大功率蓝光LED可靠性与失效分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于节能的需要以及人们对照明质量要求的不断提高,半导体照明光源以其高效节能、长寿命、色彩丰富和环保等特点受到了人们的广泛关注。大功率发光二极管作为半导体照明的代表,其性能近来提高很快,发光效率已接近130 lm/W,有望取代白炽灯、荧光灯和高压放电灯等传统光源,成为人类照明史上的第四代照明光源。目前大功率LED应用于通用照明上还存在着一些问题有待解决,比如新型的封装材料,过高的封装热阻和合适的测试方法等。本文研究了大功率LED光源的封装结构与典型失效机理,对实际服役中出现的失效问题进行了分析和讨论,并提出了改善大功率LED可靠性的建议。
     文章首先论述了LED封装与组装技术的发展,对大功率LED芯片封装技术在LED照明光源上的应用作了探讨。接着指出了目前大功率LED在封装和服役过程中所产生的主要失效问题,并就其中一种典型失效进行了探讨。对于实验中所遇到的问题进行分析和讨论,明确了其失效机理。
     本文提出大功率蓝光LED在服役过程中由于高温,紫外线辐照等因素导致其封装材料的快速老化而分离出来的C和O元素的沉积是芯片表面发黑失效的原因。发现,采用抗老化能力更强的硅胶作为封装材料以及提高芯片的散热性能将有效的解决这一失效问题。
     本文还利用计算机模拟了大功率蓝光LED的热过程以明确在不同的散热条件下大功率LED温度分布的情况。研究表明:在芯片材料一定的情况下,影响LED散热的主要条件为外部对流换热系数的大小,而外界环境温度的影响不大。
With the demand of power saving and the requirement for higher illumination quality, semiconductor lighting sources have been attractive for its excellent characteristics: high efficiency, low power consumption, long source life, color richness and environment friendly etc. As the representative of semiconductor illumination, the performance of high power Light Emitting Diodes (LED) improves quickly resent years and its luminance efficiency has surpassed 50lm/W. Thus high power LED will become the fourth generation lighting source replacing incandescent, fluorescent and high intensity discharge (HID) lamp. Otherwise some key issues should be solved before high power LEDs widely application in general illumination market, such as new package materials, package heat management and suitable measurement method. This thesis focuses on high power LED lighting sources and researches their assembly and typical failure mechanism. Several failure problems occur in the service are also discussed and some methods for improving the reliability of high power LEDs are suggested.
     The development of LED package and assembly technology is discussed, especially on the application of the high power LED package technique for LED lighting sources. The primary failure problems occur in the packaging and service process are introduced and a typical failure problem had been researched deeply. Consequently, we analyzed and discussed the problems found in this process. Finally, the possible reason of the failure has been given out.
     On the effect of the high temperature and ultraviolet radiation in the service, the origin of the dark stain on the chip surface could mostly be the degradation of the plastic packaging material close to the chip surface. Oxygen and carbon were found to be concentrated in the degraded regions and was supposed to be principally responsible for the forming of the dark stain. We found that the silica gel has the stronger resist ability to the radial and high temperature than the plastic. It could solve this failure problem very well.
     The thermal process of high power LEDs in service was simulated to see the thermal distribution of the LED in several different conditions for cooling. For the specifically chip, the primary influence factor of the LED thermal dissipation is the external convective heat transfer coefficient but the external environment temperature.
引文
[1] Arpad Bergh, Jim Brodrick, Ed Petrow et al.“The promise of solid state lighting for general illumination”. Optoelectronics Industry Development Association. 2001. available at http://lighting.sandia.gov.
    [2] Glenn Zorpette. Let there be light. Special R&D report. IEEE SPECTRUM 2002. 70~74.
    [3]应根裕,胡文波,邱勇等.平板显示技术.北京:人民邮电出版社, 2002.
    [4]路绍全. LED照明——半导体的又一次革命.灯与照明. 2002, 26(4):13-20
    [5] Hewlett-Packard Co. Benefits of Lumileds Solid State Lighting Solutions vs. Conventional Lighting. Application Note, 1998, 1149(6).
    [6]雷玉堂,黎慧.未来的照明光源——白光LED技术及其发展.光学与光电技术, 2003, 15: 33-34.
    [7] Mach R, Mueller G. White light emitting diodes for illumination. SPIE, 2000, 39(3): 30-41.
    [8]李卓,朱崇恩,刘小鸿.固态发光器件前景光明.中国照明电器,2003, 7: 11-13.
    [9] Optoelectronics Industry Development Association. The Promise of Solid State Lighting for General Illumination-LEDs. 2001.
    [10]崔元日,潘苏予.第四代照明光源——白光LE.灯与照明, 2004, 28(2): 31-34.
    [11]中国绿色照明项目促进办公室.中国绿色照明工程实施展望.中国能源, 2004, 26(7): 36-39.
    [12] J.Y.Tsao.“Light Emitting Diodes (LEDs) for General Illumination”. Optoelectronics Industry Development Association, 2002, Washington D.C.
    [13]白杉,予荫.半导体灯掀起照明的绿色革命.光源与照明,2004, 5(1): 42-43.
    [14]易安.半导体照明——21世纪的节能新能源.中国创业投资与新科技, 2004.8.
    [15] http://www.lisigi.com/lamps/jszc1.htm
    [16] http://www.emailthis.clickability.com. 3-D LED Array Packages Offer Wide Viewing Angle.
    [17] Shatil Haque, Dan Steigerwald, Serge Rudaz et al. Packaging Challenging of High Power LEDs for Solid State Lighting. 2003, available at www.imaps.org.
    [18] Mehmet Arik, James petroskl, Stanton Weaver. Thermal challenge in the future generation solid state light applications: light emitting diodes.2002 Intel Society Conference on Thermal Phenomena.
    [19] John Woods Graff JR. Development of high efficiency light emitting diodes for solid state lighting: [M.S paper]. Boston University college of engineering, 2003. UMI Number:3083838.
    [20] C. Basaran, H. Ye, D. C. Hopkins et al. Failure Modes of Flip Chip Solder Joints Under High Electric Current Density. Journal of Electronic Packaging, 2005, 127: 157-163.
    [21] Daniel A, Steigerwald, Jerome C et al. Illumination with Solid State Lighting Technology. IEEE Journal on Selected Topics in Quantum Electronics, 2002. 8(2): 310-320.
    [22] James Petroski. Spacing of High-brightness LEDs on Metal Substrate PCB’s for Proper Thermal Performance. 2004 Intel Society Conference on Thermal Phenomena.
    [23] N. Narendan, Y. Gu, J. P. Freyssinier et al. Solid-state lighting: Failure analysis of white LEDs. Journal of Crystal Growth, 2004, 268(3-4): 449-456.
    [24] Jeff Y. Tsao. Solid-state lighting: Lamps, Chips, and materials for tomorrow. IEEE circuits & devices magazine, 2004, 5: 28-37.
    [25]李炳乾,布良基,甘雄文等. LED正向压降随温度的变化关系研究,光子学报, 2003, 32(11):1349~1351.
    [26]大功率固态照明热处理进展(一). http://info.lamp.hc360.com/Html/001/002/ 7355-2 .htm
    [27] C. Tsou, Y. S. Huang, G. W. Lin. Silicon-based Packaging Platform for Light Emitting Diode. 2005 IEEE, 2005 6th International Conference on Electronic Packaging Technology.
    [28] Rafael C. Jordan, Jorg Bauer, Hermann Oppermann. Optimized heat transfer and homogeneous color converting for Ultra High Brightness LED Package. Proc.of SPIE Vol.61980B-1.
    [29] Frank Wall, Paul S. Martin, Gerard Harbers. HIGH POWER LED PACKAGE REQUIREMENTS. Proc. SPIE,Vol.5187,2002.
    [30] Jen-Hau Cheng, Chun-Kai Liu, Yu-Lin Chao, Ra-Min Tain. Cooling Performance of Silicon-Based Thermoelectric Device on High Power LED. 2005 International Conference on Thermoelectrics
    [31]雷勇,范广涵,廖常俊等.功率型白光LED的热特性研究.光电子·激光, Vol. 17 NO.8, AUG, 2006.
    [32] Mehmet Arik, Charles Becker, Stanton Weaver, and James Petroski,“Thermal Management of LEDs: Package to System”, Proc. SPIE, 2004,5187,64~75.
    [33] M. Arik, S. Weaver, C. Becker, M. Hsing, and A. Srivastava.“Effects of Localized Heat Generations Due to the Color Conversion in Phosphor Particles and Layers of High Brightness Light Emitting Diodes”. ASME/IEEE InterPack2003-35015, July 6-11,2003.
    [34] T.P. Nguyen, P. Molinie′, P. Le Rendu, V.H. Tran, Synth. Met.84 (1997) 679.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.