弹性体及其复合材料改性沥青的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代交通事业的发展,高等级公路建设步伐加快,对高性能、低成本改性沥青的需求越来越大。聚合物改性剂由于其可改善沥青的高温刚性、低温柔性以及温度敏感性,一直是人们研究的热点,但改性沥青高温贮存不稳定、改性成本高等缺点限制了其推广应用。本文采用熔融共混法与种子乳液聚合法,分别制备了丁苯橡胶/蒙脱土(SBR/MMT)、丁苯嵌段共聚物/蒙脱土(SBS/MMT)复合材料改性剂和核壳结构聚丁二烯粒子接枝苯乙烯(PB-g-PS)、聚丁二烯粒子接枝苯乙烯及沥青组分(PB-g-PS/Asphalt)的接枝聚合物改性剂,利用高速剪切法研制出力学性能好、高温贮存稳定的SBR/MMT改性沥青、SBS/MMT改性沥青、PB-g-PS改性沥青及PB-g-PS/Asphalt与SBR协同改性沥青,系统地研究了各种改性沥青的物理机械性能、相态结构、贮存稳定性及流变学性质,探讨了它们的改性机理,揭示了其贮存稳定性和力学性能改善的内在原因。
     第一,采用熔融插层法制备了SBR/MMT复合材料改性剂,利用高速剪切法获得了力学性能好、稳定化、低成本的SBR/MMT改性沥青。XRD、TEM研究表明,弹性体SBR与无机蒙脱土形成了插层型或剥离型结构的复合材料。考察了不同质量比SBR/MMT改性沥青的结构与性能,发现当SBR与MMT的质量比为3/5时,改性沥青的性能最好,剥离型结构复合材料对改性沥青性能的改进贡献较大。荧光显微镜的形貌观察显示,SBR/MMT复合材料以微球形结构、呈点阵状分布在基质沥青中,形成了以改性剂为分散相,以基质沥青为连续相的单相连续结构。高温贮存稳定性实验表明,在一定SBR/MMT质量比和掺量范围内,SBR/MMT改性沥青高温贮存稳定,离析差均小于2.5℃。尤其是,SBR/MMT改性沥青具有较高的复数模量(G*)和较低的损耗因子(Tanδ),说明SBR/MMT复合材料改性剂改善了基质沥青的黏弹性,可使其在高温下的弹性明显增加,温度敏感性减弱,高温抗车辙能力提高。
     第二,研制了高性能、稳定化的SBS/MMT复合材料改性沥青。XRD、TEM研究分析发现,当SBS与MMT质量比为5/1时,形成剥离型结构复合材料,其它比例为插层型复合材料。系统考察了不同质量比的SBS/MMT复合材料对改性沥青性能的影响,比较了SBS改性沥青、SBS/MMT复合材料改性沥青,SBS、MMT简单混合改性沥青的结构与性能,发现SBS与MMT形成复合材料以后能更显著地提高改性沥青的物理性能和改善贮存稳定性。质量比为5/5的SBS/MMT复合材料改性沥青的各项物理性能最佳,高温贮存稳定性最好,上下段软化点的离析差仅为0.4℃。荧光显微镜分析发现,SBS/MMT复合材料改性剂在基质沥青中分散效果良好,即在高温贮存以后也没有沉降和聚集现象发生。动态力学性能分析发现,SBR/MMT改性沥青具有较高的复数模量(G*)和较低的损耗因子(Tanδ),同时复数模量(G*)随温度升高而下降、损耗因子(Tanδ)随温度的升高而上升的趋势都趋缓,表明SBS/MMT复合改性剂改善了基质沥青的黏弹性。
     第三,采用种子乳液聚合法制备了核壳结构PB-g-PS接枝聚合物沥青改性剂,并首次在PB-g-PS的聚合过程中引入沥青成分合成了PB-g-PS/Asphalt聚合物粒子。对比考察了S/B不同质量比的PB-g-PS、PB-g-PS/Asphalt改性沥青的物理性能及贮存稳定性,利用SEM进行了改性沥青的形貌观察,并应用示差扫描量热法(DSC)对沥青的改性效果进行了定性分析。结果表明:核壳结构接枝聚合物对沥青的高温性能改善效果显著,对低温性能的改善效果不明显;当S/B的质量比为30/70时,核壳接枝聚合物对沥青的改善效果最佳;PB-g-PS/Asphalt改性沥青的高温稳定性要明显好于PB-g-PS改性沥青,说明沥青成分的引入提高了核壳接枝聚合物与基质沥青的相容性。
     第四,以PB-g-PS/Asphalt聚合物粒子为增容剂,制备了高低温性能均较好的PB-g-PS/Asphalt、SBR协同改性沥青。通过对改性沥青的物理性能、高温贮存稳定性和橡胶相分散状态等的分析,发现PB-g-PS/Asphalt的增容效果明显,它使SBR改性沥青的相态结构发生了变化,增加了SBR吸收沥青中饱合小分子的能力,提高了SBR与沥青中的胶质和沥青质作用的几率,进而改善了基质沥青的各项性能。
The demands of polymer modified asphalts with high-property and low-cost is increasing with the development of modern traffic and of high-level highway. Polymer modified asphalts possessing high-temperature rigidity and low-temperature flexibility is focused on by many researchers. However, their applications are limited by high-temperature storage unstability and high-cost. In this dissertation, using melted mixing method and seed emulsion grafting technology, the elastomers and their composites modifiers such as SBR/MMT and SBR/MMT composites as well as core-shell PB-g-PS and PB-g-PS/Asphalt particles were prepared, respectively. SBR/MMT modified asphalts, SBR/MMT modified asphalts, PB-g-PS modified asphalts and PB-g-PS/Asphalt cooperated with SBR modified asphalts were prepared using high-speed shearing technology. The properties of these modified asphalts including physical properties, phase structure, high temperature storage stability and rheological properties were systematically studied. The modified mechanisms were also disscussed.
     Firstly, Styrene-butadiene-rubber/Montmorillonite (SBR/MMT) composite modifiers were prepared by melted mixing method and SBR/MMT modified asphalts were prepared by by high-speed shearing technology. The properties of SBS/MMT modified asphalts such as physical properties, phase structure, high temperature storage stability and rheological properties were investigated. XRD and TEM results show that SBR/MMT composites may form intercalated or exfoliated structures. The structures and properties of modified asphalts with different SBR/MMT mass ratios were investigated. The results indicate that the modified asphalts with 3/5 SBR/MMT mass ratios possess best properties and the exfoliated strcture SBR/MMT is better modifier. The morphologies of the samples have been characterized by fluorescent microscopy. The results indicate that SBR/MMT modifier micro spheres dispersed in continuous phase of asphalt. High-temperature storage stability tests indicated that the modified asphalts are very stable in some SRB/MMT content range and the difference in the softening points between top and bottom sections was lower than 2.5℃.Especially, the modified asphalts exhibited higher complex modulus (G*) and lower damping factor (Tan8). It implies that SBR/MMT displays improved viscoelastic properties, resulting in enhancing its resistance to rutting at high temperature.
     Secondly, the high-properties SBS/MMT modified asphalts with stability were prepared by melted mixing method. XRD and TEM results show that SBS/MMT composites may form an exfoliated structure at 5/1 SBS/MMT mass ratio and intercalated structure at others mass ratios in SBS/MMT modified asphalts. The different SBS/MMT mass ratios influencing the properties of modified asphalts were investigated. The structures and properties of SBS modified asphalts, composite SBS/MMT modified asphalt and separated SBS,MMT modified asphalt were compared. The results show that SBS/MMT composites have best modified effect in improving physical properties and high temperature storage stability. High-temperature storage stability tests indicated that the modified asphalt is the most stable in 5/5 SRB/MMT mass ratio and the difference in the softening points between top and bottom sections was only 0.4℃.The fluorescent microscopy results show that SBS/MMT composites may form stable structure in SBS/MMT modified asphalts and no sediments particles were found after high temperature storage. The rheological tests indicate that the SBS/MMT modified asphalts exhibited higher complex modulus (G*) and lower damping factor (Tan8).It implied that SBR/MMT modified asphalts displaying improved viscoelastic properties.
     Thirdly, Core-shell PB-g-PS polymer latex particles and novel sub-micron core-shell rubber PB-g-PS/Asphalt particles were synthesized by the seed emulsion grafting technology. The comparation was taken between PB-g-PS modified asphalts and PB-g-PS/Asphalt modified asphalts in physical properties and high temperature storage stability. The morphologies and thermal properties of the samples have been characterized by SEM and DSC.The results showed that the high-temperature properties were increased obviously but the low-temperature properties were improved unobviously by Core-shell polymer latex particles. At 30/70 S/B mass ratio, Core-shell PB-g-PS polymer latex particles have best modified effect to asphalts. The high temperature storage stability of PB-g-PS/Asphalt modified asphalts is better than one of PB-g-PS modified asphalts.This indicates that the compatibility between PB-g-PS modifier and asphalt was improved by introducing asphalt into PB-g-PS.
     Finally, in order to obtain a kind of modified asphalt with good high and low temperature properties, the PB-g-PS/Asphalt cooperated with SBR modified asphalts were synthesized. The physical properties, phase structure and high temperature storage stability of the modified asphalts were studied. The results showed that as compatibility agent PB-g-PS/Asphalt has obvious effect. It changed phase structure of modified asphalt and resulted in SBR absorbing small molecule and increasing motive chance to gel and asphaltene in asphalt. This improves all properties of modified asphalts.
引文
1.廖克俭,丛玉凤.道路沥青生产与应用技术[M],北京:化学工业出版社,2004.
    2.张登良.沥青与沥青混合料[M],北京:人民交通出版社,1993
    3.黄勇炎.沥青在橡胶制品中的应用[J],特种橡胶制品,1992,13(5):17
    4.中光全.论国外建筑防水材料的新进展(一)[J],中国建筑防水材料,1994,(4):3-7
    5.Brule B.,Brion Y.,Tanguy A. Paving asphalt polymer blends, relationship between composition, structure and properties [J].Proc Assoc Asphalt Paving Technologists, 1988,57:41-64
    6.D. White oak. Shell Bitumen Hand book, shell Bitumen UK[J],Riversdell Hause, surrey, UK 1990.
    7.X.Lu,U.Zsacsson[M],Fuel 1997,76:1353-59
    8.杨卫红,邵联银.国内外聚合物改性沥青的发展概况和应用动向[J],公路汽运,2005,10(5):214-216
    9.沈金安.改性沥青与SMA路面[M],北京:人民交通出版社,1999
    10. R.Dongre, J.Youtcheff, D.Anderson. Appl. Rheol,1996,6:75-82
    11.Collins J.H.,Boulding M.G.,Gelles R.,Berker Improved performance of paving asphalts by polymer modification [J],J Assoc Asphalt Paving Technologists,1991, 60:43-79
    12.L.H. Lewandowski. Rubber chemistry and Technology,1993,67:447-480
    13.Diehl C.F. Ethylene-styrene interpolymers for bitumen modification [J],Proc Second Eurasphalt Eurobitumen congress, Barcelona,2000,2:93-102.
    14. G Holden, E.T.,Bisshop, N.R. Legge. Thermoplastic elastomers [J],Polym. SCI. Part C,1969,26:37
    15.J.T.Welborn, J.F. Babashak. New rubberized asphalt for roads [J],Journal of Highway Division, Proceedings of American Society of Civil Engineering,1958,16:51
    16. P.Maldnado, J.Mas, T.K.Phung. Process for preparing polymer-bitumen compositions [J],US Patent,4145322 1979
    17.Hankcock T. British Patent No.4768
    18.朱梦良,李金宝,张淑琴.粉体SBS改性沥青的应用研究[J],公路交通科技,1999,4:46-49
    19.孙德江.热塑性弹性体SBS/沥青共混体系[D],北京:北京化工学院,1985
    20.王仕峰,查伟斌,王迪珍等.LDPE改性沥青的研究[J],中国塑料,2001,15(3):51-53
    21.Nahaas N C.Polymer modified asphalt for high performance hot mix pavement [J], Journal of Association of Asphalt Paving Technologists,1990,59(6):509-525
    22.Brule B.Paving asphalt polymer blends relationships between composition structure and properties of SBR modified asphalt binders[J],Rubber Chemistry and Technology, 1997,70(2):256-263
    23.Nahaas N C.Polymer modified asphalt for high performance hot mix pavement[J], Journal of Association of Asphalt Paving Technologists,1990,59(6):509-525.
    24. Maccorrone, Holleran, Gnanaseelan. Properties of polymer modified binders and relationship to performance[J],Proceedings-Conference of the Australian Road Research Board Ltd,1994:123-139.
    25.Bonemazzi F. Braga V.Corrieri R.etc. Characteristics of polymers and polymer-modified binders [J],Transportation Research Record,1996,1535:36-47
    26. Collins J.H. Journal of Association of Asphalt Paving Technologists,1991, 60(1):43-79
    27.李立寒.聚合物改善沥青性能的基础条件[J],石油沥青,1995,9(3):30-34
    28.Lenoble C.Performance/microstructure relationship of blends of asphalts with two incompatible polymers [J],Preprints-Division of Petroleum Chemistry, ACS.1990,35(3):541-549.
    29. FINA. Finaprene R-elastomers for roads [J],Product Introduction.1996
    30.张玉贞,王翠红,黄小胜.聚合物SBS改性沥青相容性研究[J],石油沥青,2000,14(2):1-5
    31.笠原靖.胶乳的成分对橡胶性质的影响[J],石油学会杂志,1974,8(17):672
    32. Fawcett A.H.,McNally T. Blends of bitumen with various polyolefins [J],Polymer, 2000,41:5315-5326
    33.Adedeji A.,Grunfelder T.,Bates F.S.etc.. Asphalt modified by SBS triblock copolymer:structure and properties [J],Polymer Engineering and Science, 1996,36(12):1707-1723
    34. Lu X, Iscasson U, Ekblad J. Phase separation of SBS modified bitumen [J],Journal of Materials in Civil Eng,1999,(2):51-57
    35.Maarit K.,Kellomaki A. Miscibilities of polymers in bitumen and tall oil pitch under different mixing conditions [J],Fuel,1996,75:1727
    36. Isacsson U, Lu X. Testing and appraisal of polymer modified road bitumens state of the art[J],Materials and Structures.,1995,28:139-159
    37. Yousefi A.A.,Ait-Kadi A.,Roy C. Effect of used-tire-derived pyrolytic oil residue on the properties of polymer modified asphalts [J],Fuel,2000,79:975-986
    38.Fawcett A.H.,McNally T.M, McNally GM. Plasticized SEBS copolymer rubber modified asphalt mixture,US 5929144 1999
    39.Adedeji A.,Grunfelder T.,Bates F S.etc. Asphalt modified by SBS triblock copolymer: structure and properties[J],Polymer Engineering and Science,1996,36(12): 1707-1723
    40. Lee Y J.,France L M.,Hawley M.C.Effect of network formation on the rheological properties of SBR modified asphalt binders[J],Rubber Chemistry and Technology, 1997,70(2):256-263
    41.Michon L.C.,Williams T.M.,Miknis F.P. etc. Use of environmental scanning electron microscope to investigate three polymer modified asphalts [J],Petroleum Science and Technology,1998,16(7-8):797-809
    42.Lu X.,Isaccson U. Modification of road bitumens with thermoplastic polymers [J], Polymer Testing,2001,20:77-86
    43.Lu X.,Isaccson U. Rheological characterization of SBS copolymer modified bitumens [J],Construction and Building Material,1997,11:23-32
    44. Airey G.D.,Brown S.F. Rheological performance of aged polymer modified bitumens [J],Asphalt Paving Technol,1998,67:66-100
    45.杨京伟.SBS改性道路沥青[J],北京化工大学学报,1997,24(4):60-63
    46.Bouldin M.G.,Collins J.H.,Perker A. Rheology and microstrcture of polymer/asphalt blend [J],Rubber Chemistry and Technology,1991,64:577
    47.Gahvari F. Effects of thermoplastic block copolymers on rheology of asphalt [J], Journal of Materials in Civil Engineering,1997,9(3):111-116
    48.曾斌.如何测定和判断改性沥青的技术性能[J],公路,1999,(6):34-37
    49.LeeN K.,Hesp S.A. Low-temperature fracture toughness of polyethylene-modified asphalt binders[J],Transportation Research Record,1997,1436:54-59
    50. Stock A.F.,Arand W. Low temperature cracking in polymer modified binders [J], Journal of Association of Asphalt Paving Technologists,1993,62:314
    51.LeeN.K, Morrison G. R., Hesp S.A. Low temperature fracture of polyethylene-modified asphalt binders and asphalt concrete mixes [J],Asphalt Paving Technology:Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions,64:534-547
    52.Fortier R.,Vinson T. Low Temperature cracking and aging performance of modified asphalt concrete specimens [J],Transportation Research Record 1998,1630:77-86
    53.Shenoy A. Developing unified rheological curves for polymer-modified asphalts-Part I [J],Theoretical analysis.Materials and Structure,2000,33(231):425-429
    54. Shenoy A. Developing unified rheological curves for polymer-modified asphalts-Part II Theoretical analysis [J],Materials and Structure.2000,33(231):429-435
    55.Ali F. M,Asi I. M.,Al-Abdul W. H. Characterization of polymer modified gulf asphalts [J],Petroleum Science and Technology,1999,17(1-2):125-145
    56.Al-Abdul W. H.,Asi.I. M.,Ali F. M. Prediction of asphalt rheological properties using HP-GPC [J],Journal of Materials in Civil Engineering,1999,11(1):6-14
    57. Woodhams R.T, Hesp S.A. Colloid Polym. Sci,1991,269:825
    58.杨林江,金海山,张仁瀑.提高SBS改性沥青分散度及热贮存稳定性[J],筑路机械与施工机械化,1999,16(4):42-43
    59. Gros W. A. US 5672642 Compatible asphalt polymer blends,1997
    60. Guian Wen, Yong Zhang, Yinxi Zhang, etc. Preparation of storage stability SBS copolymer/Asphalt blends [J],China Synthetic Rubber Industry,2000,24(3):242
    61.Amiel, Alan J.L. Effect of particle morphology on the emulsion stability and mechanical performance of polyolefin modified asphalts [J],Polymer Engineering and Science.1998,38(5)709-715
    61.于进军,王燕飞.SBS改性道路沥青的性能概述[J],石化技术,2000,(2):121-125
    63.Mancini G. EP458386 Al Method for preparing stable bitumen polymer mixtures, 1990
    64. Abdellatif A.,Brahim B.,Mosto B.Polymer blends for enhanced asphalt binders [J], Polymer Eng. And Sci.1996,36(12):1724-1733
    65.顾里之.纤维增强复合材料[M],北京:机械工业出版社,1988
    66.张争奇.改性沥青机理及应用的研究[D],西安:西安公路交通大学,1997
    67.原健安.改性剂与沥青的相互作用对改性沥青性质的影响[J],重庆交通学院学报,2000,19(1):67-71
    68.Morrison GR.,Hedmark, Hesp S.A. Elastic Stabilization of PE asphalt emulsions[J], Colloid and Polymer Science,1994,272(4):375-384
    69.Guo Jinmin.The Application of Adhesive Bonding Dry-mixed Mortar and Its Mechanism,河南建材,2005,3:37-40
    70. Hailong Jin, Yinxi Zhang. Improved properties of polystyrene-modified asphalt through dynamic vulcanization [J],polymer testing,2002,21:633-640
    71.Chunfa Ouyang, Shifeng Wang, Yong Zhang, Yinxi Zhang. Improving the aging resistance of asphalt by addition of Zinc dialkyldithiophodphate [J],Fuel 2006,85: 1060-1066
    72.Lee Y.J, France L.M.,Hawley M.C.Chatacterization of asphalt binders mixed with epoxy terminated ethylene terpolymer [J],Polymeric Materials Science and Engineering, Proceedings of the 1997 ACS Meeting, San Francisco,P397-398
    73.Locatelli,Riess Etude de copolymeres ABS (acrylonitrile-butadiene-styrene): Solvatation preferentielle du polybutadiene par les promoteurs,Journal of Polymer Science:Polymer Chemistry Edition,2005,11(12):3309-3320
    74.颜明发,李万利,黄剑莹,林明华,邹友思.AIBN/NaNO2/FeSO4·7H2O存在下苯乙烯本体活性自由基聚合[J],高分子材料科学与工程,2005,1:35-39
    75.黄源,曹堃,李伯耿.聚丁二烯橡胶接枝苯乙烯本体自由基聚合机理[J],Synthtrc Rubber Industry,2005,28(1):1-4
    76.高骁,马育红,吴一弦,武冠英.异丁烯与丙烯酸酯改性自由基共聚合Ⅱ.反应条件对AlCl_3/AIBN/IB/BA共聚合体系的影响[J],石油化工,1999,28(11)
    77.张开,张洪文,李宏途,王静媛.由AIBN或V50引发的苯乙烯反向原子转移自由基乳液聚合,Chinese Science Bulletin,2005,24(7):363-366
    78.I.Gancarz, W. L.Peroxide-initiated crosslinking of maleic anhydride-modified low-molecular-weight polybutadiene [J],Mechanism and kinetics of the reaction,1979,17(3):683-692
    79.Nai-Jen Huang, Donald C. Sundberg. Fundamental studies of grafting reactions in free radical copolymerization.Ⅲ,Grafting of styrene, acrylate, and methacrylate monomers onto cis-polybutadiene using benzoyl peroxide initiator in solution polymerization,1995,33,(15):2571-2586
    80.赵可,原健安.聚合物改性沥青机理研究(之一)—改性剂对轻质组分的吸收作用及体系的聚集态[J],天津市市政(公路)工程研究院院庆五十五周年论文选集(1950~2005)上册,2005
    81.刘红,卢梅艳,许志鸿.Superpave级配与AC级配路用性能比较[J],上海市公路学会第六届年会学术论文集:47~51
    82.赵永利,黄晓明.矿料级配基本性能的试验研究[J],公路交通科技,2004(6):1-3
    83.郝培文,刘红瑛.与沥青路用性能相关的沥青混合料性质[J],石油沥青,1994(2):28~31
    84.吕伟民.沥青混合料设计原理与方法[M],上海:同济大学出版社,2001,84~85
    85.申爱琴,付菁.SMA混合料组成结构、强度机理及影响因素分析研究[J],西安公路交通大学学报,1998,3:171~176
    86.豆仁国.浅谈SMA-13的设计[J],安徽建筑,2005(3):83-85
    87.付春河,解赴东,刘海峰.SMA改性沥青混合料配合比设计[J],吉林交通科技, 2005(3):33-35
    88.曹晓岩,杨军,姚志坤.马歇尔试验与SMA混合料组成设计[J],黑龙江工程学院学报,2001(1):11~13
    89.张会轩,杨海东,戴英等.核/壳结构聚丙烯酸酯增韧剂改性PVC的研究[J],应用化学,1996,14(3):15~17
    90.周媛;谢雁;潘炯玺.聚乙烯的化学接枝改性研究进展[J],Plastics Science and Technology,2005,2:117-122
    91.王仕峰;王迪珍;钟汉权.交联SBR改性沥青的研究[J],橡胶工业,2002,49(4):212-215
    92.熊四华,范草原.硅藻土改性沥青混合料设计与路面施工技术[J],重庆交通学院学报,2003,(3):28~32
    93.郭天龙,宋洁.硅藻土改性沥青混凝土在大保高速公路沥青路面工程中的推广运用[J].云南交通科技,2002,(5):78~84
    94.李剑,郝培文,梅庆斌.硅藻土改性沥青及其混合料路用性能研究[J],石油沥青,2003,17(12):29~32
    95.马峰.纳米碳酸钙改性沥青路用性能及改性机理研究[D],西安:长安大学,2004
    96.解孝林,周兴平.纳米沥青复合材料的性能验证[J],中国公路建设市场,2004(3):46~47
    97.高涛.纳米材料将带来沥青技术质的飞跃[J],公路建设市场,2004,3:48-50
    98.李玲,向航.功能材料与纳米技术[M],北京:化学工业出版社,2002:1~17
    99.张金升,李志等.纳米改性沥青相容性和分散稳定机理研究[J],公路,2005,8:142~146
    100.肖鹏,李雪峰.纳米ZnO/SBS改性沥青的研究[J],石油沥青,2006,20(5):15~20
    101.刘大梁,罗立武,岳爱军,陈琳.纳米碳酸钙改性沥青研究[J],公路,2005,6:145~148
    102.吴少鹏,庞凌,余剑英等.沥青光氧老化研究进展[J],石油沥青,2007,21(2):1~6
    103.Ouyang CF, Wang SF, Zhang YX. Preparation and properties of styrene-butadiene-styrene copolymer/kaolinite clay compound and asphalt modified with the compound[J],Polymer Degradation and Stability,2005,87(2):309-317
    104.薛振华.蒙脱土复合材料的构造与流变学特性[D],北京:北京林业大学,2006
    105.陈光明,李强等.聚合物/层状硅酸盐纳米复合材料研究进展[J],高分子通报,1999,4:1~10
    106.李春生,周春晖等.聚合物/蒙脱土纳米复合材料的研究进展[J],化工生产与技术,2002,9(4):22~27
    107. Huaili Qin, Shimin Zhang, Huiju Liu,Shaobo Xie, Mingshu Yang. Photo-oxidative degradation of polypropylene/montmorillonite nanocomposites [J],Polymer,2005,46: 3149-3156
    108.张径,杨玉昆.插层法悬浮聚合制PMMA/蒙脱石纳米复合材料[J],高分子学报,2001,17(1):79~83
    109.Usuki A, et al.Interaction of nylon 6-clay surfaceandmechanical properties of nylon 6-clay hybrid[J],J.Appl.Polym.Sci,1995,55:119
    110.漆宗能等.一种聚酰胺/粘土纳米复合材料及其制备方法,P.CN1138593 A,1996
    111.马晓燕,梁国正,鹿海军等.累托石/聚丙烯插层纳米复合材料的制备与性能[J],高分子学报,2003,5:655-658
    112.Tsuneo Yanagisawa. Toshio Shimizu. Kazuyuki Kuroda. Chuzo Kato.The Preparation of Alkyltriinethylaininonium-Kaneinite Complexes and Their Conversion to Microporous Materials [J],Bulletin of the Chemical Society of Japan, 1990,63(4):988-992
    113.彭人勇,张英杰.聚乙烯醇/蒙脱石纳米复合材料的结构与性能[J],塑料科技,2005(2):113-117
    114. Yoshitsugu Kojima, Arimitsu Usuki.Mechanical properties of nylon 6-clay hybrid [J], Material Research Society,2003,8:1185-1189
    115.章永化,龚克成.嵌入聚合法制备聚苯乙烯—蒙脱土混杂材料[J],塑料工业,1998,26(3):123-126
    116.Jae Goo Doh. Synthesis and properties of polystyrene-organoammonium montmorillonite hybrid [J],Polymer Bulletin,1998,41(5):1167-1171
    117.Deyu Gao, R. B.Heimann, J.Lerchner, J. Seidel,G.Wolf. Development of a novel moisture sensor based on superabsorbent poly(acrylamide)-montmorillonite composite hydrogels [J],Journal of Materials Science,2001,36(18):778-782
    118.Polybenzoxazine nanocomposites of clay and for making same method,Patent number:6323270
    119.张争奇,张登良,杨尚荣.改性沥青机理研究[J],西安公路交通大学学报,1998,18(4):21-25
    120.付玉,余剑英,冯鹏程,周立平,郭连杰.蒙脱土改性沥青的制备与性能研究[J].武汉理工大学学报,2007,29(9):51~54
    121.王仕峰,张勇,朱玉堂,张隐西.SBS/炭黑共混物改性沥青高温贮存稳定性研究[J],中国建筑防水,2004,(4):25~28
    122.Makoto ogawa,Kazuyuki Kuroda. Preparation of Inorganic-Organic Nanocomposites through Intercalation of organoamnonium Ions into Layered [J],Bull. Chem.Soc.Jpn,1997,70(11):2593~2618
    123.刘立敏,乔放,朱晓光,等.熔体插层制备尼龙6/蒙脱土纳米复合材料的性能表征[J],高分子学报,1998,3:304~310
    124.虞文景.改性沥青现状及发展前景(上)[J],交通世界,2004(5):38~40
    125.虞文景.改性沥青现状及发展前景(下)[J].交通世界,2004(6):71~73
    126.于漧.硅藻土作沥青改性剂的研究[J],矿产保护与利用,2006(2):17~22
    127.师钧.硫磺稀释沥青改性剂的应用技术研究[J],交通世界,2005(3):48~49
    128.黄跟来,孙志杰,王明超,张佐光.玄武岩纤维及其复合材料基本力学性能试验研究[J].玻璃钢/复合材料,2006(1):24~27
    129.张厚记,胡曙光.碱性矿物纤维增强沥青混合料的研究[J],武汉理工大学学报,2006(4):31~34
    130.刘大梁,岳爱军,陈琳.纳米碳酸钙改性沥青及混合料性能研究[J],石油沥青,2004(4):27~29
    131.马蜂.纳米碳酸钙改性沥青路用性能及改性机理研究[D].西安:长安大学,2004
    132.田泽峰.CaS04晶须改性沥青的性能研究[D],沈阳:东北大学,2004
    133.黄概.季铵盐有机膨润土的设备及其催化性能的初步研究[D],南宁:广西大学,2003
    134.张兴友,谭忆秋,王哲人.白炭黑改性沥青及其混合料的路用性能研究[J],公路交通科技,2005(7):23~40
    135.Chiara Gasparetti.Application of the Response Surface Methodolgy (RSM)for Optimizing the Production of Volatile organic compounds (VOCs) by Trichosporon Moniliiforme [J],Enzyme and Microbial Technology,2006(39):1341-1346
    136.景彦平.关于沥青物态结构的研究[J],重庆交通学院学报,2005(10):21~23
    137.封基良,黄晓明.沥青粘结料粘弹性参数确定方法的研究[J].公路交通科技,2006(5):16~22
    138.J. Murali Krishnan K. R. Rajagopal.On the Mechanical Behavior of Asphalt [J], Mechanics of Materials,2005(37):1085~1100
    139. Navarro, Partal, Martinez-Boza, Gallegos. Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens[J],Fuel,2004,83:2041-2049
    140. Yetkin Yildirim. Polymer modified asphalt binders [J],Construction and Building Materials,2007,21:66-72
    141.Jianying Yu, XuanZeng, Shaopeng Wu,Lin Wang,Gang Liu. Prepararion and properties of montmorillonite modified asphalts [J],Materials Science and Engineering A 2007,447:233-238
    142.Burak Sengoz, Giray Isikyakar. Analysis of styrene-butadiene-styrence polymer modified bitumen using fluorescent microscopy and conventional test methods [J], Journal of Hazardous Materials,2008,150:424-432
    143.Giovanni Polacco, Jiri Stastna, Dario Biondi, Ludovit Zanzotto.Effect of composition on the properties of SEBS modified asphalts [J],European Polymer Journal 2006,42:1113-1121
    144. Kathleen A. Carrado Langqiu Zu. In Situ Synthesis of Polymer-Clay Nanocmposites from Silicate Gels[J],Chem.Mater.1998,10:1440-1445
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.