基于氧化石墨烯和端粒酶的新型生物传感技术的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米材料由于其独特的光学和电化学性能,已成为当前研究的焦点,纳米材料也在生物传感器的研究中得到越来越广泛的应用。纳米材料与生物传感器的结合,涉及到生物技术、信息技术、纳米科学等多个学科,因此纳米材料在生物传感器中的研究为许多基础研究提供了许多创新性的研究思路,同时对临床检测、医学诊断、环境监测等领域有着重要影响,也得到了前所未有的发展机遇。本文利用纳米材料氧化石墨烯和金纳米颗粒,开发了一系列成本低、操作简单、灵敏度高的新型纳米生物传感技术,成功实现了对核酸、蛋白质的高灵敏检测和抗癌药物的筛选。此外,针对当前癌症标志物端粒酶检测方法中存在的灵敏度较低、检测时间较长,容易出现假阴性信号等问题,结合本实验室已发展的方法和技术,开发了一些新颖的生物传感策略用于端粒酶的灵敏检测。其主要内容如下:
     (1)在第2章中发展了一种新型的基于核酸外切酶Ⅲ辅助目标循环放大的生物传感策略用于目标DNA高灵敏的检测。在这种方法中,我们设计了一条标记有荧光基团的发夹状信号探针,其3’末端突出了7个碱基,此时核酸外切酶Ⅲ不能水解信号探针,信号探针吸附在氧化石墨烯表面上,荧光被氧化石墨烯猝灭。当存在目标DNA时,目标DNA的5’末端与信号探针的3’末端杂交,形成双链结构的平齐末端,从氧化石墨烯表面上解离下来,荧光得到恢复,而核酸外切酶Ⅲ会从3’末端开始水解信号探针,而目标DNA的3’末端突出了6个碱基,目标DNA不会被核酸外切酶Ⅲ水解,被释放出来进入下一个循环反应,继续与发夹状信号探针杂交,然后信号再被核酸外切酶Ⅲ水解,这样目标DNA就可以得到循环利用。该方法实现了对目标DNA的高灵敏、高特异性检测,响应动态范围为1pM到50nM,检测下限可达1pM,比传统的DNA检测方法要低3个数量级,同时该方法具有较好的碱基错配识别能力。
     (2)在第3章中建立了一个基于氧化石墨烯的通用的生物传感平台用于抗癌药物的筛选。该方法以人类端粒DNA的重复序列为模板设计了一条标记有荧光的信号探针,信号探针会吸附在氧化石墨烯表面,从而猝灭荧光。当目标药物出现时,信号探针上的碱基与中药单体之间通过π-π共轭作用和氢键作用形成分子内反平行的G-四股螺旋复合结构,从而使信号探针从氧化石墨烯表面上解离下来,荧光信号得到恢复,进而达到对抗癌抗肿瘤药物筛选的目的。该方法对三类传统中药单体进行了筛选,结果发现黄酮类中药单体能与信号探针形成G-四股螺旋复合结构,是一种潜在的抗癌药物,同时该方法在发现新的抗癌药物方面具有潜在的应用价值。
     (3)为了进一步拓宽氧化石墨烯的应用领域,在第4章中,利用氧化石墨烯优越的负载能力,构建了一个通用的生物传感平台用于蛋白水解酶的检测,并用于活细胞内蛋白水解酶的成像分析。这种生物传感技术利用共价交联的方法,将多肽信号探针固定到氧化石墨烯的表面,达到降低背景荧光的目的。当目标蛋白水解酶存在时,蛋白水解酶特异性地水解多肽信号探针,荧光基团从氧化石墨烯表面解离下,远离氧化石墨烯,从而产生荧光信号。在这种方法中,氧化石墨烯一方面作为荧光猝灭剂,用来猝灭信号探针的荧光,另一方面,氧化石墨烯又作为多肽信号探针的优良载体,将多肽信号探针运送到肿瘤细胞的内部。当肿瘤细胞被诱导产生目标蛋白水解酶时,蛋白水解酶特异性地水解固定在氧化石墨烯表面的多肽信号探针,从而产生荧光成像信号。该方法实现了对目标蛋白水解酶caspase-3的灵敏、快速检测,其线性范围在7.25ng/mL到362ng/mL之间,同时也具有较好的选择性,此外还可实现对多元目标蛋白水解酶的同时检测。
     (4)在第5章中,利用金纳米颗粒具有优越的荧光猝灭能力,建立了一种新颖的生物传感技术用于肿瘤细胞中端粒酶活性的检测。该方法先将信号和巯基捕获探针退火杂交形成双链DNA,再将双链DNA自组装到金纳米颗粒表面,得到DNA-纳米金探针。巯基捕获探针的3’端包含端粒酶扩增的引物序列,在目标端粒酶存在的条件下,引物进行扩增,扩增产物与捕获探针上的互补序列形成分子内发夹结构,将信号探针置换下来,从而产生荧光信号。该方法实现了对目标端粒酶的灵敏检测,动态响应范围为100到30000个HeLa细胞,并且当HeLa细胞在0到1600个范围内时,荧光强度与HeLa细胞的个数呈现良好的线性关系。此外该传感技术还可用于二价铅离子高灵敏、高特异性的检测,检测下限可达2nM。
     (5)在第6章中,制备了一种基于构象变换的电化学DNA生物传感器用于肿瘤细胞中端粒酶活性的检测。该方法将3’端包含了端粒酶扩增引物序列的捕获探针组装到金电极表面,再将二茂铁标记的信号探针与捕获探针的5’端杂交。在目标端粒酶的作用下,引物进行扩增,扩增产物使得捕获探针由线型转换成发夹结构,通过捕获探针的构象变换,二茂铁标记的信号探针远离电极表面,从而使得电化学信号减弱。这种方法成功地实现了对肿瘤细胞中端粒酶活性的灵敏检测,动态响应范围为100到60000个HeLa细胞,并且在该范围内峰电流信号与HeLa细胞个数的对数呈现良好的线性关系,同时该方法具有较高选择性,线性范围宽,高特异性等优点。
     (6)在第7章中,开发了一种基于T7核酸外切酶辅助目标循环的放大方法用于肿瘤细胞中端粒酶活性的高灵敏检测。在该方法中,我们设计了一条5’标记有荧光素(FAM)和中间标记有四甲基罗丹明(TAMRA)的Taqman探针,由于T7核酸外切酶对单双链DNA具有较好的区分能力,几乎不水解单链状态的DNA,因此,在没有目标端粒酶时,单链状态的Taqman探针不被水解,体系的背景信号也很低。此外,T7核酸外切酶是从双链DNA的5’端开始水解DNA,所以引物3’端的扩增产物不会被水解,从而得到进一步的循环利用,大大提高了目标检测的灵敏度。该方法成功地实现了对端粒酶活性的灵敏检测,检测范围为5到1000个HeLa细胞,并且在5到100个HeLa细胞范围内呈现良好的线性关系,同时还具有高选择性,高特异性的优点,为肿瘤细胞中端粒酶活性的快速灵敏检测提供了一种新的思路。
In recent years, nanomaterials have been regarded as the research focus, and applied in biosensors more and more widespreadly, due to their excellent optical and electrochemical properties. The combination of nanomaterials and biosensors is concerned with the fields of biotechnology, information technology, nanoscience and so on. Therefore, the study of nanomaterials in biosensors provides a lot of innovative ideas for basic research, and plays a most important role in clinical testing, medical diagnosis, and environmental monitoring. Nanomaterials are also facing an unprecedented opportunity for development. In this paper, a seris of novel nano-biotechology as a simple and low-cost platform for sensitive detection of DNA and proteins, screening antitumor drugs. Because reported methods for detecting telomerase activity were time-consuming, low-sensitive and false negative, a seris of novel biosensing strategys were developed for sensitive detection of telomerase activity. The detailed contents are described as follows:
     (1) In chapter2, we developed a novel biosensing strategy for high-sensitive detection of DNA based on Exo Ⅲ-assisted target recycling amplification. In this assay, we designed a fluorescein amidite (FAM)-labeled hairpin signal probe which with extensions7bases at its3'terminus. In the absence of target DNA, signal probe first adsorbed onto the surface of graphene oxide through π-stacking interaction between the ring structrue in the nucleobases and the hexagonal cells of GO, and the fluorescence of the dye was quenched. While the target DNA was introduced, signal probe hybridezed with target DNA to form double-stranded DNA structure, which led to the releasing of signal probe from the surface of graphene oxide and the fluorescence intensity recovered. The duplex DNA was digested by Exo Ⅲ, a sequence-independent nuclease that catalyzes the removal of mononucleaotides from blunt or recessed3'-hydroxyl termini of duplex DNA and is not active on single-stranded DNA and3'-protruding termini with extensions4bases or longer. This digestion not only make the dye far from the graphene oxide, but also released the target DNA, which then hybridize with fresh signal probes and restart the digestion process. The results revealed that this strategy offered a sensitive and selective method for the detection of target DNA over the concentration range of1pM to50nM with the detection limit of1pM. The sensitivity of the assay is3orders magnitude better than previously reported methods.
     (2) In chapter3, we constructed a novel biosensing platform for screening antitumor drugs based on graphene oxide sheets. In this method, we chose human telomeric DNA as the template to design a fluorescein amidite (FAM)-labeled signal probe which adsorbed onto the surface of graphene oxide sheets, and the fluorescence of the FAM was quenched. When the quadruplex-binding ligands were introduced, the signal probe folded to form intramolecular antiparallel G-quadruplex structure through the π-π conjugated interactions and hydrogen bindings between ligands and bases of signal probe. It led to the releasing of FAM-labeled signal probe from the surface of graphene oxide and the fluorescence intensity recovered. Three series of Chinese medicine monomers were investigated by the proposed method, and the flavonoids were demonstrated to be the potential quadruplex-binding ligands. Furthermore, the strategy could find wide applications in the discovery of new antitumor drugs.
     (3) In order to further extend the application range of graphene oxide, we exploited a universal biosensing platform for protease detection and intracellular imaging in live cells based on graphene oxide-peptide conjugate in chapter4. In this strategy, peptide probe was conjugated to the surface of graphene oxide by covalently crosslinking method to reduce the background signal. In the presence of target protease, peptide probe was cleaved by target protease specificly, which led to the releasing of FAM-labeled peptide probe from the surface of graphene oxide and the fluorescence intensity enhanced substantially. On one hand, graphene oxide was a fluorescence quencher for fluorophores adjacent to its surface. On the other hand, graphene oxide is intrinsically a nanocarrier for delivering peptide cargos inside live cells. After being transported into cells followed by cleavage of the peptide by intracellular proteases, the GO-peptide conjugate provided greatly enhanced fluorescence imaging. The results demonstrated that this strategy could afford a simple, sensitive and selective biosensor for the detection of caspase-3in the dynamic range of7.25-362ng/mL. In addition, it could be extended to multiplex in vitro assays or live-cell imaging of multiple proteases by use of the conjugate of GO to different peptide substrates with multicolor fluorophore tags.
     (4) In chapter5, we presented a novel biosensing technology for the detection of telomerase activity in cancer cells by using gold nanoparticles as a fluorescence quencher. Firstly, thiolated capture probe was mixed with signal probe and slowly cooled to room temperature. Then the DNA duplexes were added to gold nanoparticles (GNPs) to form the DNA-GNPs composite probes by self-assembly technology. The TS primer contained at the thiolated capture probe elonged in the presence of target telomerase. While the telomerase extension products could folded into intramolecular hairpin structure with the complementary sequences at the capture probe and released signal probe to enhance the fluorescence intensity. The results indicated that the method could be used for sensitive determination of telomerase in a concentration range from100to30000HeLa cells with the linear range of0to1600HeLa cells. Moreover, it could be extended to detection of Pb2+sensitively and selectively with the detection limit of2nM.
     (5) In chapter6, we developed a novel eletrochemical DNA sensor for sensitive and selective detection of telomerase based on target-induced structure-switching DNA. In this assay, capture probe with the sequences of TS primer at its3'terminus was firstly immobilized on the gold electrode via self-assembly of the terminal thiol moiety and then hybridized with a ferrocene-tagged signal probe, leading to a high redox current. In the presence of telomerase, the TS primer elonged and the telomerase extension products could fold into intramolecular hairpin structure with the complementary sequences at the capture probe, resulting in the release of the ferrocence-tagged signal probe far from the electrode with a substantially decreased redox current. The results show that the eletrochemical DNA sensor displayed a quantitative analysis of telomerase with the linear range of100to60000HeLa cells besides desirable specificity and sensitivity.
     (6) In chapter7, we exploited a high-sensitive fluorescence strategy for telomerase detection in cancer cells base on T7Exonuclease-assisted target recycling amplification. In this assay, we designed a Taqman probe modified with6-carboxy-fluorescein (FAM) as a fluorophore at its5'terminus and tetramethyl-6-carboxyrhodamine (TAMRA) as a quencher at the neighboring three-nucleotide position. The T7Exonuclease, a sequence-independent nuclease that catalyzes the removal of5'mononucleotides from5'termini of double-stranded DNA, couldnot digest the Taqman probe, hence this probe gives very weak fluorescence signal from FAM due to fluorescence resonant energy transfer from FAM to TAMRA. The telomerase can bind to the substrate sequence (TS) and enzymatically elongate it with TTAGGG repeats in the presence of dNTPs. Once the telomerase extension products hybridize with the Taqman probes, the T7Exonuclease will digest product-bound Taqman probes. This digestion not only makes the quencher-fluorophore pair of Taqman probe separate from each other, leading to significantly enhanced fluorescence, but also releases the intact product strands, which then hybridize with fresh Taqman probes and re-start the digestion process. Therefore, the fluorescence signal is amplified repeatedly through recycle of the telomerase extension products. The results revealed that it offered a sensitive and selective biosensing strategy for the detection of telomerase over the concentration range of5to1000HeLa cells with the detection limit of5HeLa cells. This strategy holds great promise as a simple, sensitive method for telomerase detection in proteomics and clinical diagnostics.
引文
[1]Peng X G. Band gap and composition engineering on a nanocrystal (BCEN) in solution. Accounts of Chemical Research,2010,43(11):1387-1395
    [2]Hedenmo M, Narvaez A, Dominguez E, et al. Improved mediated tyrosinase amperometric enzyme electrode. Journal of Electroanalytical Chemistry,1997, 425(1):1-11
    [3]Wang J. Miniaturized DNA biosensor for detecting cryptosporidium in water samples. Technical Completion Report,2000,26(3):1-11
    [4]樊春海.纳米生物传感器.世界科学,2008,11(1):21-22
    [5]陈雄,吕慧丹,王建秀等.纳米生物传感器的研究.世界科技研究与发展,2007,29(5):39-43
    [6]高盐生,董江庆,徐晓燕.纳米技术在生物传感器中的应用研究进展.江苏化工,2008,36(3):4-6
    [7]Feng L Z, Liu Z. Graphene in biomedicine:Opportunities and challenges. Nanomedicine,2011,6(2):317-324
    [8]Kroto H W, Heath J R, O'Brien S C, et al. C60:Buckminsterfullerene. Nature, 1985,318(6042):162-163
    [9]Li H L, Zhang Y W, Luo Y L, et al. Nano-C60:A novel, effective, fluorescent sensing platform for biomolecular detection. Small,2011,7(11):1562-1568
    [10]Li H L, Zhai J F, Sun X P. Highly sensitive and selective detection of silver(I) ion using nano-C60 as an effective fluorescent sensing platform. Analyst,2011, 136(10):2040-2043
    [11]Li H L, Zhai J F, Sun X P. Nano-C60 as a novel, effective fluorescent sensing platform for mercury(Ⅱ) ion detection at critical sensitivity and selectivity. Nanoscale,2011,3(5):2155-2157
    [12]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348): 56-58
    [13]Yang W R, Ratinac K R, Ringer S P, et al. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene. Angewandte Chemie International Edition, 2010,49(12):2114-2138
    [14]Dai H J. Carbon nanotubes:Synthesis, integration, and properties. Accounts of Chemical Research,2002,35(12):1035-1044
    [15]McCreery R L. Advanced carbon electrode materials for molecular electrochemistry. Chemical Reviews,2008,108(7):2646-2687
    [16]Katz E, Willner I. Biomolecule-functionalized carbon nanotubes:Applications in nanobioelectronics. ChemPhysChem,2004,5(8):1084-1104
    [17]Wang J, Musameh M, Lin Y H. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society,2003,125(9):2408-2409
    [18]Yu X, Munge B, Patel V, et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. Journal of the American Chemical Society,2006,128(34):11199-11205
    [19]Nie H G, Liu S J, Yu R Q, et al. Phospholipid-coated carbon nanotubes as sensitive electrochemical labels with controlled-assembly-mediated signal transduction for magnetic separation immunoassay. Angewandte Chemie International Edition,2009,48(52):9862-9866
    [20]Wu Z, Zhen Z, Jiang J H, et al. Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly. Journal of the American Chemical Society,2009, 131(34):12325-12332
    [21]Zelada-Guillen G A, Riu J, Duzgiin A, et al. Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angewandte Chemie International Edition,2009,48(40):7334-7337
    [22]Chen Z, Zhang X B, Yang R H, et al. Single-walled carbon nanotubes as optical materials for biosensing. Nanoscale,2011,3(5):1949-1956
    [23]Yang R H, Tang Z W, Yan J L, et al. Noncovalent assembly of carbon nanotubes and single-stranded DNA:An effective sensing platform for probing biomolecular interactions. Analytical Chemistry,2008,80(19):7408-7413
    [24]Zhang L B, Li T, Li B L, et al. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(Ⅱ) ion. Chemical Communications,2010,46(9):1476-1478
    [25]Chen Z, Tabakman S M, Goodwin A P, et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nature Biotechnology,2008,26(11): 1285-1292
    [26]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science,2004,306(5696):666-669
    [27]Geim A K, Novoselov K S. The rise of grapheme. Nature Materials,2007,6(3): 183-191
    [28]Jiang H J. Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. Small,2011,7(17):2413-2427
    [29]Guo S J, Dong S J. Graphene nanosheet:Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews, 2011,40(5):2644-2672
    [30]Alwarappan S, Erdem A, Liu C, et al. Probing the electrochemical properties of graphene nanosheets for biosensing applications. Journal of Physical Chemistry C,2009,113(20):8853-8857
    [31]Kang X, Wang J, Wu H, et al. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosensors and Bioelectronics,2009,25(4):901-905
    [32]Zeng Q, Cheng J S, Tang L H, et al. Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Advanced Functional Materials,2010,20(19):3366-3372
    [33]Wei Q, Xin X, Du B, et al. Electrochemical immunosensor for norethisterone based on signal amplification strategy of graphene sheets and multienzyme functionalized mesoporous silica nanoparticles. Biosensors and Bioelectronics, 2010,26(2):723-729
    [34]Xu S, Liu Y, Wang T H, et al. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Analytical Chemistry,2011,83(10): 3817-3823
    [35]Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules. Angewandte Chemie International Edition,2009,48(26):4785-4787
    [36]He S J, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Advanced Functional Materials,2010, 20(3):453-459
    [37]Chang H X, Tang L H, Wang Y, et al. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Analytical Chemistry,2010,82(6): 2341-2346
    [38]Zhang M, Yin B C, Wang X F, et al. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chemical Communications,2011,47(8):2399-2401
    [39]Jang H, Kim Y K, Kwon H M, et al. A graphene-based platform for the assay of duplex-DNA unwinding by helicase. Angewandte Chemie International Edition, 2010,49(33):5703-5707
    [40]Tang L H, Wang Y, Liu Y, et al. DNA-directed self-assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay. ACS Nano,2011,5(5): 3817-3822
    [41]Dong H, Gao W, Yan F, et al. Fluorescence resonace energy transfer between quantum dots and graphene oxide for sensing biomolecules. Analytical Chemistry, 2010,82(13):5511-5517
    [42]Song Y J, Qu K G, Zhao C, et al. Graphene oxide:Intrinsic peroxidase catalytic activity and its application to glucose detection. Advanced Materials,2010, 22(19):2206-2210
    [43]Ren W, Fang Y, Wang E. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticles hybrids. ACS Nano,2011,5(8):6425-6433
    [44]Wang Y, Li Z H, Hu D W, et al. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. Journal of the American Chemical Society, 2010,132(27):9274-9276
    [45]Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research,2008,1(3):203-212
    [46]Zhang L M, Xia J G, Zhao Q H, et al. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010,6(4):537-544
    [47]Wang J, Liu G D, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple targets. Journal of the American Chemical Society,2003,125(11):3214-3215
    [48]Nam J-M, Stoeva S I, Mirkin C A. Bio-bar-code-based DNA detection with PCR-like sensitivity. Journal of the American Chemical Society,2004,126(19): 5932-5933
    [49]Giljohann D A, Seferos D S, Daniel W L, et al. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition,2010,49(19): 3280-3294
    [50]Weizmann Y, Patolsky F, Willner I. Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst,2001,126(9):1502-1504
    [51]Liu S N, Wu P, Li W, et al. Ultrasensitive and selective electrochemical identification of hepatitis C virus genotype lb based on specific endonuclease combined with gold nanoparticles signal amplification. Analytical Chemistry, 2011,83(12):4752-4758
    [52]Jie G F, Liu B, Pan H C, et al. CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Analytical Chemistry,2007,79(15): 5574-5581
    [53]Zhang X A, Teng Y Q, Fu Y, et al. Lictin-based biosensor strategy for electrochemical assay of glycan expression on living cancer cells. Analytical Chemistry,2010,82(22):9455-9460
    [54]Ai K L, Liu Y L, Lu L H. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. Journal of the American Chemical Society,2009,131(27):9496-9497
    [55]Laromaine A, Koh L, Murugesan M, et al. Protease-triggered dispersion of nanoparticle assemblies. Journal of the American Chemical Society,2007, 129(14):4156-4157
    [56]Xu W, Xue X J, Li T H, et al. Ultrasensitive and selective colorimetric DNA detection by nicking endomuclease assisted nanoparticle amplification. Angewandte Chemie International Edition,2009,48(37):6849-6852
    [57]Wei H, Li B L, Li J, et al. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chemical Communications,2007,43(36):3735-3737
    [58]Huang C C, Huang Y F, Cao Z H, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry,2005,77(17):5735-5741
    [59]Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie International Edition,2007,46(22):4093-4096
    [60]Liu J W, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. Journal of the American Chemical Society,2003,125(22): 6642-6643
    [61]Wang Z D, Lee J H, Lu Y. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Advanced Materials,2008,20(17):3263-3267
    [62]Lee J H, Wang Z D, Liu J W, et al. Highly sensitive and selective colorimetric sensors for uranyl (UO):Development and comparison of labeled and label-free DNAzyme-gold nanoparticles systems. Journal of the American Chemical Society, 2008,130(43):14217-14226
    [63]Dubertret B, Calame M, Libchaber A J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnology,2001,19(4): 365-370
    [64]Maxwell D J, Taylor J R, Nie S M. Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemical Society,2002,124(32):9606-9612
    [65]Song S P, Liang Z Q, Zhang J, et al. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angewandte Chemie International Edition,2009,48(46):8670-8674
    [66]Lee S, Cha E-J, Park K, et al. A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angewandte Chemie International Edition,2008,47(15): 2804-2807
    [67]Jayagopal A, Halfpennny K C, Perez J W, et al. Hairpin DNA-functionalized gold colloids for the imaging of mRNA in live cells. Journal of the American Chemical Society,2010,132(28):9789-9796
    [68]Seferos D S, Giljohann D A, Hill H D, et al. Nano-flares:Probes for transfection and mRNA detection in living cells. Journal of the American Chemical Society, 2007,129(50):15477-15479
    [69]Zheng D, Seferos D S, Giljohann D A, et al. Aptamer nano-flares for molecular detection in living cells. Nano letters,2009,9(9):3258-3261
    [70]Tyagi S, Kramer F R. Molecular beacons:Probes that fluoresce upon hybridization. Nature Biotechnology,1996,14(3):303-308
    [71]Tyagi S, Marras S A E, Kramer F R. Wavelength-shifting molecular beacons. Nature Biotechnology,2000,18(11):1191-1196
    [72]Zhang P, Beck T, Tan W H. Design of a molecular beacon DNA probe with two fluorophores. Angewandte Chemie International Edition,2001,40(2):402-405
    [73]Fang X H, Liu X J, Schuster S, et al. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. Journal of the American Chemical Society,1999,121(12):2921-2922
    [74]Yao G, Tan W H. Molecular-beacon-based array for sensitive DNA analysis. Analytical Biochemistry,2004,331(2):216-223
    [75]Wang H, Li J. Liu H P, et al. Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film. Nucleic Acids Research,2002,30(12):e61
    [76]Piatek A S, Tyagi S, Pol A C, et al. Molecular beacon sequence analysis for detecting drug resistance in mycobacterium tuberculosis. Nature Biotechnology, 1998,16(4):359-363
    [77]Kostrikis L G, Tyagi S, Mhlanga M M, et al. Spectral genotyping of human alleles. Science,1998,279(5354):1228-1229
    [78]Sobrino B, Brion M, Carracedo A. SNPs in forensic genetics:a review on SNP typing methodologies. Forensic Science International,2005,154(2-3):181-194
    [79]Li J W J, Fang X H, Schuster S M, et al. Molecular beacons:A novel approach to detect protein-DNA interactions. Angewandte Chemie International Edition,2000, 39(6):1049-1052
    [80]Tan W H, Fang X H, Li J, et al. Molecular beacons:A novel DNA probe for nucleic acid and protein studies. Chemistry-A European Journal,2000,6(7): 1107-1111
    [81]Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. Journal of Molecular Biology,1990,215(3):403-410
    [82]Wang K M, Tang Z W, James Yang C Y, et al. Molecular engineering of DNA: Molecular beacons. Angewandte Chemie International Edition,2009,48(5): 856-870
    [83]Heid C A, Stevens J, Livak K J, et al. Real time quantitative PCR. Genome Research,1996,6(10):986-994
    [84]Lie Y S, Petropoulos C J. Advances in quantitative PCR technology:5'nuclease assays. Current Opinion Biotechnology,1998,9(1):43-48
    [85]Li J W J, Chu Y Z, Lee B Y H, et al. Enzymatic signal amplification of molecular beacons for sensitive DNA detection. Nucleic Acids Research,2008,36(6):e36
    [86]Xu W, Xue X J, Li T H, et al. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angewandte Chemie International Edication,2009,48(37):6849-6852
    [87]Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene,1984,28(3):351-359
    [88]Kurita H, Inaishi K I, Torii K, et al. Real-time direct observation of single-molecule DNA hydrolysis by exonuclease III. Journal of Biomolecular Structure and Dynamics,2008,25(5):473-480
    [89]Richardson C C, Lehman I R, Kornberg A. A deoxyribonucleic acid phosphatase-exonuclease from escherichia coli:Ⅱ. Characterization of the exonuclease activity. Journal of Biological Chemistry,1964,239(1):251-258
    [90]Wang J K, Li T X, Guo X Y, et al. Exonuclease Ⅲ protection assay with FRET probe for detecting DNA-binding proteins. Nucleic Acids Research,2005,33(2): e23
    [91]Zucker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research,2003,31(13):3406-3415
    [92]Tang L H, Wang Y, Li Y M, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Advanced Functional Materials,2009, 19(17):2782-2789
    [93]Cech T R. Beginning to understand the end of the chromosome. Cell,2004, 116(2):273-279
    [94]Neidle S, Parkinson G N. The structure of telomeric DNA. Current Opinion in Structural Biology,2003,13(3):275-283
    [95]Burge S, Parkinson G N, Hazel P, et al. Quadruplex DNA:Sequence, topology and structure. Nucleic Acids Research,2006,34(19):5402-5415
    [96]Mergny J L, Lacroix L, Teulade-Fichou M P, et al. Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proceedings of the National Academy of Sciences of the United States of America,2001,98(6):3062-3067
    [97]Han H Y, Hurley L H, Salazar M. A DNA polymerase stop assay for G-quadruplex-interactive compounds. Nucleic Acids Research,1999,27(2): 537-542
    [98]Gomez D, Mergny J L, Riou J F. Detection of telomerase inhibitors based on g-quadruplex ligands gy a modified telomeric repeat amplification protocol assay. Cancer Research,2002,62(12):3365-3368
    [99]Ho H A, Leclerc M. Optical sensors based on hybrid aptamer/conjugated polymer complexes. Journal of the American Chemical Society,2004,126(5):1384-1387
    [100]Phan A T, Kuryavyi V, Ma J B, et al. An interlocked dimeric parallel-stranded DNA quadruplex:A potent inhibitor of HIV-1 integrase. Proceedings of the National Academy of Sciences of the United States of America,2005,102(3): 634-639
    [101]Juskowiak B. Analytical potential of the quadruplex DNA-based FRET probes. Analytica Chimica Acta,2006,568(1-2):171-180
    [102]Ueyama H, Takagi M, Takenaka S. A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation. Journal of the American Chemical Society,2002,124(48):14286-14287
    [103]Allain C, Monchaud D, Teulade-Fichou M P. FRET templated by G-quadruplex DNA:A specific ternary interaction using an original pair of donor/acceptor partners. Journal of the American Chemical Society,2006,128(36):11890-11893
    [104]He F, Tang Y L, Wang S, et al. Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer:a platform for homogeneous potassium detection. Journal of the American Chemical Society, 2005,127(35):12343-12346
    [105]Ying L M, Green J J, Li H T, et al. Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences of the United States of America,2003,100(25):14629-14634
    [106]Savchenko A. Materials science. Transforming graphene. Science,2009, 323(5914):589-590
    [107]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature,2006,442(7100):282-286
    [108]Liang J J, Huang Y, Zhang L, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of nanocomposites. Advanced Functional Materials,2009,19(14):2297-2302
    [109]Cao A N, Liu Z, Chu S S, et al. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Advanced Materials,2010,22(1):103-106
    [110]Shan C S, Yang H F, Song J F, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Analytical Chemistry,2009,81(6): 2378-2382
    [111]Wang Z, Liu S Q, Wu P, et al. Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Analytical Chemistry,2009,81(4):1638-1645
    [112]Wang Y, Shao Y Y, Matson D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano,2010,4(4):1790-1798
    [113]Choi B G, Park H S, Park T J, et al. Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano,2010, 4(5):2910-2918
    [114]Si Y S, Samulski E T. Exfoliated graphene separated by platinum nanoparticles. Chemistry of Materials,2008,20(21):6792-6797
    [115]Wen Y Q, Xing F F, He S J, et al. A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chemical Communications,2010,46(15):2596-2598
    [116]Wang X H, Wang C Y, Qu K G, et al. Ultrasensitive and selective detection of a prognostic indicator in early-stage cancer using graphene oxide and carbon nanotubes. Advanced Functional Materials,2010,20(22):3967-3971
    [117]Nijhawan D, Honarpour N, Wang X D. Apoptosis in neural development and disease. Annual Review of Neuroscience,2000,23(1):73-87
    [118]Rideout H J, Stefanis L. Caspase inhibition:A potential therapeutic strategy in neurological diseases. Histology and Histopathology,2001,16(3):895-908
    [119]Talanian R V, Quinlan C, Trautz S, et al. Substrate specificities for caspase family proteases. Journal of Biological Chemistry,1997,272(15):9677-9682
    [120]Reits E, Griekspoor A, Neijssen J, et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity,2003,18(1):97-108
    [121]Dreyer D R, Ruoff R S, Bielawski C W. From conception to realization:An historial account of graphene and some perspectives for its future. Angewandte Chemie International Edition,2010,49(49):9336-9344
    [122]Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene: The new two-dimensional nanomaterial. Angewandte Chemie International Edition,2009, 48(42):7752-7777
    [123]Balapanuru J, Yang J X, Xiao S, et al. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angewandte Chemie International Edition,2010,49(37):6549-6553
    [124]Liu Z, Robinson J T, Sun X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society,2008, 130(33):10876-10877
    [125]Peng C, Hu W, Zhou Y, et al. Intracellular imaging with a graphene-based fluorescent probe. Small,2010,6(15):1686-1692
    [126]He L, Musick M D, Nicewarner S R, et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. Journal of the American Chemical Society,2000,122(38):9071-9077
    [127]Cerruti M G, Sauthier M, Leonard D, et al. Gold and silica-coated gold nanoparticles as thermographic labels for DNA detection. Analytical Chemistry, 2006,78(10):3282-3288
    [128]Du H, Disney M D, Miller B L, et al. Hybridization-based unquenching of DNA hairpins on Au surfaces:Prototypical "molecular beacon" biosensors. Journal of the American Chemical Society,2003,125(14):4012-4013
    [129]Du H, Strohsahl C M, Camera J, et al. Sensitivity and specificity of metal surface-immobilized "molecular beacon" biosensors. Journal of the American Chemical Society,2005,127(21):7932-7940
    [130]Rosi N L, Giljohann D A, Thaxton C S, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science,2006,312(5776): 1027-1030
    [131]Stein C A, Cheng Y C. Antisense oligoucleotides as therapeutic agents-is the bullet really magical. Science,1993,26(5124):1004-1012
    [132]Dulkeith E, Ringler M, Klar T A, et al. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Letters,2005,5(4):585-589
    [133]Storhoff J J, Lazarides A A, Mucic R C, et al. What controls the optical properties of DNA-linked gold nanoparticle assemblies. Journal of the American Chemical Society,2000,122(19):4640-4650
    [134]Lytton-Jean A K R, Mirkin C A. A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. Journal of the American Chemical Society,2005,127(37): 12754-12755
    [135]Seferos D S, Prigodich A E, Giljohann D A, et al. Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Letters,2009,9(1):308-311
    [136]Giljohann D A, Seferos D S, Patel P C, et al. Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Letters,2007,7(12): 3818-3821
    [137]Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticle probes. Science,2000,289(5485):1757-1760
    [138]Liu J W, Lu Y. Non-base pairing DNA provides a new dimension for controlling aptamer-linked nanoparticles and sensors. Journal of the American Chemical Society,2007,129(27):8634-8643
    [139]Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science,2003,301(5641):1884-1886
    [140]Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997,277(5329):1078-1081
    [141]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996,382(6592): 607-609
    [142]Park S Y, Lytton-Jean A K R, Lee B, et al. DNA-programmable nanoparticle crystallization. Nature,2008,451(7178):553-556
    [143]Shyr M H S, Wernette D P, Wiltzius P, et al. DNA and DNAzyme-mediated 2D colloidal assembly. Journal of the American Chemical Society,2008,130(26): 8234-8240
    [144]Rosi N L, Giljohann D A, Thaxton C S, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science,2006,312(5776): 1027-1030
    [145]Agbasi-Porter C, Ryman-Rasmussen J, Franzen S, et al. Transcription inhibition using oligonucleotide-modified gold nanoparticles. Bioconjugate Chemistry, 2006,17(5):1178-1183
    [146]Prigodich A E, Seferos D S, Massich M D, et al. Nano-flares for mRNA regulation and detection. ACS Nano,2009,3(8):2147-2152
    [147]Herbert B S, Hochreiter A E, Wright W E, et al. Nonradioactive detection of telomerase activity using the telomeric repeat amplification protocol. Nature Protocols,2006,1(3):1583-1590
    [148]Morin G B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell,1989,59(3):521-529
    [149]Cohen S B, Graham M E, Lovrecz G O, et al. Protein composition of catalytically active human telomerase from immortal cells. Science,2007,315(5820): 1850-1853
    [150]Stone M D, Mlhalusova M, O'Connor C M, et al. Stepwise protein-mediated RNA folding directs assembly of telomerase ribonucleoprotein. Nature,2007, 446(7134):458-461
    [151]Harley C B, Villeponteau B. Telomeres and telomerase in aging and cancer. Current Opinion in Genetics and Development,1995,5(2):249-255
    [152]Harley C B, Futcher A B, Greider C W. Telomeres shorten during ageing of human fibroblasts. Nature,1990,345(6274):458-460
    [153]Hastie N D, Dempster M, Dunlop M G, et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature,1990,346(6287):866-868
    [154]Niazov T, Pavlov V, Xiao Y, et al. DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Letters,2004,4(9): 1683-1687
    [155]Shay J W, Bacchetti S. A survey of telomerase activity in human cancer. European Journal of Cancer,1997,33(5):787-791
    [156]Hiyama E, Hiyama K. Clinical utility of telomerase in cancer. Oncogene,2002, 21(4):643-649
    [157]Kim N W, Piatyszek M A, Prowse K R, et al. Specific association of human telomerase activity with immortal cells and cancer. Science,1994,266(5193): 2011-2015
    [158]Savoysky E, Akamatsu K, Tsuchiya M, et al. Detection of telomerase activity by combination of TRAP method and scintillation proximity assay (SPA). Nucleic Acids Research,1996,24(6):1175-1176
    [159]Herbert B S, Hochreiter A E, Wright W E, et al. Nonradioactive detection of telomerase activity using the telomeric repeat amplification protocol. Nature Protocols,2006,1(3):1583-1590
    [160]Niemeyer C M, Adler M, Wacker R. Immuno-PCR:High sensitivity detection of proteins by nucleic acid amplification. Trends in Biotechnology,2005,23(4): 208-216
    [161]Schmidt P M, Lehmann C, Matthes E, et al. Detection of activity of telomerase in tumor cells using fiber optical biosensors. Biosensors and Bioelectronics,2002, 17(11-12):1081-1087
    [162]Schmidt P M, Matthes E, Scheller F W, et al. Real-time determination of telomerase activity in cell extracts using an optical biosensor. Biological Chemistry,2002,383(10):1659-1666
    [163]Maesawa C, Inaba T, Sato H, et al. A rapid biosensor chip assay for measuring of telomerase activity using surface Plasmon resonance. Nucleic Acids Research, 2003,31(2):E4
    [164]Shao Z Y, Liu Y X, Xiao H, et al. PCR-free electrochemical detection of telomerase activity. Electrochemistry Communications,2008,10(10):1502-1504
    [165]Pavlov V, Willner I, Dishon A, et al. Amplified detection of telomerase activity using electrochemical and quartz crystal microbalance measurements. Biosensors and Bioelectronics,2004,20(5):1011-1021
    [166]Xiao Y, Pavlov V, Gill R, et al. Lighting up biochemiluminescence by the surface-assembly of DNA-hemin complexes. ChemBioChem,2004,5(3): 374-379
    [167]Pavlov V, Xiao Y, Gill R, et al. Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Analytical Chemistry,2004,76(7):2152-2156
    [168]Xiao Y, Pavlov V, Niazov T, et al. Catalytic beacons for the detection of DNA and telomerase activity. Journal of the American Chemical Society,2004,126(24): 7430-7431
    [169]Eskiocak U, Ozkan-Ariksoysal D, Ozsoz M, et al. Label-free detection of telomerase activity using guanine electrochemical oxidation signal. Analytical Chemistry,2007,79(22):8807-8811
    [170]Zheng G F, Daniel W L, Mirkin C A. A new approach to amplified telomerase detection with polyvalent oligonucleotide nanoparticle conjugates. Journal of the American Chemical Society,2008,130(30):9644-9645
    [171]Schweitzer B, Kingsmore S. Combining nucleic acid amplification and detection. Current Opinion in Biotechnology,2001,12(1):21-27
    [172]Mullis K B, Falcona F A, Scharf S. Specific amplification of DNA in vitro:the polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology,1985,51(1):263-273
    [173]Krokene P, Barnes I, Wingfield B D, et al. A PCR-RFLP based diagnostic technique to rapidly identify Seiridium species causing cypress canker. Mycologia,2004,96(6):1352-1354
    [174]Shekhar M S, Gopikrishna G, Azad I S. PCR-RFLP analysis of 12s and 16s mitochondrial rRNA genes from brackishwater finfish and shellfish species. Asian Fisheries Science,2005,18(1):39-48
    [175]Shen Z Y, Wells R L, Liu J M, et al. Identification of a cytochrome P450 gene by reverse transcription PCR using degenerate primers containing inosine. Proceedings of the National Academy of Sciences of the United States of America,1993,90(24):11483-11487
    [176]Dergam J A, Paiva S R, Schaeffer C E, et al. Phylogeography and RAPD-PCR variation in Hoplias malabaricus (Bloch,1794) (Pisces, Teleostei) in southeastern Brazil. Genetics and Molecular Biology,2002,25(4):379-387
    [177]Odin E, Larsson L, Aran M, et al. Rapid quantitative PCR determination of relative gene expression in tumor specimens using high-pressure liquid chromatography. Tumor Biology,1998,19(3):167-175
    [178]Shea P Y. Single-tube multiplex PCR-SSCP analysis distinguishes 7 common ABO alleles and readily identifies new alleles. Blood,2000,95(4):1487-1492
    [179]Kammann M, Laufs J, Schell J, et al. Rapid insertion al mutagenesis of DNA by polymerase chain reaction (PCR). Nucleic Acids Research,1989,17(13):5404
    [180]Walker G T, Little M C, Nadeau J G, et al. Isothermal in vitro amplification of DNA by a restriction enzyme PDNA polymerase system. Proceedings of the National Academy of Sciences of the United States of America,1992,89(1): 392-396
    [181]Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proceedings of the National Academy of Sciences of the United States of America,1991,88(1):189-193
    [182]Tong J, Cao W, Barany F. Biochemical properties of a high fidelity DNA ligase from Thermus species AK16D. Nucleic Acids Research,1999,27(3):788-794
    [183]Gerry N P, Witowski N E, Day J, et al. Universal DNA microarray method for multiplex detection of low abundance point mutations. Journal of Molecular Biology,1999,292(2):251-262
    [184]Walker G T, Fraiser M S, SchramJ L, et al. Strand displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Research,1992, 20(7):1691-1696
    [185]Spargo C A, Haaland P D, Jurgensen S R, et al. Chemiluminescent detection of strand displacement amplified DNA from species comprising the Mycobacterium tuberculosis complex. Molecular and Cellular Probes,1993,7(5):395-404
    [186]Spargo C A, Fraiser M S, Van C M, et al. Detection of M. tuberculosis DNA using thermophilic strand displacement amplification. Molecular and Cellular Probes, 1996,10(4):247-256
    [187]Walker G T. Empirical aspects of strand displacement amplification. PCR Methods Applications,1993,3(1):1-6
    [188]Compton J. Nucleic acid sequence-based amplification. Nature,1991,350(6313): 91-92
    [189]Deiman B, Aarle P and Sillekens P. Characteristics and Applications of Nucleic Acid Sequence-Based Amplification (NASBA). Molecular Biotechnology,2002, 20(1):160-179
    [190]Souza D H, Jaykus L A. Nucleic acid sequence based amplification for the rapid and sensitive detection of Salmonella enterica from foods. Journal of Applied Microbiology,2003,95(6):1343-1350
    [191]Weusten J A M, CarpayW M, Tom A M, et al. Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogenous detection using molecular beacons. Nucleic Acids Research,2002, 30(6):e26
    [192]Jean J, Blais B, Darveau A, et al. Rapid detection of human rotavirus using colorimetric nucleic acid sequence-based amplification (NASBA)-enzyme-linked immunosorbent assay in sewage treatment effluent. FEMS Microbiology Letters, 2002,210(1):143-147
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.