytical mathematical solution of electrolyte transport is correct in the view of kinematics. Under the assumption of no solute loss, the centroid velocity can be used for the averaged flow velocity. The experiments indicated that there are no differences in flow velocity or rates of f
引文
1.A.A 库瓦耶夫.渗流中溶质对流的数学模型[J].水利水电快报,1996,17(11):1-5
    2.M.C.库兹勒佐夫,姜永清,田均良.坡面水流速度研究及其在土壤流失模型中的应用[J].水土保持研究,1999,6(3)167-173
    3.伯诺夫 D,E 闵切夫.一阶脉冲偏微分方程[J].河南大学学报,1996,36(1),1-9
    4.蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998.107-128.
    5.蔡强国,吴淑安,马绍嘉等.花岗岩发育红壤坡度侵蚀产沙规律试验研究[J].泥沙研究,1996(1):89-96
    6.蔡强国.坡面侵蚀产沙模型研究[J].地理研究,1988,7(1):94-102.
    7.陈浩.流域坡面与沟道的侵蚀产沙研究[M].北京:气象出版社,1993
    8.陈明华,周伏建,黄炎和等.土壤可蚀性因子的研究[J].水土保持学报,1995,9(1):19-24.
    9.陈永宗.黄土高原沟道流域产沙过程初步分析[J].地理研究,1983,2(1):35-40.
    10.陈永宗.我国土壤侵蚀研究工作中的新进展[J].中国水土保持,1989,(9):7-11
    11.窦保璋.土地利用方式对黄绵土抗冲性的影响[A].陕西省土壤学会.1978年学术年会论文集[C].1978.
    12.樊尔兰.悬移质瞬时输砂石危险的探讨[J].泥沙研究,1988,(2):21-26.
    13.范荣升,李占斌.坡面降雨溅蚀及其输沙模型[J].水利学报,1993,(6):24-29.
    14.方学敏,万兆惠,徐永年.土壤抗蚀性研究现状综述[J].泥沙研究,1997,6:87-91
    15.冯绍元,丁跃元,姚彬.用人工降雨和数值模拟方法研究降雨入渗规律[J].水利学报,1998,(11):17-20.
    16.胡春宏,惠遇甲.渠挟沙水流运动的力学和统计规律[M].北京:科学出版社,1995
    17.胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究.地理学报,1999,54(4):347-356
    18.黄义端.我国主要地面物质抗侵蚀性能初步研究[A].中国科学院西北水土保持研究所.黄土高原水土流失综合治理科学讨论会资料汇编[C].1981.
    19.江忠善.黄土区降雨雨滴特性研究[J].中国水土保持,1983,(3):32-36
    20.蒋德麒,朱显谟.水土保持[A].中国农业科学院土壤肥料研究所,中国农业土壤
    
    学编著委员会.中国农业土壤论文集[C].上海:上海科学技术出版社,1962.
    21.蒋定生,李新华,范兴科等.论晋陕蒙接壤地区土壤的抗冲性与水土保持措施体系的配置[J].水土保持学报,1995,9(1):1-7.
    22.蒋定生.黄土抗蚀性的研究[J].土壤通报,1978,4:20-23.
    23.金争平,史培军,侯福昌等.黄河黄甫川流域土壤侵蚀系统模型和治理模式[M].北京:海洋出版社,1992.
    24.靳长兴.论坡度侵蚀的临界坡度[J].地理学报,1995,50(3):234-239
    25.靳长兴.坡度在坡面侵蚀中的作用[J].地理研究,1996,15(3):37-43
    26.雷廷武,王辉,赵军,刘清坤,夏卫生.径流流量及含沙量自动动态测量系统[J].农业工程学报,2002,18(5):47-51
    27.雷廷武,赵军,袁建平,王辉,刘清坤.利用γ射线透射法测量径流含沙量及算法[J].农业工程学报,2002,18(1):18-21
    28.黎四龙,蔡强国,吴淑安.次降雨侵蚀量的计算[J].泥沙研究,1999,2:49-55
    29.李建牢,刘世德.罗玉沟流域土壤抗蚀性分析[J].中国水土保持,1987,(11):34-37.
    30.李勇,吴钦孝,朱显谟等.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1990,4(1):1-16.
    31.刘大有.从二相流方程出发研究平衡输沙-扩散理论和泥沙扩散系数的讨论[J].水利学报,1995,4:62-66
    32.刘建善.天水水土流失检测的初步分析[J].科学通报,1953,(3):25-29.
    33.刘新星,杨英杰.流体动力作用对分层临界流速的影响[J].矿冶工程[J].1994,14(3):28-34
    34.刘阳,王锡魁,杨天行.由降雨侵蚀引起的山坡面水土流失的研究进展.世界地质,2001 Vol.20No.4P.369-373
    35.孟庆枚主编.黄土高原水土保持[M].郑州:黄河水利出版社,1996.311-326.
    36.宓永宁,周林飞,姜文俊.土壤中溶质运移与数值解讨论[J].沈阳农业大学学报,1996,12:73-75
    37.牟金泽,孟庆枚.论流域产沙量计算中的泥沙输移比[J].泥沙研究,1982,(2):25-31.
    38.倪晋仁,马蔼乃.河流动力地貌学[M].北京:北京大学出版社,1998.
    39.倪晋仁,张剑,韩鹏.基于自组织理论的黄土坡面细沟形成机理模型[J].水利学报,2001.12,1-7.
    40.乔文孝.平面脉冲声波在多孔介质中传播的频移[J].石油大学学报,1998,22(4):
    
    35-37
    41.任理,李保国,曾凡,邢维玲.土壤溶质运移两种新的求参方法的应用[J].水利学报,1999,11:1-5
    42.任理.地下水溶质径向弥散问题的混合拉普拉斯变换限单元解[J].水动力学研究与进展(A辑),1994,9(1):37-44
    43.沙际德,白清俊.粘性土坡细沟流的水力特性试验研究[J],泥沙研究,2001,7,15-21
    44.邵学军,夏震寰.紊动流场中悬浮颗粒分布的随机理论[J].力学学报,1991,23(1):48-52
    45.申建华,庚建设.脉冲积分微分方程的渐近稳定性[J].湖南大学学报,1996,23(3),4-9
    46.史德明,杨艳生,姚宗虞.土壤侵蚀调查方法中的侵蚀试验研究和侵蚀量测定问题[J].中国水土保持,1983,(6):11-15
    47.史海滨,陈亚新.吸附作用与不动水体对土壤溶质运移影响的模拟研究[J],1996,33(3):258-267
    48.史学正,于东升,吕喜玺.用人工模拟降雨仪研究我国亚热带土壤的可蚀性[J].水土保持学报,1995,9(3):38-42.
    49.汤立群,陈国祥.坡面土壤侵蚀公式的建立及其在流域产沙计算中的应用[J].水科学进展,1994,(2):112-120.
    50.汤立群.坡面降雨溅蚀及其模拟[J].水科学进展,1995,6(4):304-310.
    51.唐克丽.生草灰化土与黑钙土的抗蚀性能及其提高途径[A].中国科学情报所.中国留学生论文[C].1964.
    52.唐克丽.生草灰化土与黑钙土的团粒结构一抗蚀性能[A].全苏土壤侵蚀会议论文集[C].1961.
    53.田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究[J].土壤学报,1964,12(3):278-296.
    54.王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998
    55.王全九,王文焰,沈晋.黄土坡面溶质随径流迁移的对流质量传递模型[J].水土保持学报,1994,1(5),12-15
    56.王全久,沈冰,王文焰.降雨动能对溶质径流过程影响的实验研究[J].西北水资源与水工程,1998,9(1):17-21
    57.王士强,陈骥,惠遇甲.明槽水流的非均匀沙挟沙力研究[J].水利学报,1998.1
    
    25-36
    58.王晓红.Laplace变换边界积分方程与Schapery数值反演法模拟溶质运移问题[J].1997,6:19-22
    59.王星宇.黄土地区流域产沙数学模型[J].泥沙研究,1987,(3):12-18.
    60.王兆印.泥沙研究的发展趋势和新课题[J].地理学报,1998,53(3):245-253
    61.吴普特,周佩华,郑世清.黄土丘陵沟壑区(Ⅲ)土壤抗冲性研究[J].水土保持学报,1993,7(3):19-36.
    62.吴普特,周佩华.黄土坡面薄层水流侵蚀试验研究[J].土壤侵蚀与水土保持学报,1996,2(1):40-45
    63.吴强,单沪军,杜世田.一类抽象脉冲积分微分方程的解[J].佳木斯工学院学报,1998,16(3):327-329
    64.席有.坡度影响土壤侵蚀的研究[J].中国水土保持,1993(4):19-21
    65.夏虹,宿成基,龚世璋,陆志明.相关流速测量分析系统的设计与实验研究[J].核动力工程,1994,15(4):334-369
    66.辛树帜,蒋德麟.中国水土保持概论[M].北京:中国农业出版社,1982
    67.徐根海,张兴荣.输沙管流流速分布及浓度分布的研究[J],西北水资源与水工程,1994,1-6
    68.徐根海,一个简单实用的流速公式[J].西北水资源与水工程,1996,7(4):59-63
    69.杨艳生,史德明.关于土壤流失方程中K因子的探讨[J].中国水土保持,1982,4:39-42.
    70.余新晓,陈利华.黄土高原沟壑区土壤抗蚀性的初步研究[A].中国水土保持学会.中国水土保持学会第一次学术讨论交流论文[C].1987.
    71.张红武.挟沙水流流速的垂线分布公式[J].泥沙研究,1995,6(2),8-15
    72.张科利,秋吉康宏.坡面细沟侵蚀发生的临界水力条件研究[J].土壤侵蚀与水土保持学报,1998,4(1):41-46.
    73.张科利.黄土坡面发育的细沟流水动力学特征的研究[J].泥沙研究,1999,(1):60-68.
    74.张科利,秋吉康宏,张兴奇.坡面径流冲刷及泥沙输移特征的试验研究[J].地理研究,1998,17(2):163-170
    75.张书函,康绍忠,蔡焕杰等.天然降雨条件下坡地水量转化的动力学模式及其应用[J].水利学报,1998,(4):55-60.
    76.张宪奎,许靖华,卢秀琴,等.黑龙江省土壤流失方程的研究[J].水土保持通报,
    
    1992,12(4):1-9.
    77.郑粉莉,唐克丽,张成娥.降雨动能对坡耕地细沟侵蚀影响的研究[J].人民黄河,1995,17(7):1-8.
    78.郑粉莉.发生细沟侵蚀的临界坡长与坡度[J].中国水土保持,1989,(8):23-24.
    79.周佩华,武春龙.黄土高原土壤抗冲性的试验研究方法探讨[J].水土保持学报,1993,7(1):29-34.
    80.朱显谟.黄土地区植被因素对水土流失的影响[J].土壤学报,1960,8(2):110-121.
    81.朱显谟.黄土高原水蚀的主要类型及其有关因素[J].水土保持通报,1981,1(3):1-9.
    82.朱显谟.泾河流域土壤侵蚀现象及其演变[J].土壤学报,1954,2(4):209-222.
    83. Abraham F F. Fluids[M], 1970,13(8):2194-2195
    84. Abrahams A. D., Parson A. J. Geomorphology of desert environment[M]. Chapman&Hall, 1994
    85. Abrahams, A. D and Atkinson, J.F. Relation between grain velocity and sediment concentration in overland flow. 1993, Water resources Research,29,3021-3028
    86. Abrahams, A. D., Parsons,A.J. and Luk,S.H. Field measurement of the velocity of overland flow using dye tracing. Earth surface processes and landforms. 1986,11,653-657
    87. Alderman J K. The erodibility of Granular Material[J]. Journal of Agricultural Engineering Research, 1956,136-142.
    88. Andrew N, Shurpley et al. Water quatity impacts Associated with sorghum culture in the southern plains J envirnment, 1991,20:239-244.
    89. Arnold J G, Williams J R, Nicks A D, Sammons N B. SWRRB: A Basin Scale Simulation Model for Soil and Water Resources Management [M]. Texas: A&M University Press, 1990.
    90. Bennett H H. Some comparisions of the properties of humid-tropical and humid-temperate American soils, with special reference to indicated relations between chemical composition and physical properties [J]. Soil Sci, 1926,21: 349-375.
    91. Bilskie,J.R.Dual probe methods for determining soil thermal properties:Numerical and laboratory study. PH.D. diss. 1994, Iowa State Univ., Ames.
    92. Bresler, E. Simultaneous transport of solute and water under transient unsaturated flow conditions[J]. Water Resour. Res. 1973,9:975-986.
    
    
    93. Bristow,K.L.,G.J.Kluitenberg,and R.Horton.Measurement of soil thermal properties with a dual-probe heat-pulse technique[J]. Soil Sci.Soc.Am.J.1994,58:1288-1294
    94. Byrne,G.R, I.E. Drummond,and C.W.Rose. A sensor for water flux in soil, "line source" instrument[J]. Water Resour.Res. 1968,4:607-611
    95. Byrne,G.F.,J.E. Drummond,and C.W.Rose. A sensor for water flux in soil, "point source" instrument[J]. Water Resour.Res. 1967,3:1073-1078
    96. Campbell,G.S., C.Calissendoff, and J.H.Williams. Probe for measuring soil specific heat using a heat-pulse method[J]. Soil Sci.Soc.Am.J.1991, 55:291-293
    97. Carslaw,H.S.J.C.Jaeger. Conduction of heat in solids[M].2nd. Oxford Univ.Press,London
    98. Carson M. A., Kirkby M. J. Hillslope form and process[M]Cambridge University press, 1972
    99. Chao Lin Chiu. Entropy and 2-D velocity distribution in open channels. J. Hy. ASAE,1987,114(7) ,1761-1768
    100. Chao Lin Chiu. Entropy and probability concepts in hydraulics. J. Hy. ASAE,1987,113(5) ,1354-1357
    101. Concha F, Almendra. The research of flow velocity. J. of mineral precessing[M], 1979,5:249-367
    102. Dirksen,C. Field test of soil water flux meters. Trans. ASAE, 1974,17: 1038-1042
    103. Einstein H A, Ning Chien. Transport of Sediment Mixtures with Large Ranges of Grain Sizes [J]. M.R.D., U.S. Corps. Engrs., 1953. 49: 48-54
    104. Einstein, H.A.. The Bed-load Function for Sediment Transportation in Open Channel Flows. Technical Bulletin[J]. No.1026. U.S. Dept. of Agriculture, Soil Conservation Service, 1950. 71: 75-81
    105. EI-Swaify S A, Dangler E W. Erodibility of selected tropical soils in relation to structural and hydrologic parameters. In Soil Erosion: Prediction and Control [C]. Ankeny, Iowa: Soil Cons Soc Am. 1976,105-114.
    106. Elder,J.W The dispersion of marked fluid in turbulent shear flow. Journal of fluid mechanics, 1959, 5, 544-560
    107. Ellison W D. Soil erosion studies-Part I [J]. Agricultural Engineering, 1947,28: 145-146.
    
    
    108. Emmett, W.W. The hydraulics of overland flow on hillslope, U.S.Geological Survey professional paper, 1970,68: 662-668
    109. Evans R.Some methods of directly assessing water erosion of cultivated land-a comparison of measurement made on plots and in fields[J].Progress in Physical Geography,1995,19(l):l 15-129.
    110. Foster G R, Muggins L F, Meyer LD. A laboratory study of rill hydraulics: I velocity relationship [J]. Trans.Of ASAE, 1984, 27(3) :790-796.
    111. Gang Li, Athol D. Abrahams. Correction factors in the determination of mean velocity of overland flow. Earth surface processes and landforms. 1996, Vol.21,509-515.
    112. Gilley, R.E., Kottwitz, E.R. and Simanton, J.R. Hydraulic characteristics of rill. Transactions of American Society of Agriculture Engineering. 1970, 33,1900-1906.
    113. Covers G, Poesen J. Assessment of the interrill and rill contributions to total soil loss from an upland field plot[J].Geomorphology,1988,(1) :343-354.
    114. Gussak V B. A device for the rapid determination of erodibility of soils and some results of its application [J]. Abstract in soils and Fertilizers, 1946,(10) .
    115. Guy B.T., Dickinson W. T, Uudra R.P. The roles of rainfall and runoff in t he sediment transport capacity of interrill flow [J]. Trans ASAE, 1987,30(5) : 1 378-1 386.
    116. Holtan H. N.. A concept for. infiltration estimates in watershed engineering [M]. USDA, ARS, 1961. 41-51.
    117. Horton, R. E., Leach, H. R. and Van Vilet, R. Laminar sheet flow. Transactions of American Society of Agriculture Engineering Meeting presentation paper. 1934, 92-2542
    118. Hudson N. Soil Conservation [M]. AMES: Iowa State University Press,1995.
    119. King, K. W. and Norton, L.D. Methods of rill flow velocity dynamics. American society of Agriculture Engineering Meeting Presentation paper, 92-2542.
    120. Kluitenberg,G.J.,K.L.Bristow, and B.S.Das. Error analysis of heat pulse method for measuring soil heat capacity, diffusivity,and conducitivity[J].Soil Sci.Soc.Am. J. 1995,719-726
    121. Laflen J M, Elliot W J, Simanton J R. WEPP soil erodibility experiments for rangeland and cropland soils [J]. J Soil and water Cons, 1991,46(1) : 39-44.
    
    
    122. Lakshmikantham V,Liu X Z. On quasi stability for impulsive differential systems. Nonlinear Anal, 1989,13:819-828
    123. Luk, S. H. and Merz, W. Use of the salt tracing technique to determine the velocity of overland flow. Soil technology, 1992, 5,289-301
    124. Marshell,D.C. Measurement of sap flow in conifers by heat transport[J].Plant Physiol. 1958,33:385-396
    125. Meyer L. D, Foster L. D. Effect of rate and canopy on rill erosion[J]. Trans.ASAE, 1975,8(5) : 1-12.
    126. Mortolock D F. A self-organizing dynamics system approach to the simulation of rill initiation and development on hill-slopes [J]. Computer & Geosciences, 1998,24(4) :353-372.
    127. Hearing MA. A process-based soil erosion model for USD A-water erosion prediction project technology [J]. Trans. ASAE, 1989, 32(5) : 327-346.
    128. Noboio,K.,K.J.Biggar, and K.T. Heilman. Measurements of soil water content, heat capacity, and thermal conductivity with a single TDK probe. Soil Sci.1996,161:22-28
    129. Olson T C, Wischmeier W H. Soil erodibility evaluations for soils on the runoff and erosion stations [J]. Soil Science Society of American Proceedings, 1963,27(5) : 590-592.
    130. Peel T C. The relation of certain physical characteristics to the erodibility of soils [J]. Soil Science Society Proceedings, 1937,2: 79-84.
    131. Phelps, H. O. Shallow laminar flows over rough granular surfaces. Journal of the hydraulics Division, Proceedings of the American society of civil Engineers, 1992,101,367-384
    132. Ren,T.,G.J.Kluitenberg, and R.Horton Dertermining soil water flux and pore water velocity by a heat pulse technique[J]. Soil Sci. Soc.Am.J.2000, 64:552-560
    133. Ren,T.,K.Noborio, and R.Horton,Measuring soil water content, electrical conductivity and thermal properties with a thermo-TDR probe[J]. Soil Sci. Soc. Am. J.1999, 63:450-457
    134. Renard K G, Foster G R, Weesies, et al. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook 703 [M]. Washington, D. C: USDA-ARS, 1997.
    
    
    135. Romkens M J M, Roth C B, Nelson D W. Erodibility of selected clay subsoils in relation to physical and chemical properties [J]. Soil Sci Soc Am J, 1977,41: 954-960.
    136. Rony Wanach et al. A Physically based model for predicting solute transfer from soil solution to rainfall-induced runoff water [J], Water Research, 1900,26(9) : 225-264
    137. Shiriza M A, Boersma L. A unifying quantitative analysis of soil texture [J]. Sci Soc Am 1,1984,48: 142-147.
    138. Steve C mccutechen. Meander Flow model,I:Development[J]. J.Hy.ASAE, 1988,114(7) , 1254-1260
    139. Subhash chandler, S K DE. A Simple laboratory apparatus to measure relative credibility of soils [J]. Soil Science, 1978,125(2) : 115-121.
    140. Taylor, G. I. The dispersion of matter in turbulent flow through a pipe. Proceedings of the Royal society, 1954, Series A, 223,446-468 United States Department of Agriculture. EPIC-erosion/ productivity impact calculator 1. Model Docu-mentation, Technical Bulletin Number 1768 [R]. Washington, D. C: USDA-ARS, 1990.
    141. Wang Guangqian, Ni Jinren. Kinetic Theory for Particle Concentration Distribution in in Two-Phase Flow[J]. Jour, of Engineering Mech., ASCE. 1990, 116(EM12) : 1738-1748.
    142. Welch,S.M.,G.J.Kluitenberg,and K.L.Bristow. Rapid numerical estimation of soil thermal properties for a broad class of heat pulse emitter geometries[J]. Meas. Sci. Technol. 1996,7:932-938
    143. Wischmeier W H, Johnson C B, Cross B V. A soil credibility nomograph for farmland and construction cites [J]. Journal of Soil and Water Conservation, 1971,26(5) : 189-193.
    144. Wischmeier W H, Mannering J V. Relation of soil properties to its credibility [J]. Soil Science Society of American Proceedings, 1969,33(1) : 131-137.
    145. Wischmeier W H, Smith D D. Predicting Rainfall Erosion Losses, A Guide to Conservation Planning. Agriculture Handbook 537 [M]. Washington, D. C: USDA-ARS, 1978.
    146. Wischmeier W H, Smith D D. Rainfall-Erosion Losses from Cropland East of the Rocky Mountains Guide for Selection of Practices for Soil and Water Conservation. Agriculture Handbook 282 [M]. Washington, D. C: USDA-ARS, 1965.
    
    
    147. Wischmeier W. H., Simith. D. Predicting rainfall erosion losses[M].Washington D C:U S Dept,1987.
    148. Woolhiser D A, Liggett J. A. Unsteady one-dimensional flow over a plane-rising hydrograph [J]. Water Resources Research, 1967,3(3) : 753-77 1.
    149. Wright A C, Webster R. A stochastic distributed model of soil erosion by overland flow [J]. Earth Surface Processes, 1991,(16) :207-226.
    150. Young R A, Mutchler C K. Erodibility of some Minnesota soils [J]. Journal of Soil and Water conservation, 1977,(32) : 180-182.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.