甘氨酸螯合铁及其纳米脂质体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基酸螯合铁是一种新型的和理想的铁营养强化剂,它具有良好的理化性质和生物活性,对预防和治疗缺铁症、改善缺铁性贫血有着重要的意义。但氨基酸螯合铁在强酸环境中不稳定、易于解离成无机铁盐,从而降低其生物利用率、影响其补铁效果。纳米脂质体作为一种新型的纳米运载系统是改善和增加氨基酸螯合铁稳定性并提高其口服生物利用率的可能途径。
     本论文选用氨基酸螯合铁中的甘氨酸螯合铁为对象,系统地研究了甘氨酸螯合铁的合成、表征及其抗氧化能力和作为铁强化剂的透析性,探讨了不同工艺制得的甘氨酸螯合铁的存在状态;制备了甘氨酸螯合铁纳米脂质体,研究了脂质体的稳定性;以甘氨酸螯合铁纳米脂质体为铁源强化牛奶,研究了其对牛奶理化性质的影响;以缺铁性贫血大鼠为模型,研究了甘氨酸螯合铁纳米脂质体对缺铁性贫血的治疗作用。
     以甘氨酸和无机铁盐为主要原料在水相体系中合成甘氨酸螯合铁,并采用有机溶剂沉淀法将甘氨酸螯合铁从反应液中分离出来。结果发现在制备过程中,将甘氨酸螯合铁从反应液分离后分别采用冷藏和冷冻两种方式处理,干燥所得产品的溶解性有明显差异,前者是具有良好溶解性的溶解型甘氨酸螯合铁,后者是溶解性较差的微溶型甘氨酸螯合铁。元素分析结果显示,两者具有一致的元素摩尔比,Fe(II):N:H2O的摩尔比为1:3:1。溶解型和微溶型甘氨酸螯合铁的摩尔电导率分别为22.00和27.80Ω-1cm2mol-1。红外光谱分析、X射线粉末衍射分析、热重分析结果显示,与游离甘氨酸配体相比,甘氨酸螯合铁的谱图发生了明显变化,氨基和羧基官能团的波段明显地红移或蓝移;α-氨基酸的特征吸收峰明显减弱或消失;甘氨酸螯合铁中不存在游离的甘氨酸,甘氨酸的羧基和氨基均与中心铁离子形成了配位键,生成了螯合物。Zeta电位分析结果显示,溶解型甘氨酸螯合铁水溶液的zeta电位很小,它在水相中是以真溶液存在的;微溶型甘氨酸螯合铁水溶液的zeta电位绝对值较大,它在水相中是以固体微粒的形式存在。
     采用反相蒸发法制备甘氨酸螯合铁脂质体,以包封率为指标,优化了制备参数,结果显示,胆固醇/磷脂质量比1:8,吐温80/磷脂质量比1:2,甘氨酸螫合铁/磷脂质量比3:10,水合pH6.8,超声功率300 W,制备的甘氨酸螯合铁脂质体包封率较高,达84.80%。视频变焦显微镜图显示,甘氨酸螯合铁脂质体有良好的球形结构和较为均匀的粒径分布。平均粒径为559.2 nm, PDI指数为0.313,zeta电位为+9.6 mV。体外释放结果表明,在模拟胃液中前4h,芯材累积释放率约为5%;前5h,约为8%;至20h时,甘氨酸螯合铁的累积释放率约为55%;在不含胆酸盐的模拟肠液中放置20 h,几乎没有释放;在含有胆酸盐的模拟肠液中放置20 h,甘氨酸螯合铁的累积释放率约为5%。在模拟胃肠液中释放后脂质体的粒径测定结果显示,平均粒径略有增加,而视频变焦显微镜图显示,脂质体仍保持着良好的球形形态。因而甘氨酸螯合铁脂质体有良好的缓释效果。
     采用反相蒸发法超声辅助制备了甘氨酸螯合铁纳米脂质体,所得脂质体的包封率可达76.2%。透射电镜图显示,甘氨酸螯合铁纳米脂质体具有良好的球形形态,一致的粒径分布和光滑的表面,绝大部分微粒粒径在100 nm以下。平均粒径为101.3 nm,PDI指数为0.361。在3个月的贮藏期内,脂质体有所泄露,但仍有较好的稳定性。经超声处理,甘氨酸螯合铁纳米脂质体发生了一定程度的泄露,粒子粒径明显降低,平均粒径由101.3 nm降低到86.8 nm, PDI指数由0.361降低到0.261。经加热处理,在前10 min脂质体有很好的稳定性,随后有较严重的泄露,粒子粒径没有发生明显变化,平均粒径由101.3 nm变为103.5 nm, PDI指数由0.361变为0.335。经金属离子的处理,甘氨酸螯合铁纳米脂质体在一价金属离子(Na+r和K+)溶液中发生明显泄露,脂质体粒径没有明显变化;在二价金属离子Mg+溶液中,脂质体泄露明显,粒子粒径明显增加;在Ca2+水溶液中,脂质体没有明显泄露,粒子粒径明显增加。体外释放结果显示,在模拟胃液中放置5 h,甘氨酸螯合铁累积释放率约为15%;在模拟肠液中放置5 h,其累积释放率约为20%,缓释效果明显。
     甘氨酸螯合铁纳米脂质体作为铁源强化牛奶与硫酸亚铁、甘氨酸螯合铁相比对牛奶脂质氧化程度更小,引起的感官质量变化程度更弱,牛奶的组织状态更稳定。
     缺铁性贫血大鼠的补铁效果和对贫血状况改善实验表明,与硫酸亚铁和甘氨酸螯合铁相比,甘氨酸螯合铁纳米脂质体可以更有效地改善大鼠的贫血状况,提高血红蛋白含量,增加体内的铁贮存。因而,甘氨酸螯合铁纳米脂质体的生物利用率得到了增加。纳米脂质体是一种能够增加甘氨酸螯合铁稳定性,提高其生物利用率的优良载体。
Iron amino acid chelates is promising iron fortifier used to combat iron-deficiency malnutrition, which is more stable and more bioavailable than the common iron fortifier such as ferrous sulfate. However, iron amino acid chelates are not stable under strong acid condition, and the complexes can be dissociated to inorganic iron salt, so the effect of combating iron-deficiency is decreased. As a nano-delivery system (NDS), nanoliposomes are a possible route that is helpful to improve and increase the stability of iron amino acid chelates, and to enhance oral bioavailability of the complexes.
     Ferrous glycinate was selected as a representative of iron amino acid chelates. The preparation, characterization, antioxidant activity and iron availability of ferrous glycinate was systematically investigated; existence states of ferrous glyciante prepared from different methods was evaluated; preparation and stability of ferrous glycinate nanoliposomes was studied; effect of ferrous glycinate nanoliposomes as iron source on physical-chemistry property of milk-fortified was estimated; the feasibility of using nanoliposomes as an oral delivery system to improve the bioavailability of ferrous glycinate was examined using iron-deficiency anemia SD rats as the model.
     Ferrous glycinate was prepared using glycine and ferrous chloride in aqueous system, and the product was separated from the reactive system using organic solvent-deposition method. The product was stored at low temperature 4℃or-18℃for 24 h, and then the product was dried in a vacuum drying oven to get soluble ferrous glycinate or in a freeze drier to get sparingly soluble ferrous glycinate. The results of element analysis showed that soluble and sparingly soluble ferrous glycinate have the same element composition, and the molar ratio of Fe(II):N:H2O was 1:3:1. Molar conductivities of soluble and sparingly soluble ferrous glycinate were 22.00 and 27.80Ω-1cm2mol-1, respectively. Fourier transform infrared (FT-IR) spectra, X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) of soluble and sparingly soluble ferrous glycinate were significantly different from that of free glycine ligand. Coordination bonds were formed between Fe(II) and glycine, and iron-glycine chelate was produced. The results of zeta potentials showed that soluble ferrous glycinate solution was molecular solution, and the absolute value of zeta potential was small; sparingly soluble ferrous glycinate solution was pseudosolution, and the absolute value of zeta potential was bigger.
     Ferrous glycinate nanoliposomes were prepared using reverse phase evaporation method. Effects of CHOL, Tween 80, ferrous glycinate concentration, pH of hydrating media, and sonication strength on EE were investigated. The optimized technology parameters were CHOL/EPC 1:8, Tween 80/EPC 1:2, ferrous glycinate/EPC 3:10, hydrating media pH 6.8, and sonication power 300 W, and the EE was 84.80% under the condition. The results of VZM photo showed that ferrous glycinate liposomes were spheral shape, and size distribution was homogeneous. Mean diameter was 559.2 nm; polydispersity index (PDI) was 0.313; zeta potential was+9.6 mV. The release of ferrous glycinate liposomes in vitro showed that little core material was released from liposomes in the first 4 h in simulated gastrointestinal juice. The mean diameter of liposomes increased from 559.2 nm to 692.9 nm and 677.8 nm after incubation in simulated gastrointestinal juice of pH 1.3 and pH 7.5, respectively. VZM photo of ferrous glycinate liposomes showed that the liposomes were still spheral shape after incubation. The stability of ferrous glycinate in strong acid environment was greatly improved by encapsulation in liposomes.
     Ferrous glycinate nanoliposomes with the EE of 76.2% were prepared by reverse phase evaporation method coupling sonication. The TEM micrographs showed that ferrous glycinate nanoliposomes were spherical-shaped vesicles, and most of they were less than 100 nm in diameter; the mean diameter and PDI index were 101.3 nm and 0.361, respectively. During 3 month storage period, some core material was leaked out from nanoliposome, but the stability of nanoliposomal vesicles was not significantly damaged. After sonication, some core material was leaked out from nanoliposomes, and the mean diameter was obviously reduced from 101.3 to 86.8 nm, and PDI value was reduced from 0.361 to 0.261. During heating period, nanoliposomes was stable in the first 10 min, and then ferrous glycinate was significantly released from nanoliposomes; the mean diameter was changed from 101.3 nm to 103.5 nm, and PDI value was changed from 0.361 to 0.335. The results of effect of metal ions showed that univalent metal ions (Na+and K+) caused obvious leakage of nanoliposomes, and the mean diameter was not significantly changed; Mg2+ obviously caused leakage of nanoliposomes and increase of mean diameter; Ca+ didn't cause leakage of nanoliposomes, and the mean diameter was significantly increased. Furthermore, the results of in vitro release of small ferrous glycinate glycinate liposomes showed that about 15% ferrous glycinate was released from liposomes in simulated gastric juice at 37℃for 5 h; about 20% ferrous glyciante was release from liposomes in simulated intestinal juice at 37℃for 5 h; ferrous glycinate nanoliposomes could effectively protect ferrous glycinate.
     Compared with ferrous sulfate and ferrous glycinate, ferrous glycinate nanoliposomes (FGL) were more stable to fortify milk as iron source. Fat oxidation of FGL-fortified milk was weaker; sensory quality was better; organization structure was more stable.
     The effectiveness of treatment of iron-deficiency anemia with ferrous glycinate nanoliposomes was investigated using SD rats, and compared with that of ferrous glycinate and ferrous sulfate. Hb, serum Fe, total iron binding capacity, iron contents of liver and spleen were measured at the end of the intervention. Significant treatment effects were observed for Hb, serum Fe, total iron binding capacity, and iron contents of liver and spleen (P<0.05) in ferrous glycinate nanoliposomes group. Ferrous glycinate nanoliposomes as an iron supplement performed better that ferrous glycinate and ferrous sulfate in groups of iron-deficient rats. Ferrous glycinate nanoliposomes may be the choice of iron for the treatment of iron-deficiency anemia because of its high effectiveness.
引文
1.石波,刁其玉,苏晓鸥.新型饲料添加剂开发与应用[M].北京:化学工业出版社,2005.66-92
    2. Whittaker P,Ali S F,Imam S Z,et al. Acute toxicity of carbonyl iron and sodium iron EDTA compared with ferrous sulfate in young rats.Regul Toxicol Pharmacol,2002,36:280-286
    3. Wienk K J H,Beynen A C.Efficacy of iron repletion in anemic rats after the feeding of a purified or natural-ingredient diet with ferrous sulphate or carbonyl iron.Nutr Res,1996, 16(4):615-626
    4. Tondeur M C,Schauer C S,Christofides A L,et al.Determination of iron absorption from intrinsically labeled microencapsulated ferrous fumarate (sprinkles) in infants with different iron and hematologic status by using a dual-stable-isotope method.Am J Clin Nutr,2004,80:1436-1444
    5.蒋云霞,钟国清.补铁剂的制备方法研究现状[J].化工中间体,2009,8:5-9
    6.孙丙政,王云峰,黄聪,等.口服补铁剂及多糖铁络合物的研究进展[J].微量元素与健康研究,2009,26(5):64-67
    7. Marchetti M,Ashmead H D,Tossani N,et al.Comparison of the rates of vitamin degradation when mixed with metal sulphates or metal amino acid chelates. J Food Compos Anal,2000,13:875-884
    8. Jeppsen R B,Borzelleca J F.Safety evaluation of ferrous bisglycinate chelate.Food Chem Toxicol,1999,37:723-731
    9. Allen L H. Advantages and limitations of iron amino acid chelates as iron fortificants. Nutr Rev,2002,60(7):S18-S21
    10. Ashmead H H,Ashmead H D,Graff D J.Amino acid chelated compositions for delivery to specific biological tissue sites[P].United States Patent,4863898.1989-Sep-5
    11. Ashmead H H.Pure amino acid chelates[P].United States Patent,4599152.1986-Jul-8
    12. Ericson C,Ashmead D.Enhancing solubility of iron amino acid chelates and iron proteinates[P].United States Patent,6716814B2.2004-Apr-6
    13. Pedersen-M,Ashmead H D.Amino acid chelates having improved palatability[P].United States Patent,5516925.1996-May-14
    14. El-Hawary M F S,E1-Shobaki F A,Kholeif T,et al.The absorption of iron, with or without supplements of single amino acids and of ascorbic acid, in healthy and Fe-deficient children.Br J Nutr,1975,33:351-355
    15. Ashmead H D.The absorption and metabolism of iron amino acid chelate.Arch Latinoam Nutr,2001,51(1):13-21
    16. Peres J M,Bouhallab S,Bureau F,et al. Mechanisms of absorption of caseinophospho-peptide bound iron.J Nutr Biochem,1999,10:215-222
    17. Mazariegos D I,Pizarro F,Olivares M,et al.The mechanisms for regulating absorption of Fe bis-glycine chelate and Fe-ascorbate in Caco-2 cells are similar.J Nutr,2004, 134:395-398
    18. Ashmead H H.Soluble iron proteinates[P].United States Patent,4216144.1980-May-08
    19. Olivares M,Pizarro F,Pineda O,et al.Milk inhibits and ascorbic acid favors ferrous bis-glycine chelate bioavailability in humans.J Nutr,1997,127:1407-1411
    20. Jeppsen R B.Toxicology and safety of Ferrochel and other iron amino acid chelates.Arch Latinoam Nutr,2001,51(1):26-34
    21.周桂莲.氨基酸螯合铁的研究与应用进展[J].饲料博览,1998,10(6):10-12
    22.林萍.甘氨酸螯合铁合成及其理化性质的研究[D]:[硕士学位论文].无锡:江南大学食品学院.2004
    23. Bovell-Benjamin A C,Viteri F E,Alle L H.Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status.Am J Clin Nutr, 2000,71:1563-1569
    24.周桂莲,韩友文,滕冰,等.大鼠对氨基酸螯合铁吸收和转运特点的研究[J].畜牧兽医学报,2004,35(1):15-22
    25.周桂莲.氨基酸螯合铁的营养作用机理和相对生物学效价[D]:[博士学位论文].哈尔滨:东北农业大学动物科技学院.2000
    26. Fitzsimmons B W,Hume A,Larkworthy L F,et al.The preparation and characterisation of some complexes of iron(II) with amino acids.Inorg Chim Acta,1985,106(2):109-114
    27. Abd-Elmoneim M M,El-ajaily M M,Maihub A A,et al.Investigation and biological activity of some nonpolar iron amino acid chelates.Pak J Nutr,2008,7(5):673-678
    28. Garcia-Casal M N,Layrisse M.The effect of change in pH on the solubility of iron bis-glycinate chelate and other iron compounds.Arch Latinoam Nutr,2001,51:35-36
    29. Ashmead S D.The chemistry of ferrous bis-glycinate chelate.Arch Latinoam Nutr, 2001,51(1):7-12
    30. Olivares M,Pizarro F.Bioavailability of iron bis-glycinate chelate in water.Arch Latinoam Nutr,2001,51(1):21-25
    31. Fouad G T,Evans M,Barss S,et al. Safety and tolerability of iron amino acid chelate in premenopausal women.FASEB J,2008,22:1b746
    32. lost C,Name J J,Jeppsen R B,et al.Repleting hemoglobin in iron deficiency anemia in young children through liquid milk fortification with bioavailable iron amino acid chelate. J Am Coll Nutr,1998,17(2):187-194
    33. Anderson M D,Abdel-Monem M M.Amino acid metal complexes using hydrolyzed protein as the amino acid source and methods re same[P].United States Patent, 5698724.1997-Dec-16
    34. Thompson C R,Ericson C,Ashmead S,et al.Mixed amino acid/mineral compound having improved solubility[P].United States Patent,20070172551.2007-Jul-26
    35. Svoboda M,Drabek J.Efficiency of voluntary consumption of amino acid-chelated iron in preventing anaemia of suckling piglets. Acta Vet Brno,2003,72:499-507
    36. Ranganathan S,Lakshmi K V,Reddy V.Trial of ferrous glycine sulphate in the fortification of common salt with iron.Food Chem,1996,57(2):311-315
    37. Coplin M,Schuette S,Leichtmann G,et al.Tolerability of iron: a comparison of bis-glycino iron II and ferrous sulfate.Clin Ther,1991,13(5):606-612
    38. Bovell-Benjamin A C,Allen L H,Guinard J-X.Toddlers' acceptance of whole maize meal porridge fortified with ferrous bisglycinate. Food Qual Pref,1999,10:123-128
    39. Giorgini E,Fisberg M,De Paula R A,et al.The use of sweet rolls fortified with iron bis-glycinate chelate in the prevention of iron deficiency anemia in preschool children. Arch Latinoam Nutr,2001,51(S1):48-53
    40. De Paula R A, Fisberg M.The use of sugar fortified with iron tris-glycinate chelate in the prevention of iron deficiency anemia in preschool children.Arch Latinoam Nutr, 2001,51(Sl):54-59
    41. Van Stuijvenberg M E,Smuts C M,Wolmarans P,et al.The efficacy of ferrous bisglycinate and electrolytic iron as fortificants in bread in iron-deficient school children.Br J Nutr, 2006,95:532-538
    42. Szarfarc S C,De Cassana L M N,Fujimori E,et al.Relative effectiveness of iron bis-glycinate chelate (Ferrochel) and ferrous sulfate in the control of iron deficiency in pregnant women.Arch Latinoam Nutr,2001,51(1):42-47
    43. Layrisse M,Garcia-Casal M N,Solano L,et al.Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols.J Nutr,2000, 130:2195-2199
    44. Pineda O,Ashmead H D.Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate.Nutrition,2001,17:381-384
    45. Miglioranza L H S,Matsuo T,Caballero-Cordoba G M,et al.Effect of long-term fortification of whey drink with ferrous bisglycinate on anemia prevalence in children and adolescents from deprived areas in Londrina, Parana, Brazil.Nutrition,2003,19:419-421
    46.张晓鸣,杜宣利.甘氨酸亚铁络合物合成工艺的研究[J].饲料工业,1995,16(10):9-11
    47.钟国清.氨基酸微量元素螯合物的制备方法研究[J].饲料工业,2004,25(1):47-49
    48.赵惠敏,闫俊英,王继业,等.氨基乙酸螯合铁的研究[J].河北师范大学学报(自然科学版),2000,24(2):232-233
    49.秦卫东,吕兆启,涂宝军.复合氨基酸亚铁的制备研究[J]中国食品添加剂,2003(6):42-45
    50.徐忠,杨波.食品营养强化剂复合氨基酸亚铁络合物制备工艺研究[J].哈尔滨商业大学学报,2001,17(2):91-94
    51.徐忠,韩玉洁.复合氨基酸铁络合物抗氧化性研究[J].食品与机械,1997(1):22
    52.梁柏林,周民杰.羽毛微波水解制备复合氨基酸的工艺研究[J].中国饲料,2006(20):37-38
    53.姚磊,赵海田,王静.食品营养强化剂甘氨酸亚铁螯合物的合成工艺[J].食品与发酵工业,2004,30(9):69-71
    54.张大飞,照日格图,乌云.固相法合成甘氨酸亚铁络合物及其表征[J].内蒙古师范大学学报(自然科学汉文版),2007,36(3):333-337
    55.易凯,张妮娅,齐德生.微量元素氨基酸螯合物螯合率测定方法研究[J].饲料工业,2007,28(14):47-49
    56.吴茹怡,曾里,曾凡骏.复合氨基酸螯合物鉴定方法的研究[J].食品科技,2006(3):104-108
    57.靳雅笙,赖建强,赵显峰,等.甘氨酸亚铁改善学龄儿童营养性贫血的效果观察[J].卫生研究,2005,34(5):588-589
    58.刘惠芳,周安国,王之盛,等.氨基酸螯合铁对哺乳仔猪生产性能的影响[J].中国饲料,2003(23):16-18
    59.王明镇,刘梦洲.氨基酸螯合铁对早期断奶仔猪生产性能的影响[J].中国畜牧兽医,2007,34(10):14-15
    60.石文艳,潘晓亮,万鹏程.氨基酸螯合铁预防仔猪贫血的试验效果[J].新疆农垦科技,2005(3):26-27
    61.王纪亭,姜殿文,万文菊.氨基酸螯合铁在母猪生产中的应用研究[J].山东农业科学,2003(3):44-45
    62.张晓鸣,徐静.甘氨酸亚铁在强化米粉中的应用研究[J].食品与机械,2006,22(5):9-12
    63.王进波,吴天星.氨基酸螯合铁在养猪生产中的应用研究进展[J].中国畜牧杂志,2004,40(7):42-45
    64.褚鹏云,张同超.氨基酸螯合铁的研究及应用现状[J].高师理科学刊,2008,28(2):65-68
    65.张伟,姜礼胜,王贵平,等.氨基酸螯合物的营养及应用研究进展[J].饲料工业,2001,22(6):18-25
    66. Mimura E C M,Bregano J W,Dichi J B,et al.Comparson of ferrous sulfate and ferrous glycinate chelate for the treatment of iron deficiency anemia in gastrectomized patients. Nutrition,2008,24:663-668
    67. Fox T E,Eagles J,Fairweather-Tait S J.Bioavailability of iron glycine as a fortificant in infant foods.Am J Clin Nutr,1998,67:664-668
    68. Gomez-Hens A,Fernandez-Romero J M.Analytical methods for the control of liposomal delivery systems.Trends Anal Chem,2006,25(2):167-178
    69. Lasic D D.Novel applications of liposomes.Trends Biotechnol,1998,16(7):307-321
    70. Kirby C,Clarke J,Gregoriadis G.Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro.Biochem J,1980,186:591-598
    71. Torchilin V, Weissig V.Liposomes:a practical appraoch (Practical Approach Series)-2nd ed.England:Oxford University Press,2003.
    72. Bajoria R,Sooranna S R.Liposome as a drug carrier system:prospects for safer prescribing during pregnancy: a review.Placenta,1998,12:265-287
    73. Meisner D,Mezei M.Liposome ocular delivery systems.Adv Drug Deliver Rev,1995,16: 75-93
    74. Gregoriadis G,Leathwood P D.Enzyme entrapment in liposomes.FEBS Lett,1971,14(2): 95-99
    75. Sharma A,Sharma U S.Liposomes in drug delivery:progress and limitations.Int J Pharm, 1997,154:123-140
    76. Zaru M,Mourtas S,Klepetsanis P,et al.Liposomes for drug delivery to the lungs by nebulization.Eur J Pharm Biopharm,2007,67:655-666
    77. Patel K R,Tin G W,Williams L E,et al.Biodistribution of phospholipid vesicles in mice bearing lewis lung carcinoma and granuloma.J Nucl Med,1985,26(9):1048-1055
    78. Shaheen S M,Ahmed F R S.Liposome as a carrier for advanced drug delivery.Pak J Biol Sci,2006,9(6):1181-1191
    79. Lasic D D.Liposomes: from physics to applications.Netherland:Elsevier Science Publishers,1993
    80. Mozafari M R.Commentary:amphiphiles and their aggregates in basic and applied science.A post-conference thought on nomenclature.Cellul Mol Biol Lett,2005, 10(4):733-734
    81. Langston M V,Ramprasad M P,Kararli T T,et al.Modulation of the sustained delivery of myelopoiet-iin (Leridistim) encapsulated in multivesicular liposomes (DepoFoam). J Control Rel,2003,89(1):87-99
    82. Keller B C.Liposomes in nutrition.Trends Food Sci Technol,2001,12(1):25-31
    83. Mozafari M R,Khosravi-Darani K,Borazan G G,et al.Encapsulation of food ingredients using nanoliposome technology.Int J Food Prop,2008,11:833-844
    84. Colas J C,Shi W,Rao V,et al.Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting.Micron,2007,38:841-847
    85.陈怀颖,王咏梅,常首,等.纳米脂质体化妆品的质量研究[J].中国化妆品,2008(6):92-94
    86. Xia S Q,Xu S Y,Zhang X M.Optimization in the preparation of coenzyme Q nanoliposomes. JAgric Food Chem,2006,54(17):6358-6366
    87. Xia S Q,Xu S Y,Zhang X M,et al.Effect of coenzyme Q10 incorporation on the characteristics of nanoliposomes. J Phys Chem B,2007,111:2200-2207
    88. Noble C O,Krauze M T,Drummond D C,et al.Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors:pharmacology and efficacy. Cancer Res,2006,66(5):2801-2806
    89. Drummond D C,Noble C O,Guo Z,et al.Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy.Cancer Res,2006,66(6): 3271-3277
    90. Ramachandran S,Quist A P,Kumar S,et al.Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity.Langmuir,2006,22:8156-8162
    91. Malaekeh-Nikouei B,Malaekeh-Nikouei M,Oskuee R K,et al.Preparation, characterization, transfection efficiency, and cytotoxicity of liposomes containing oligoamine-modified cholesterols as nanocarriers to Neuro2A cells. Nanomed:Nanotechnol Biol Med,2009,5:457-462
    92. Drummond D C,Noble C O,Guo Z,et al.Development of a highly stable and targetable nanoliposomal formulation of topotecan.J Control Rel,2010,141:13-21
    93. Du B,Li Y,A Y,et al. Preparation, characterization and in vivo evaluation of 2-methoxyestradiol-loaded liposomes.Int J Pharm,2010,384:140-147
    94. Riaz M.Liposomes preparation methods.Pak J Pharm Sci,1996,19(1):65-77
    95. Kaisheva M,Alexandrova L,Spassov I,et al.Investigation of thin films formed from liposome suspensions on quartz substrate.Coll Surf B,2001,20:137-143
    96. Vassilicff C S,Panaiotov I,Manev E D,et al.Kinetics of liposome disintegration from foam film studies: effect of the lipid bilayer phase state.Biophys Chem,1996,58:97-107
    97. Mourtas S,Fotopoulou S,Duraj S,et al.Liposomal drugs dispersed in hydrogels effect of liposome, drug and gel properties on drug release kinetics.Coll Surf B,2007,55:212-221
    98. Walde P,Ichikawa S.Enzymes inside lipid vesicles preparation reactivity and applications. Biomol Eng,2001,18:143-177
    99. Maitani, S Igarashi,Sato M,et al.Cationic liposome and a modified ethanol injection method to prepare liposomes, increased gene expression.Int J Pharm,2007,342:33-39
    100. Szoka F,Papahadjopoulos D.Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation.Proc Natl Acad Sci USA, 1978,75(9):4194-4198
    101. Nagata T,Okada K,Takebe I,et al.Delivery of tobacco mosaic virus RNA into plant protoplasts mediated by reverse-phase evaporation vesicles (liposomes).Mol Gen Genet, 1981,184:161-165
    102. Huang、Y,Gao J,Chen J,et al.Cationic liposomes modified with non-ionic surfactants as effective non-viral carrier for gene transfer.Coll Surf B,2006,49:158-164
    103. Bogdanov A A,Klibanov A L,Torchilin V P、Protein immobilization on the surface of liposomes via carbodiimide activation in the presence of N-hydroxysulfosuccinimide. FEBS Lett,1988,231(2):381-384
    104. Rongen H A H,Bult A,Bennekom W P.Liposomes and immunoassays.J Immunol Methods,1997,204:105-133
    105. Maulucci G,Spirito M D,Arcovito G,et al.Particle size distribution in DMPC vesicles solutions undergoing different sonication times.Biophys J,2005,88:3545-3550
    106. An S Y,Bui M P N,Nam Y J,et al.Preparation of monodisperse and size-controlled poly(ethylene glycol) hydrogel nanoparticles using liposome templates.J Colloid Interface Sci,2009,331:98-103
    107. V Weissig (eds).Liposomes methods and protocols Vol 1:Pharmaceutical nanocarriers. M.R.Mozafari.Chapter 2:Nanoliposomes:preparation and analysis. London: Humana Press,2010.29-50
    108. Barnadas-Rodriguez R,Sabes M.Factors involved in the productin of liposomes with a high-pressure homogenizer.Int J Pharm,2001,213:175-186
    109. Gulati M,Grover M,Singh S,et al.Lipophilic drug derivatives in liposomes.Int J Pharm, 1998,165:129-168
    110. Peer D,Karp J M,Hong S,et al.Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol,2007,2:751-760
    111. Betz G,Aeppli A,Menshutina N,et al.In vivo comparison of various liposome formulations for cosmetic application.Int J Pharm,2005,296:44-54
    112. Malheiros P S,Daroit D J,Brandelli A.Food applications of liposome-encapsulated antimicrobial peptides.Trends Food Sci Technol,2010,21:284-292
    113. Mirahmadi N,Babaei M H,Vali A M,et al.99mTc-HMPAO-labeled liposomes:an investigation into the effects of some formulation factors on labeling efficiency and in vitro stability.Nucl Med Biol,2008,35:387-392
    114. Gregoriadis QMcCormack B,Obrenovic M,et al.Vaccine entrapment in liposmes. Methods,1999,19:156-162
    115. Singh M,Ariatti M.Targeted gene delivery into HepG2 cells using complexes containing DNA, cationized asialoorosomucoid and activated cationic liposomes.J Control Rel,2003, 92:383-394
    116. Lundahl P,Zeng C M,Hagglund C L,et al.Chromatographic approaches to liposomes, proteoliposomes and biomembrane vesicles.J Chromatog B,1999,720:103-120
    117.颜科,胡春梅,潘黎军,等.阿霉素脂质体的制备及对MCF-7/DOX作用的考察[J].重庆医科大学学报,2009,34(3):329-331
    118.林巧平,郭仁平,王青松,等.注射用多西他赛脂质体的制备、体外释放及细胞毒作用[J]:中国药科大学学报,2008,39(5):417-421
    119.邱永宏,戈延茹,五成润,等.盐酸依立替康脂质体冻干粉针的制备及其质量评价[J].江苏大学学报(医学版),2009,19(4):314-319
    120.王晓燕,曹德英.两性霉素B冻干脂质体的制备及在小鼠体内分布的考察[J].中国医院药学杂志,2009,29(18):1530-1534
    121.张自强,朱家壁,姚静.尼莫地平前体脂质体片剂的制备及释放度考察[J].中国药科大学学报,2003,34(6):514-517
    122.陈永顺,方侃,徐春丽,等月桂酸单乙醇酰胺修饰利福平脂质体制备及性能研究[J].中国医院药学杂志,2009,29(1):16-19
    123.周强,赵建宁.万古霉素脂质体的制备及质量考察[J].现代生物医学进展,2009,9(8):1521-1523
    124.扶亚祥,何湘蓉,苏建明,等.奥比沙星纳米脂质体制备工艺及处方优化研究[J].动物医学进展,2009,30(4):31-35
    125.鲁卫东,林意菊,代云波,等.流感疫苗脂质体冻干粉的制备及其免疫原性[J].中国药科大学学报,2009,40(3):218-221
    126.徐盛杰,涂家生,庞卉.盐酸罗哌卡因多囊脂质体的制备及体外释放行为[J].中国药科大学学报,2009,40(3):213-217
    127. Touitou E,Godin B,Weiss C.Enhanced delivery of drugs into and across the skin by ethosomal carriers.Drug Devel Res,2000,50:406-415
    128. Esposito E,Drechsler M,Mariani P,et al.Nanosystems for skin hydration: a comparative study.Int J Cosmet Sci,2007,29:39-47
    129. Choi M J,Maibach H I.Elastic vesicles as topical/transdermal drug delivery systems.Int J Cosmet Sci,2005,27:211-221
    130. Phetdee M,Polnok A,Viyoch J.Development of chitosan-coated liposomes for sustained delivery of tamarind fruit pulp's extract to the skin.Int J Cosmet Sci,2008,30:285-295
    131. Meyenbur S,Lilie H,Panzner S,et al.Fibrin encapsulated liposomes as protein delivery system studies on the in vitro release behavior.J Control Rel,2000,69:159-168
    132. Wilson N,Shah N P.Microencapsulation of vitamins. ASEAN Food J,2007,14(1):1-14
    133. Kong B,Zhang H,Xiong Y L.Antioxidant activity of spice extracts in a liposome system and in cooked pork patties and the possible mode of action.Meat Sci,2010,85(4):772-778
    134. Kheadr E E,Vuillemard J C,E1-Deeb S A.Impact of liposome-encapsulated enzyme cocktails on cheddar cheese ripening.Food Res Int,2003,36:241-252
    135. Padamwar M N,Pokharkar V B.Development of vitamin loaded topical liposomal formulation using factorial design approach: drug deposition and stability.Int J Pharm, 2006,320:37-44
    136. Kosaraju S L,Tran C,Lawrence A.Liposomal delivery systems for encapsulation of ferrous sulfate:preparation and characterization.J Liposome Res,2006,16(4):347-358
    137.刘亚文,曹光群,陈婷婷.维生素C脂质体的制备研究[J].大豆科学,2007,26(2):270-272
    138.范远景,张必芳,刘艳.番茄红素纳米脂质体的制备研究[J].食品科学,2008,29(12):238-241
    139.葛兰,段相林,常彦忠.血红素铁脂质体的制备[J].食品科学,2009,30(12):48-51
    140.任文霞,李建科.茶多酚脂质体的制备[J].食品工业科技,2008,29(11):186-189
    141.旷英姿,马全红,郝小祯,等.茶多酚脂质体的制备研究[J].中国生化药物杂志,2006,27(1):28-31
    142.范明辉,许时婴.红景天苷纳米脂质体的制备及若干工艺参数的优化[J].食品科学,2007,28(11):189-193
    143.夏书芹,许时婴.硫酸亚铁脂质体的研制[J].无锡轻工大学学报,2004,23(4):74-77
    144.VP托尔钦林,V魏西希编,邓意辉,徐晖译.脂质体[M].原著第2版.北京:化学工业出版社,2007.9,178-179,182,276,277.
    1. Ashmead H H,Ashmead H D,Graff D J.Amino acid chelated compositions for delivery to specific biological tissue sites[P].United States Patent,4863898.1989-Sep-5
    2. Ashmead H H.Pure amino acid chelates[P].United States Patent,4599152.1986-Jul-8
    3. Ericson C,Ashmead D.Enhancing solubility of iron amino acid chelates and iron proteinates[P].United States Patent,6716814B2.2004-Apr-6
    4. Pedersen M,Ashmead H D.Amino acid chelates having improved palatability[P].United States Patent,5516925.1996-May-14
    5. Thompson C R,Ericson C,Ashmead S,et al.Mixed amino acid/mineral compound having improved solubility[P].United States Patent,20070172551.2007-Jul-26
    6. Diosady L,Yusufali R,Oshinowo T,et al.A study of storage and distribution of double fortified salts in Kenya.J Food Eng,2006,76,547-556
    7. Junsomboon J,Jakmunee J.Flow injection conductometric system with gas diffusion separation for the determination of Kjeldahl nitrogen in milk and chicken meat.Anal Chim Acta,2008,627:232-238
    8.李锦州,俞志刚,安郁美,等.酰基吡唑啉酮缩β-丙氨酸稀土配合物的合成与光谱表征[J].光谱学与光谱分析,2005,25(9):1482-1485
    9.俞志刚,李锦州,杨昱,等.酰基吡唑啉酮缩氨基酸席夫碱配合物的合成、表征与极谱行为[J].分子科学学报,2006,22(1):32-36
    10.夏金虹,刘峥,冯小珍.β-氨基酸Schiff碱铜(Ⅱ)配合物的合成及表征[J].化学世界,2007,6:321-323
    11.李锦州,蒋礼,安郁美.酰基吡唑啉酮缩氨基酸席夫碱的合成与稀土配位性能和生物活性研究[J].中国稀土学报,2004,22(2):189-192
    12.周双生,完茂林,张国升,等.赖氨酸水杨醛schiff碱及其镧系配合物的合成与抗O2.-活性[J].稀土,2004,25(1):45-47
    13. Leifer A,Lippincott E R.The infrared spectra of some amino acids.J Am Chem Soc,1957, 79:5098-5101
    14. Refat M S,El-Korashy S A,Ahmed A S.Preparation, structural characterization and biological evaluation of L-tyrosinate metal ion complexes.J Mol Struct,2008,881:28-45
    15. Wagner C C,Baran E J.Vibrational spectra of Zn(Ⅱ) complexes of the amino acids with hydrophobic residues. Spectrochim Acta A,2009,72:936-940
    16. Farias R F,Junior H S,Airoldi C.Thermoanalytical investigations about the metal-amino acid interactions.J Inorg Biochem,1999,73:253-257
    17. Yadav L D S.Organic spectroscopy.Springer,2005.75
    18.许良忠,文丽荣.过渡金属-甘氨酸配合物的IR光谱[J].光谱实验室,2002,19(5):641-643
    19. Nakamoto K.Infrared Spectra of Inorganic and Coordimation Compounds[M].New York:Academic Press,1978.
    20. Mohamed G G, El-Gamel N E A.Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(Ⅱ), Fe(Ⅲ), Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) with glycine and dl-phenylalanine.Spectrochim Acta A,2004,60:3141-3154
    21. Carles V,Alphonse P,Tailhades P,et al.Study of thermal decomposition of FeC2O4·2H2O under hydrogen.Thermochim Acta,1999,334:107-113
    22. Aktas Z.Effect of non-ionic reagent adsorption on zeta potential of fine coal particles. Turk J Chem,2000,24:117-129
    23. Doymus K.The effect of ionic electrolytes and pH on the zeta potential of fine coal particles.Turk J Chem,2007,31:589-597
    1. Layrisse M,Garcia-Casal M N,Solano L,et al.Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phylates and polyphenols. J Nutr, 2000,130:2195-2199
    2. Olivares M,Pizarro F,Pineda O, et al.Milk inhibits and ascorbic acid favors ferrous bis-glycine chelate bioavailability in humans. J Nutr,1997,127:1407-1411
    3. Jeppsen R B,Borzelleca J F.Safety evaluation of ferrous bisglycinate chelate.Food Chem Toxicol.1999,37:723-731
    4. Bovell-Benjamin A C,Viteri F E,Allen L H.Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status.Am J Clin Nutr, 2000,71,1563-1569.
    5. Fox T E,Eagles J,Fairweather-Tait S J.Bioavailability of iron glycine as a fortificant in infant foods.Am J Clin Nutr,1998,67:664-668
    6. Hallberg L,Hulthen L.No advantage of using ferrous bisglycinate as an iron fortificant.Am. J Clin Nutr,2000,72:1592-1593
    7. Keller B C.Liposomes in nutrition.Trends Food Sci Tech,2001,12:25-31
    8. Xia S Q,Xu S Y.Ferrous sulfate liposomes:preparation, stability and application in fluid milk.Food Res Int,2005,38:289-296
    9. Lysionek A E,Zubillaga M B,Salgueiro M J,et al.Bioavailability of microencapsulated ferrous sulfate in powdered milk produced from fortified fluid milk: a prophylactic study in rats.Nutrition,2002,18:279-281
    10. Olivares M.Bioavailability of microencapsulated ferrous sulfate in milk.Nutrition,2002, 18:285-286
    11. Montero M T,Freixas J,Hernandez-Borrell J.Expression of the partition coefficients of a homologous series of 6-fluoroquinolones.Int J Pharm,1997,161-170
    12. Lasic D D. Liposomes:from physics to application.Amsterdam:Elsevier,1993.575
    13. Diosady L,Yusufali R,Oshinowo T,et al.A study of storage and distribution of double fortified salts in Kenya.J Food Eng,2006,76,547-556
    14. Goni F M,Alonso A.Spectroscopic techniques in the study of membrane solubilization, reconstitution and permeabilization by detergents.Biochim Biophys Acta,2000,1508, 51-68.
    15. Smith R N,Hansch C,Ames M M.Selection of a reference partitioning system for drug design work.J Pharm Sci,1975,64:599-606
    16. Nii T,Ishii F.Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method.Int J Pharm,2005,298:198-205
    17. Gregoriadis G. Liposome Technology: Vol Ⅱ:Incorporation of Drugs, Proteins, and Genetic Material.Florida,Boca Raton:CRC press,1984.1-17
    18. Fan M H,Xu S Y,Xia S Q, et al.Effect of Different Preparation Methods on Physicochemical Properties of Salidroside Liposomes.J Agric Food Chem,2007,55:3089-3095
    19. Edwards K A,Baeumner A J.Liposomes in analyses.Talanta,2006,68:1421-1431
    20. Gomez-Hens A,Fernadez-Romero J M.Analytical methods for the control of liposomal delivery systems.Trends Anal Chem,2006,25:167-178
    21. Agarwal R,Katare O P,Vyas S P.Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol.Int J Pharm,2001,228:43-52
    22. Laridi R,Kheadr E E,Benech R O, et al.Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. Int Dairy J,2003,13:325-336
    23. Fan M H,Xu S Y,Xia S Q,et al.Effect of different preparation methods on physicochemical properties of salidroside liposomes.J Agric Food Chem,2007,55:3089-3095
    24. Yang T,Cui F D,Choi M K,et al.Enhanced solubility and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation. Int J Pharm,2007,338:317-326
    25. Lichtenberg D,Robson R J,Dennis E A.Solubilization of phospholipids by detergents structural and kinetic aspects.Biochim Biophys Acta,1983,737(2):285-304
    26. Ceh B,Winterhalter M,Frederik P M,et al.Stealth(?) liposomes:from theory to product.Adv Drug Deliver Rev,1997,24:165-177
    27. Hara T,Liu F,Liu D X,et al.Emulsion formulations as a vector for gene delivery in vitro and in vivo.Adv Drug Deliver Rev,1997,24:265-271
    28. Kronberg B,Dahlman A,Carlfors J,et al.Preparation and evaluation of sterically stabilized liposomes:colloidal stability, serum stability, macrophage uptake, and toxicity.J Pharm Sci,1990,79:667-671
    29. Gulati M,Grover M,Singh S,et al.Lipophilic drug derivatives in liposomes. Int J Pharm,1998,165:129-168
    30. Heurtault B,Saulnier P,Pech B,et al.Physico-chemical stability of colloidal lipid particles. Biomaterials,2003,24:4283-4300
    31. Walde P,Sunamoto J,O'Connor C J.The mechanism of liposomal damage by taurocholate. Biochim Biophys Acta,1987,905(1):30-38
    32. Schubert R,Beyer K,Wolburg H,et al.Structural changes in membranes of large unilamellar vesicles after binding of sodium cholate.Biochemistry,1986,25:5263-5269
    33. Schubert R,Schmidt K H.Structural changes in vesicle membranes and mixed micelles of various lipid compositions after binding of different bile salts.Biochemistry,1988,27: 8787-8794.
    34. Hollmann A,Delfederico L,Glikmann G,et al.Characterization of liposomes coated with S-layer proteins from lactobacilli.Biochim Biophys Acta,2007,1768:393-400
    35. Acosta E.Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci,2009,14:3-15
    1.VP托尔钦林,V魏西希编,邓意辉,徐晖译.脂质体[M].原著第2版.北京:化学工业出版社,2007.9,178-179,182,276-277.
    2. Xia S,Xu S,Zhang X.Optimization in the preparation of coenzyme Q10 nanoliposomes.J Agric Food Chem.2006,54:6358-6366
    3. Mozafari M R,Khosravi-Darani K,Borazan G G,et al.Encapsulation of food ingredients using nanoliposome technology. Int J Food Prop,2008,11:833-844
    4. V Weissig (eds).Liposomes methods and protocols Vol 1:Pharmaceutical nanocarriers. M.R.Mozafari.Chapter 2:Nanoliposomes:preparation and analysis. London: Humana Press,2010.29-50
    5.陈怀颖,王咏梅,常首,等.纳米脂质体化妆品的质量研究[J].中国化妆品,2008,6:92-94
    6. Szoka F,Papahadjopoulos D.Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation.Proc Natl Acad Sci USA,1978,75:4194-4198
    7. Fry D W,White J C,Goldman I D.Rapid separation of low molecular weight solutes from liposomes without dilution.Anal Biochem.1978,90:809-815
    8.林萍.甘氨酸螫合铁合成及其理化性质的研究[D]:[硕士学位论文].无锡:江南大学食品学院,2004.
    9. King R L.Oxidation of milk fat globule membrane material. I. Thiobarbituric acid reaction as a measure of oxidized flavor in milk and model systems.J Dairy Sci,1962,45(10):1165-1171
    10.孙京新,周光宏,王玲玲.猪肉微粒体脂肪酸氧化产物对氧合肌红蛋白氧化的影响[J].南京农业大学学报,2004,27(1):101-104
    11. Grabielle-Madelmont C,Lesieur S,Ollivon M.Characterization of loaded liposomes by size exclusion chromatography.J Biochem Biophys Methods,2003,56:189-217
    12. Fan M H,Xu S Y,Xia S Q, et al.Effect of Different Preparation Methods on Physicochemical Properties of Salidroside Liposomes.J Agric Food Chem,2007,55:3089-3095
    13. Ruozi B,Tosi QForni F, et al.Atomic force microscopy and photon correlation spectroscopy:two techniques for rapid characterization of liposomes.Eur J Pharm Sci,2005,25:81-89
    14. Van Winden E C A,Crommelin D J A.Long term stability of freeze-dried, lyoprotected doxorubicin liposomes. Eur J Pharm Biopharm,1997,43:295-307
    15. Pietzyk B,Henschke K.Degradation of phosphatidylcholine in liposomes containing carboplatin in dependence on composition and storage conditions. Int J Pharm,2000,196:215-218
    16. Hincha D K.Effects of calcium-induced aggregation on the physical stability of liposomes containing plant glycolipids. Biochim Biophys Acta,2003,1611:180-186
    17. Flaten G E,Bunjes H,Luthman K, et al.Drug permeability across a phospholipid vesicle-based barrier 2. Characterization of barrier structure, storage stability and stability towards pH changes. Eur J Pharm Sci,2006,28:336-343
    18. Yamaguchi T,Nomura M,Matsuoka T, et al.Effects of frequency and power of ultrasound on the size reduction of liposome.Chem Phys Lipids,2009,160:58-62
    19. Pong M,Umchid S,Guarino A J, et al.In vitro ultrasound-mediated leakage from phospholipid vesicles.Ultrasonics,2006,45:133-145
    20. Glavas-Dodov M,Fredro-Kumbaradzi E,Goracinova K, et al.The effects of lyophilization on the stability liposomes containing 5-Fu.Int J Pharm,2005,291,79-86
    21. Gomez-Hens A,Fernandez-Romero J M.The role of liposomes in analytical process.Trends Anal Chem,2005,24:9-19
    22. Chapman D,in:Gregoriadis G(Eds.).Liposome technology, Vol. I. Florida, Boca Raton:CRC press,1984.15-17
    23. Karoonuthaisiri N,Titiyevskiy K,Thomas J L.Destabilization of fatty acid-containing liposomes by polyamidoamine dendrimers.Colloid Surface B,2003,27:365-375
    24. Lokling K E,Skurtveit R,Fossheim S L, et al.pH-sensitive paramagnetic liposomes for MRI assessment of stability in blood.Magn Reson Imaging,2003,21:531-540
    25. Torchilin V, Weissig V.Liposomes:a practical appraoch (Practical Approach Series)-2nd ed.England:Oxford University Press,2003.
    26. Bajoria R,Sooranna S R.Liposome as a drug carrier system:prospects for safer prescribing during pregnancy: a review.Placenta,1998,12:265-287
    27. Meisner D,Mezei M.Liposome ocular delivery systems.Adv Drug Deliver Rev,1995,16: 75-93
    28. Noble C O,Krauze M T,Drummond D C,et al.Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors:pharmacology and efficacy. Cancer Res,2006,66(5):2801-2806
    29. Ramachandran S,Quist A P,Kumar S,et al.Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity.Langmuir,2006,22:8156-8162
    30. Malaekeh-Nikouei B,MaIaekeh-Nikouei M,Oskuee R K,et al.Preparation, characterization, transfection efficiency, and cytotoxicity of liposomes containing oligoamine-modified cholesterols as nanocarriers to Neuro2A cells. Nanomed:Nanotechnol Biol Med,2009,5:457-462
    1. Singh G,Arora S,Sharma G S,et al.Heat stability and calcium bioavailability of calcium-fortified milk.LWT,2007,40:625-631
    2. Chavez-Servin J L,Castellote A I,Rivero M,et al.Analysis of vitamin A, E and C, iron and selenium contents in infant milk-based powdered formula during full shelf-life. Food Chem,2008,107:1187-1197
    3.高弦,杨柳,李俐.贵阳市牛奶中7种微量元素的检测及分析[J].微量元素与健康研究,1998,15(2):57
    4. Wilson J F,Lahey M E,Heiner D C.Studies on iron metabolism:Ⅴ. Further observations on cow's milk-induced gastrointestinal bleeding in infants with iron-deficiency anemia.J Pediatr,1974,84(3):335-344
    5.罗爱平,赵贤焜,朱秋劲.乳酸亚铁微胶囊化及其对液态奶感官性状影响研究[J].食品科学,2006,27(7):180-184
    6. Gaucheron F.Iron fortification in dairy industry. Trends Food Sci Technol,2000,11:403-409
    7. Guzun-Cojocaru T,Cayot P,Loupiac C,et al.Effect of iron chelates on oil-water interface, stabilized by milk proteins:the role of phosphate groups and pH. Predicion of iron transfer from aqueous phase toward fat globule surface by changes of interfacial properties.Food Hydrocolloid,2010,24:364-373
    8. Guzun-Cojocaru,Koev C,Yordanov M,et al.Oxidative stability of oil-in-water emulsions containing iron chelates:transfer of iron from chelates to milk proteins at interface.Food Chem,2010,DOI:10.1016/j.foodchem.2010.08.004
    9. Uicich R,Pizarro F,Almeida C,et al.Bioavailability of microencapsulated ferrous sulfate in fluid cow's milk. Studies in human being.Nutr Res,1999,19(6):893-897
    10. Lee K,Clydesdale F M.Quantitative determination of the elemental, ferrous, ferric, soluble, and complexed iron in foods.J Food Sci,1979,44:549-554
    11. King R L. Oxidation of milk fat globule membrane material. Ⅰ. Thiobarbituric acid reaction as a measure of oxidized flavor in milk and model systems.J Dairy Sci,1962,45(10):1165-1171.
    12. Mestdagh F,De Meulenaer B,De Clippeleer J,et al.Protective influence of several packaging materials on ligh oxidation of milk. J Dairy Sci,2005,88:499-510
    13. Buffa M N,Trujillo A J Pavia M,et al.Changes in textural, microstructural, and colour characteristics during ripening of cheeses made from raw, pasteurized or high-pressure-treated goats' milk.Int Dairy J,2001,11:927-934
    14. Anema S G,Lowe E K,Li Y.Effect of pH on the viscosity of heated reconstituted skim milk.Int Dairy J,2004,14:541-548.
    15.唐民民,姜中航.不同乳化剂对牛乳饮料稳定性影响的研究[J].乳业科学与技术,2007,1:23-25
    16. Stapelfeldt H,Nielsen B R,Skibsted L H.Effect of heat treatment, water activity and storage temperature on the oxidative stability of whole milk powder. Int Dairy J,1997,7:331-339
    17.石红旗,刘发义.共轭亚油酸氧化稳定性及其影响因素的研究[J].中国油脂,2001,26(2):39-40
    18. Kwak H S,Yang K M,Ahu J.Microencapsulated iron for milk fortification.J Agric Food Chem,2003,51:7770-7774
    19.赵谋明,孙为正,吴艳涛,等.广式腊肠脂质降解与氧化的控制研究[J].食品发酵与工业,2007,33(8):10-13
    20. Villegas B,Carbonell I,Costell E.Colour and viscosity of milk and soybean vanilla beverages. Instrumental and sensory measurements.J Sci Food Agric,2008,88:397-403
    21. Schamberger G P,Labuza T P.Effect of green tea flavonoids on Maillard browning in UHT milk.LWT,2007,40:1410-1417
    22. Nielsen B R,Stapelfeldt H,Skibsted L H.Early predication of the shelf-life of medium-heat whole milk powder using stepwise multiple regression and principal component analysis.Int Dairy J,1997,7:341-348
    23.杨海红,麻建国,许时婴.卡拉胶及糖、盐存在时对勾兑牛奶酒稳定性的影响[J].无锡轻工大学学报,2003,22(1):28-32
    24. Huppertz T,Fox P F.Effect of NaCl on some physico-chemical properties of concentrated bovine milk.Int Dairy J,2006,16:1142-1148
    25. Prabharaksa C,Olek A C,Steinkraus K H.Enrichment of soybean milk with calcium. Acta Biotechnol,1989,9(1):9-16
    26. Weingartner K E,Nelson A L,Erdman J W J.Effect of calcium addition on stability and sensory properties of soy beverage.J Food Sci,1983,48:256-257,263.
    27. Pathomrungsiyounggul P,Lewis M J,Grandison A S.Effects of calcium-chelating agents and pasteurisation on certain properties of calcium-fortified soy milk.Food Chem,2010,118:808-814
    28.韩清波,刘晶.酪蛋白胶束结构及其对牛乳稳定性的影响[J].中国乳品工业,2007,35(2):43-45
    1.陈建华,李宗清,李常胜,等.半胱氨酸亚铁药效学研究[J].中国药科大学学报,1996,27(6):383-384
    2. Jeppsen R B,Borzelleca J F.Safety evaluation of ferrous bisglycinate chelate.Food Chem Toxicol,1999,37:723-731
    3. El-Hawary M F S,E1-Shobaki F A,Kholeif T,et al.The absorption of iron, with or without supplements of single amino acids and of ascorbic acid, in healthy and Fe-deficient children.Br J Nutr,1975,33:351-355
    4. Bovell-Benjamin A C,Viteri F E,Allen L H.Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status.Am J Clin Nutr,2000,71,1563-1569
    5. Ashmead H D.The absorption and metabolism of iron amino acid chelate.Arch Latinoam Nutr,2001,51(1):13-21
    6. Peres J M,Bouhallab S,Bureau F,et al. Mechanisms of absorption of caseinophospho-peptide bound iron.J Nutr Biochem,1999,10:215-222
    7.刘志伟.补血功能食品[M].北京:化学工业出版社,2004.
    8.张新国,胡振英,罗永江,等.富铁酵母药物代谢动力学和生物利用度研究[J].中兽医医药杂志,2004,2:9-12
    9. Diosady L,Yusufali R,Oshinowo T,et al.A study of storage and distribution of double fortified salts in Kenya.J Food Eng,2006,76,547-556
    10.徐素萍.微量元素铁与人体健康的关系[J].中国食物与营养,2007,12:51-54
    11. Zimmermann M B,Hurrell R F.Nutritional iron deficiency.Lancet,2007,370:511-520
    12. Denic S,Agarwal M M.Nutritional iron deficiency: an evolutionary perspective.Nutrition, 2007,23:603-614
    13.周桂莲,韩友文,腾冰,等.大鼠对氨基酸螯合铁吸收和转运特点的研究[J].畜牧兽医学报,2004,35(1):15-22
    14.周桂莲.氨基酸螯合铁的研究与应用进展[J].饲料博览,1998,10(6):10-12
    15.张晓鸣,黄玲,朱建平,等.甘氨酸螯合铁对大鼠补铁效果的评价[J].食品与生物技术学报,2008,27(1):20-25
    16.VP托尔钦林,V魏西希编,邓意辉,徐晖译.脂质体[M].北京:化学工业出版社,2006.178-179,182.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.