高有机硫炼焦煤对微波响应规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炼焦煤是我国稀缺煤种,炼焦时残留在焦中的硫会使钢铁热脆;同时降低高炉生产能力;焦化过程产生的SO2腐蚀设备,污染环境;从而限制了高硫炼焦煤的使用。有效脱除炼焦煤含硫组份对充分利用炼焦煤资源、保护环境具有重大意义。
     对典型山西高硫炼焦煤开展研究,系统地分析煤样含硫组分赋存状态,各形态硫相对含量,确定有机硫赋存规律,筛选合适的含硫模型化合物;对典型高硫煤样及模型化合物开展介电性质测试,明确其微波响应频率;结合微观量子力学理论,计算含硫键基本性质,研究外加能量场对含硫组分脱除反应过程的影响;选择典型高硫煤种,开展微波脱硫试验,建立微波辐照条件与微波脱硫反应的匹配关系,为微波脱硫工业化试验开展提供技术支持和理论指导。论文具体的研究内容和取得的主要研究结果包括:
     1.典型高硫煤样含硫组分赋存状态:高硫煤种无机硫含量较低;有机硫赋存类型为硫醇硫醚类、噻吩类、(亚)砜类,以噻吩硫为主;随着密度增大,煤样中硫醇硫醚类含量下降,噻吩类含量呈增加趋势,(亚)砜类含量先降低后增大;通过硝酸酸洗和微波辐照处理,无机硫全部脱除,有机硫部分脱除,有机硫中硫醇硫醚类硫脱除效果最好,亚砜类次之,噻吩类硫脱除效果最差。
     2.典型高硫煤样介电性质测试结果:在0.2-18GHz频段范围,不同煤样在1.357GHz,2.581GHz、13.728GHz、15.8GHz等多个频率点出现介电响应峰值;高岭石含量增加使得ε’、ε”均增大,方解石对介电性质基本没有影响,石英介于二者之间;ε”随煤样粒度增大而降低;高密度煤样ε’高于低密度级煤样;ε”随煤样含水量增加迅速增大;高硫煤介电实部大于低硫煤。
     3.模型化合物介电性质测试结果:含硫模型化合物介电常数实部随频率变化趋势基本一致,在0-3GHz内出现吸收峰,3-8GHz范围保持平稳,10-18GHz出现若干明显的吸收峰;模型化合物对微波的最强吸收频段在9-11GHz;同时在0.5-2GHz频段,也有较为明显的损耗;模型化合物介电常数实部大小对比:二苯亚砜>二苯砜>二苯硫醚>二苯并噻吩>正十八硫醇;含硫模型化合物的加入提高了煤样的介电极化能力;含有硫键的模型化合物和不含硫键的模型化合物对微波有明显的响应差异。
     4.量子化学模拟计算:含硫模型化合物结构优化结果表明C-S键键长较长,脂肪族模型化合物C-S键键长大于芳香族模型化合物,处于环结构中的C-S键长度小于支链中的C-S键;处于噻吩环结构中的C-S键键级和C-C键键级相等,噻吩环中的C-S键键级大于非环中的C-S键键级;预测噻吩中C-S键更难断裂;模型化合物中的S原子处HOMO伸展较大,是给电子的位置,S原子易失去电子发生反应;过渡态搜索结果表明苯硫醇生成S自由基,然后S自由基结合H自由基生成H2S的路径能量势垒最小,相对于反应物的能量为57.652kcal/mol;加入外电场时,反应所需跨越能垒明显变小,且随电场强度增大能垒减小;考虑溶剂化作用时,反应所需能垒变小,随着溶剂介电常数值的增大,反应能量势垒变大。
     5.典型高硫煤种微波辐照实验:测试煤种粒度为1-3mmm脱硫效果较好;水分含量为10%时的脱硫率最高,频率840MHz和915MHz微波辐照脱硫效果明显高于2450MHz;微波辐照后,硫醇(醚)类硫相对百分含量降低明显,噻吩类硫相对含量增加;HAC和H2O2助剂配比为1:1的时候脱硫率达到最大值,随着氢氧化钠浓度的增加脱硫率不断上升,但上升速率逐渐降低。
Coking coal is scarce in China. In the process of coking, the sulfur remained in coke could make the steel hot-short and reduce the production capacity of the blast furnace and the SO2produced in the process could corrode the equipments and pollute the environment, which thereby limit the use of high-sulfur coking coal. Therefore, the effective removal of sulfur-containing components in coking coal is of great significance for the full use of resources and environmental protection.
     The removal of sulfur in coal by microwave has been proved to be feasible both theoretically and technologically. It has the advantages including mild reaction conditions, less reaction time, easy to be controlled, high reaction yield and low damage to the organic matter of the coal. However, its reaction mechanism and optimal technological conditions have not been specifically identified yet, especially the optimum working frequency, the influencing factors and microcosmic mechanism of microwave desulfurization which are difficult to be ascertained need to be studied further.
     Researches have been carried out to study the typical Shanxi high-sulfur coking coal in this paper, including systematic analyzation of the occurrence state of the sulfur-containing components and the relative contents of various forms of sulfur in the coal samples, so as to ascertain the organic sulfur occurrence regularity and screen out suitable sulfur-containing model compounds. Dielectric properties tests have been done to the typical high-sulfur coal samples and the model compounds to identify its microwave frequency response. The influence of additional energy field on the removal process of sulfur-containing components has been studied on the basis of microscopic quantum-mechanical calculations. Microwave desulfurization experiments have been conducted to the high-sulfur coal in order to establish matching relationship between microwave irradiation conditions and microwave desulfurization reactions, which consequently provides technical support and theoretical guidance for the industrial tests of microwave desulfurization. The main research results include:
     1. The occurrence states of sulfur-containing components in typical high-sulfur coal: inorganic sulfur which is of low content is mainly composed of sulfates and organic sulfur is mainly composed of thiols thioethers, thiophenes, sulfones and sulfoxides, in which thiophenes are the majority. While the content of thiophenes is on the rise when the density of the coal samples increases, the content of thiols thioethers decreases and that of sulfoxides increases after showing a downward trend. After being dealt with nitric acid and microwave irradiation, all inorganic sulfur is removed while organic sulfur is partially removed, among which thiols thioethers have the best removal effect, sulfoxides comes second, and thiophenes is of the worst.
     2. The results of the dielectric properties tests on typical high-sulfur coal samples are listed as follows. In the frequency range of0.2-18GHz, dielectric response peaks of different coal samples appear in1.357GHz,2.581GHz,13.728GHz and15.8GHz, etc. The increasing content of Kaolinite results in the increase of both ε' and ε". While quartz has less effect on the dielectric properties, calcite almost has on effect on it. ε" becomes lower when the particle size of coal samples increases, but it increases quickly along with the increase of moisture content in coal samples. The ε' of high density coal sample is higher than that of low density coal sample. The microwave response of high-sulfur coal is superior to that of low sulfur coal.
     3. Along with the change of frequency, the permittivity real parts of the five sulfur-containing model compounds basically have consistent variation tendencies. Absorption peak occurs in the range of0-3GHz, and while the range of3-8GHz remains stable the range of10-18GHz receives a few obvious absorption peaks. The strongest absorption range of model compounds by microwave is9-11GHz and in the range of0.5-2GHz, model compounds have obvious loss of microwave. The size comparison of the permittivity real parts among the model compounds is as following:Diphenyl sulfoxide> Diphenyl sulfone> Diphenyl disulfide> Dibenzothiophene> N-octadecyl mercaptan. The addition of sulfur-containing model compounds improves the dielectric polarization ability of coal. The loss angle tangent of sulfur-containing model compounds and non-sulfur model compounds are quite different along with the change of frequency, which shows that sulfur bond has obvious response to the microwave.
     4. Analysis of quantum mechanics simulation software:the structural optimization results of sulfur-containing model compounds show that the C-S bond length is longer than other bonds. More specifically, the C-S bond length of aliphatic model compounds is longer than that of aromatic model compounds and the C-S bond length in the ring structure is shorter than that in branched chains. In the thiophene ring structure the C-S bond order is equal to the C-C bond order and meanwhile it is larger than that in the non-ring structure. The S atoms of the model compounds with comparatively large HOMO stretch take the giving electrons positions and they lose electrons easily and react with others. Transition state path analysis shows that H2S produced by microwave heating the S radicals generated by benzene thiol and the H radicals has the minimum energy barrier57.652kcal/mol, relative to the energy of reactants. As the strength of electric field increases, the required transition state energy barrier diminishes. Considering the solvation effect, transition state requires lower energy barrier and with the increase of the solvent's permittivity, reaction energy barrier becomes larger.
     5. The results of microwave irradiation experiments on the typical high-sulfur coal are illustrated as follows. The coal with a particle size of1-3mm has the best desulfurization effect and the coal with a moisture content of10%possesses the maximum rate of desulfurization. The microwave irradiation desulfurization effects of840MHz and915MHz are significantly higher than that of2450MHz. After being irradiated by microwave, the relative content of mercaptan (sulfide) sulfur decreases obviously while that of thiophene sulfur increases. The desulfurization rate reaches the maximum when the ratio of HAC and H2O2additives is1:1. The desulfurization rate is constantly on the rise along with the increase of the concentration of sodium hydroxide, but the rising rate gradually decreases.
引文
[1]李朝林.2012年我国煤炭经济运行的十个特点[J].中国煤炭,2013,39(4).
    [2]王骏.我国炼焦煤资源供需战略分析[J].煤炭经济研究,2007,10:003.
    [3]本报记者.李阳丹.炼焦煤需求仍有缺口[N].中国证券报.2010-04-14.
    [4]赵炜,朱红,闫学海.氯化铜-四氯乙烯复合脱除煤中有机硫的研究[J].燃料化学学报,2003,31(5):390-394.
    [5]黄充,张军营,陈俊,等.煤中噻吩型有机硫热解机理的量子化学研究[J].煤炭转化,2005,28(2):33-35.
    [6]张军,解强,李兰亭,等.微波技术用于煤炭燃前脱硫的综述[J].煤炭加工与综合利用,2007,1(2):43-46.
    [7]Marland S, Merchant A, Rowson N. Dielectric properties of coal[J]. Fuel,2001,80(13): 1839-1849.
    [8]黄文辉,杨起,唐修义,等.中国炼焦煤资源分布特点与深部资源潜力分析[J].中国煤炭地质,2010,22(005):1-6.
    [9]曹殿璐,田有刚.分析炼焦煤优化利用的实践[J].中国-东盟博览,2012,12:020.
    [10]黄孝文,郭占成.焦炉煤气循环干熄焦及焦炭脱硫[J].过程工程学报,2005,5(6):621-625.
    [11]谢广元.选矿学[M].中国矿业大学出版社,2001.
    [12]Zavitsanos P D, Bleiler K W. Process for coal desulfurization:U.S. Patent 4,076,607[P]. 1978-2-28.
    []3] 魏蕊娣.微波联合超声波强化氧化脱除煤中硫[D].太原:太原理工大学,2011.
    [14]赵景联,张银元,陈庆云,等.冰醋酸-过氧化氢氧化法脱除煤中有机硫的研究[J].化工环保,2002,22(5):249-252.
    [15]赵景联,张银元,王洪武,等.四氯乙烯溶剂法脱除煤中有机硫的研究[J].煤炭转化,2002,25(1):48-51.
    [16]张东晨.煤炭微生物脱硫技术的研究与发展[J].洁挣煤技术,2005,11(2):50-54.
    [17]Giuntini J C, Zanchetta J V, Diaby S. Characterization of coals by the study of complex permittivity[J]. Fuel,1987,66(2):179-184.
    [18]Uslu T, Atalay U. Microwave heating of coal for enhanced magnetic removal of pyrite[J]. Fuel processing technology,2004,85(1):21-29.
    [19]翁斯灏,王杰.微波辐照增强原煤磁分离脱硫机理探讨[J].燃料化学学报,1992,20(4):368-374.
    [20]翁斯灏.用穆斯堡尔方法研究辐照时间对原煤微波一磁脱硫的影响[J].核技术,1994,17(7):437-442.
    [21]翁斯灏.烟煤中黄铁矿夹杂物的原位微波化学反应[J].华东师范大学学报:自然科学版,1996(3):46-51.
    [22]尹义斌.浅谈煤炭的微波脱硫[J].选煤技术,2003,4:54C-55.
    [23]丁乃东,傅家伟,李兆鑫,等.微波驱动的煤炭脱硫研究[J].洁净煤技术,2010(004):49-52.
    [24]Kirkbride, Cl.G.Sulphur removal from coal [P].1978,US Patent No.4,123230.
    [25]Rowson N A, Rice N M. Magnetic enhancement of pyrite by caustic microwave treatment[J]. Minerals Engineering,1990,3(3):355-361.
    [26]Weng S, Wang J. Exploration on the mechanism of coal desulfurization using microwave irradiation/acid washing method[J]. Fuel processing technology,1992,31(3):233-240.
    [27]Ferrando A C, Andres J M, Membrado L. Coal desulphurization with hydroiodic acid and microwaves[J]. Coal Science and Technology,1995,24:1729-1732.
    [28]Zavitsanos P D, Bleiler K W, Golden J A. Coal desulfurization using alkali metal or alkaline earth compounds and electromagnetic irradiation:U.S. Patent 4,152,120[P].1979-5-1.
    [29]Hayashi J, Oku K, Kusakabe K, et al. The role of microwave irradiation in coal desulphurization with molten caustics[J]. Fuel,1990,69(6):739-742.
    [30]Jorjani E, Rezai B, Vossoughi M, et al. Desulfurization of Tabas coal with microwave irradiation/peroxyacetic acid washing at 25,55 and 85 C[J]. Fuel,2004,83(7):943-949.
    [31]S Chehreh Chelgani, E Jorjani. Microwave irradiation pretreatment and peroxvacetic acid desulphurization of coal and application of GRNN simultaneous pridicter [J]. Fuel.2011,90(14): 3156-3163.
    [32]Waanders F B, Mohamed W, Wagner N J. Changes of pyrite and pyrrhotite in coal upon microwave treatment[C]//Journal of Physics:Conference Series. IOP Publishing,2010,217(1): 012051.
    [33]杨笺康,任皆利.煤微波脱硫及其与试样介电性质的关系[J].华东理工大学学报,1988,6:012.
    [34]赵庆玲,郑晋梅.煤的微波脱硫[J].煤炭转化,1996,19(3):9-13.
    [35]赵爱武.煤的微波辅助脱硫试验研究[J].煤炭科学技术,2002,30(3):45-46.
    [36]程荣,丘纪华.穆斯堡尔谱在煤粉微波脱硫试验分析中的应用[J].环境工程,2002,20(2):34-36.
    [37]赵景联,张银元,陈庆云,等.微波辐射氧化法联合脱除煤中有机硫的研究[J].微波学报, 2002,18(2):80-84.
    [38]盛宇航,陶秀祥,许宁.煤炭微波脱硫影响因素的试验研究[J].中国煤炭,2012,38(4):80-82.
    [39]罗道成,汪威.微波预处理和硫酸铁氧化联合脱硫[J].矿业工程研究,2013,28(2):70-74.
    [40]李洪彪,蔡秀凡.微波辐照下煤的电化学脱硫研究[J].燃料与化工,2012,43(3):6-8.
    [41]韩玥.不同脱硫剂脱除煤中硫的研究[J].煤炭转化,2010,33(003):56-58.
    [42]米杰,任军,王建成,等.超声波和微波联合加强氧化脱除煤中有机硫[J].煤炭学报,2008,33(4):435-438.
    [43]杨永清,崔林燕,米杰.超声波和微波辐射下萃取煤的有机硫形态分析[J].煤炭转化,2006,29(2):8-11.
    [44]王建成,鲍卫仁,米杰,等.煤中硫的超声波和微波辐射脱除[J].太原理工大学学报,2003,34(6):744-746.
    [45]魏蕊娣,米杰.微波氧化脱除煤中有机硫[J].山西化工,2011,31(2):1-3.
    [46]朱东.超声波和微波技术对煤浮选及脱硫效果的影响[D].淮南:安徽理工大学,2008.
    [47]程刚,王向东,蒋文举,等.微波预处理和微生物联合煤炭脱硫技术初探[J].
    [48]叶云辉,王向东,蒋文举,等.微波辅助白腐真菌煤炭脱硫试验研究[J].环境工程学报ISTIC,2009,3(7).
    [49]Blazewicz S, Swiatkowski A, Trznadel B J. The influence of heat treatment on activated carbon structure and porosity[J]. Carbon,1999,37(4):693-700.
    [50]江霞,蒋文举,朱晓帆,等.微波辐照技术在活性炭脱硫中的应用[J].环境科学学报,2004,24(6):1098-1103.
    [51]赵毅,马宵颖,马双忱,等.微波脱硫在燃煤电厂中的应用[J].中国电力,2007,40(2):58-62.
    [52]马双忱,姚娟娟,金鑫,等.微波辐照活性炭床脱硫脱硝动力学研究[J].中国科学:技术科学,2011,41(9):1234-1239.
    [53]马双忱,金鑫,姚娟娟,等.微波辐照活性炭脱硫脱硝过程中炭损失研究[J].煤炭学报,2011,36(7):1184-1188.
    [54]钟丽云,吴光前.微波辐照活性炭烟气脱硫技术的研究状况与展望[J].能源环境保护,2008,22(4):14.
    [55]原永涛,张天敏,刘靖,等.火电厂微波脱硫技术[J].吉林电力,2007,35(4):50-53.
    [56]王宏图,杜云贵,鲜学福,等.地电场对煤中瓦斯渗流特性的影响[J].重庆大学学报(自然科学版),2000,1.
    [57]章新喜.微粉煤干法脱硫降灰的研究[D].徐州:中国矿业大学,1994.
    [58]冯秀梅,陈津,李宁,等.微波场中无烟煤和烟煤电磁性能研究[J].太原理工大学学报,2007,38(5):405-407.
    [59]褚建萍.煤化程度与其高压电选关系的研究[J].煤炭工程,2011(7)100-102.
    [60]徐龙君,鲜学福,李晓红,等.交变电场下白皎煤介电常数的实验研究[J].重庆大学学报(自然科学版),1998,3.
    [61]Misra M, Kumar S, CHATTERJEE I. Flotability and dielectric characterization of the intrinsic moisture of coals of different ranks[J]. Coal Preparation,1991,9(3-4):131-140.
    [62]Marland S. Dielectric properties of coal[C]//Fuel and Energy Abstracts. Elsevier,2002,43(4): 232.
    [63]Balanis C A, Shepard P W, Ting F T C, et al. Anisotropic electrical properties of coal[J]. Geoscience and Remote Sensing, IEEE Transactions on,1980 (3):250-256.
    [64]Giuntini J C, Zanchetta J V, Diaby S. Characterization of coals by the study of complex permittivity[J]. Fuel,1987,66(2):179-184.
    [65]Brach I, Giuntini J C, Zanchetta J V. Real part of the permittivity of coals and their rank[J]. Fuel, 1994,73(5):738-741.
    [66]焦作工学院瓦斯地质研究所.瓦斯突出煤体无线电波透视探测技术研究.科研报告.1996.
    [67]何继善,吕绍林.瓦斯突出地球物理研究[M].煤炭工业出版社,1999.
    [68]孟磊.煤电性参数的实验研究[D].河南理工大学,2010.
    [69]Yungang W, Jianping W. Experimental research on electrical parameters variation of loaded coal[J]. Procedia Engineering,2011,26:890-897.
    [70]琼芝.煤的电阻率和相对介电常数[J].煤矿安全技术,1982(1):19-26.
    [71]徐宏武.煤层电性参数测试及其与煤岩特性关系的研究[J].煤炭科学技术,2005,33(3):42-46.
    [72]Li X C, Nie B S, Liu W B, et al. Experimental Study on the Impact of Temperature on Coal Electric Parameter[J]. Advanced Materials Research,2012,524:431-435.
    [73]Peng Z, Hwang J Y, Kim B G, et al. Microwave Absorption Capability of High Volatile Bituminous Coal during Pyrolysis[J]. Energy & Fuels,2012,26(8):5146-5151.
    [74]肖金凯.矿物的成分和结构对其介电常数的影响[J].矿物学报,1985,5(4):331-337.
    [75]肖金凯.矿物和岩石的介电性质研究及其遥感意义[J].环境遥感,1988,3(2):135-146.
    [76]周良筑.煤和浸提剂的介电性质与煤炭微波脱硫的关系[J].贵州科学,1990,1:005.
    [77]Nelson S O, Fanslow G E, Bluhm D D. Frequency dependence of the dielectric properties of coal[J]. J. Microwave Power,1980,15(4):283-286.
    [78]Keller G V.岩石和矿物的物理性质[J].勘探地球物理电磁学,第一卷理论,北京:地质出版社,1992:7-45.
    [79]基泰尔,Kittel C,项金钟,等.固体物理导论[M].化学工业出版社,2005.
    [80]Wang Q, Zhang X, Gu F. Investigation on interior moisture distribution inducing dielectric anisotropy of coals[J], Fuel Processing Technology,2008,89(6):633-641.
    [81]Hakala J A, Stanchina W, Soong Y, et al. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes[J]. Fuel Processing Technology,2011,92(1):1-12.
    [82]王宝俊.煤结构与反应性的量子化学研究[D].太原:太原理工大学,2006.
    [83]孙庆雷,李文,陈皓侃,等.煤显微组分分子结构模型的量子化学研究[J].燃料化学学报,2004,32(3):282-286.
    [84]陈念陔,高坡,乐征宇.量子化学理论基础[M].哈尔滨工业大学出版社,2002.
    [85]王宝俊,张玉贵,谢克昌.综述与专论量子化学计算在煤的结构与反应性研究中的应用[J].化工学报,2003.
    [86]Pople J A, Beveridge D L分子轨道近似方法理论[J].科学出版社,北京,1976.
    [87]王宝俊,张玉贵,秦育红,等.量子化学计算方法在煤反应性研究中的应用[J].煤炭转化,2003,26(1):1-7.
    [88]Wang B J,Wu Z M, Li F,et al.The Study on the electronic structures and molecularmodels of coal macerals[C],ICCS,1999,271-274.
    [89]孙庆雷,李文,陈皓侃,等.煤显微组分分子结构模型的量子化学研究[J].燃料化学学报,2004,32(3):282-286.
    [90]侯新娟,杨建丽,李永旺.煤大分子结构的量子化学研究[J].燃料化学学报,1999,27:142-148.
    [91]Olivella S, Sole A, Garcia-Raso A. Ab initio calculations of the potential surface for the thermal decomposition of the phenoxyl radical[J]. The Journal of Physical Chemistry,1995,99(26): 10549-10556.
    [92]黄充,张军营,陈俊,等.煤中噻吩型有机硫热解机理的量子化学研究[J].煤炭转化,2005,28(2):33-35.
    [93]Cullis C F, Norris A C. The pyrolysis of organic compounds under conditions of carbon formation[J]. Carbon,1972,10(5):525-537.
    [94]Ur Rahman Memon H, Williams A, Williams P T. Shock tube pyrolysis of thiophene[J]. International journal of energy research,2003,27(3):225-239.
    [95]Johnson D E. Pyrolysis of benzenethiol[J]. Fuel,1987,66(2):255-260.
    [96]Shagun L G, Papernaya L K, Deryagina E N, et al. The formation of diaryl sulfides in the pyrolysis of aromatic thiols[J]. Russian Chemical Bulletin,1979,28(10):2213-2213.
    [97]GB/T215-2003,煤中各种形态硫的测定方法[S].北京:中国工业出版社,2003.
    [98]郭沁林.X射线光电子能谱[J].物理,2007,36(05):0.
    [99]Handbook of X-ray Spectrometry[M]. CRC Press,2001.
    [100]煤化学[M].冶金工业出版社,2000.
    [101]Hutcheon R M et a.1 A techniquefor rapid scoping measurement of RF properties up to 1000℃ [J]. Electro magnetic Energy Reviews,1989;(2):46.
    [102]Hutcheon R M, De Jong M S, Adams F P. A system for rapid measurements of RF and microwave properties up to 1400 C[J]. Journal of microwave power and electromagnetic energy, 1992,27(2):87-92.
    [103]Carter R G Accuracy of microwave cavity perturbation measurements[J]. Microwave theory and techniques, IEEE Transactions on,2001,49(5):918-923.
    [104]Cullen A L. A new free-wave method for ferrite measurement at millimeter wavelengths[J]. Radio science,1987,22(7):1168-1170.
    [105]Ghodgaonkar D K, Varadan V V, Varadan V K. A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies[J]. Instrumentation and Measurement, IEEE Transactions on,1989,38(3):789-793.
    [106]Munoz J, Rojo M, Parrefio A, et al. Automatic measurement of permittivity and permeability at microwave frequencies using normal and oblique free-wave incidence with focused beam[J]. Instrumentation and Measurement, IEEE Transactions on,1998,47(4):886-892.
    [107]Tamyis N, Ramli A, Ghodgaonkar D K. Free space measurement of complex permittivity and complex permeability of magnetic materials using open circuit and short circuit method at microwave frequencies[C]//Research and Development,2002. SCOReD 2002. Student Conference on. IEEE,2002:394-398.
    [108]Nicolson A M, Ross G F. Measurement of the intrinsic properties of materials by time-domain techniques[J]. Instrumentation and Measurement, IEEE Transactions on,1970,19(4):377-382.
    [109]Weir W B. Automatic measurement of complex dielectric constant and permeability at microwave frequencies[J]. Proceedings of the IEEE,1974,62(1):33-36.
    [110]Hoogenboom R, Meier M A R, Schubert U S. Combinatorial Methods, Automated Synthesis and High-Throughput Screening in Polymer Research:Past and Present[J]. Macromolecular rapid communications,2003,24(1):15-32.
    [111]Schmatloch S, Meier M A R, Schubert U S. Instrumentation for Combinatorial and High-Throughput Polymer Research:A Short Overview[J]. Macromolecular rapid communications, 2003,24(1):33-46.
    [112]Xiao J, Fang G, Ji G, et al. Simulation investigations in the binding energy and mechanical properties of HMX-based polymer-bonded explosives[J]. Chinese Science Bulletin,2005,50(1): 21-26.
    [113]Helden P, Steen E. Coadsorption of CO and H on Fe (100)[J]. The Journal of Physical Chemistry C,2008,112(42):16505-16513.
    [114]Andzelm J, Govind N, Fitzgerald G, et al. DFT study of methanol conversion to hydrocarbons in a zeolite catalyst[J]. International journal of quantum chemistry,2003,91(3):46*7-473.
    [115]Govind N, Andzelm J, Reindel K, et al. Zeolite-catalyzed hydrocarbon formation from methanol: density functional simulations[J]. International Journal of Molecular Sciences,2002,3(4): 423-434.
    [116]Jordaan M, Van Helden P, Van Sittert C, et al. Experimental and DFT investigation of the 1-octene metathesis reaction mechanism with the Grubbs 1 precatalyst[J]. Journal of Molecular Catalysis A:Chemical,2006,254(1):145-154.
    [117]Legoas S B, Coluci V R, Braga S F, et al. Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators[J]. Physical review letters,2003,90(5):055504.
    [118]Gao Y, Bando Y, Liu Z, et al. Temperature measurement using a gallium-filled carbon nanotube nanothermometer[J]. Applied physics letters,2003,83(14):2913-2915.
    [119]孟华平,赵炜,章日光,等.半焦对富含甲烷气体转化制备合成气的作用[J].煤炭转化,2008,31(3).
    [120]章日光,黄伟,王宝俊.CH4和CO2合成乙酸中CO2与·H及·CH3相互作用的理论计算[J].催化学报,2007,28(7):641-645.
    [121]陈鹏.用XPS研究兖州煤各显微组分中有机硫存在形态[J].燃料化学学报,1997,25(3):238-241.
    [122]代世峰,任德贻,宋建芳,等.应用XPS研究镜煤中有机硫的存在形态[J].中国矿业大学学报,2002,31(3):225-228.
    [123]朱应军,郑明东.炼焦用精煤中硫形态的XPS分析方法研究[J].选煤技术,2010(003):55-57.
    [124]Wu B, Hu H Q, Zhao Y P, et al. XPS analysis and combustibility of residues from two coals extraction with sub-and supercritical water[J]. Journal of Fuel Chemistry and Technology,2009, 37(4):385-392.
    [125]刘艳华,车得福,徐通模.利用X射线光电子能谱确定煤及其残焦中硫的形态[J].西安交通大学学报,2004,38(1):101-104.
    [126]常海洲,王传格,曾凡桂,等.不同还原程度煤显微组分组表面结构XPS对比分析[J].燃料化学学报,2006,34(4):389-394.
    [127]Borah D, Baruah M K, Haque I. Oxidation of high sulphur coal. Part 2. Desulphurisation of organic sulphur by hydrogen peroxide in presence of metal ions[J]. Fuel,2001,80(10): 1475-1488.
    [128]GB/T478-2008,煤炭浮沉实验方法[S].北京:中国标准出版社,2008.
    [129]齐翠翠,刘桂建,陈怡伟,等.煤中硫矿物及其在酸洗前后的变化[J].环境化学,2007,26(4):547-548.
    [130]李景德,沈韩,陈敏.电介质理论[M].科学出版社,2003.
    [131]电介质物理学[M].科学出版社,2003.
    [132]基础物理化学[M].科学出版社,2001.
    [133]黄煜镔,钱觉时,张建业.高铁粉煤灰建筑吸波材料研究[J].煤炭学报,2010,35(1):135-139.
    [134]李建欣.XRD全谱拟合精修对贵州煤中矿物质的定量研究[D].河南理工大学,2009.
    [135]徐龙君,鲜学福,李晓红,等.交变电场下白皎煤介电常数的实验研究[J].重庆大学学报(自然科学版),1998,3.
    [136]Wang J R, Schmugge T J. An empirical model for the complex dielectric permittivity of soils as a function of water content[J]. Geoscience and Remote Sensing, IEEE Transactions on,1980 (4): 288-295.
    [137]Yan J, Yang J, Liu Z. SH radical:the key intermediate in sulfur transformation during thermal processing of coal[J]. Environmental science & technology,2005,39(13):5043-5051.
    [138]Mullens S, Yperman J, Reggers G, et al. A study of the reductive pyrolysis behaviour of sulphur model compounds[J]. Journal of analytical and applied pyrolysis,2003,70(2):469-491.
    [139]Maes I I, Gryglewicz G, Yperman J, et al. Effect of siderite in coal on reductive pyrolytic analyses[J]. Fuel,2000,79(15):1873-1881.
    [140]Maes I I, Yperman J, Van den Rul H, et al. Study of coal-derived pyrite and its conversion products using atmospheric pressure temperature-programmed reduction (AP-TPR)[J]. Energy & fuels,1995,9(6):950-955.
    [141]赵孔双.介电谱方法及应用[M].化学工业出版社,2008.
    [142]章新喜.微粉煤电选脱硫降灰[M].徐州:中国矿业大学出版社,2002.
    [143]高孟华,章新喜,陈清如.煤系伴生矿物介电常数和摩擦带电实验研究[J].中国矿业,2007,16(8):106-109.
    [144]凌丽霞.杂原子类煤结构模型化合物的热解及含硫化合物脱除的量子化学研究[D].太原理工大学,2010.
    [145]周公度,段连运.结构化学基础[M].北京大学出版社,2002.
    [146]Linderberg J, Ohm Y. Propagators in quantum chemistry[M]. John Wiley & Sons,2004.
    [147]李军,冯杰,李文英.神府东胜煤镜质组和惰质组的热化学反应差异[J].物理化学学报,2009,25(07):1311-1319.
    [148]李军,冯杰,李文英,等.强弱还原煤聚集态对其可溶性影响的分子力学和分子动力学分析[J].物理化学学报,2008,24(12):2297-2303.
    [149]曾凡桂,贾建波.霍林河褐煤热解甲烷生成反应类型及动力学的热重鄄质谱实验与量子化学计算[J].Acta Phys.鄄Chim. Sin,2009,25(6):1117-1124.
    [150]周世勋,陈灏.量子力学教程[M].高等教育出版社,2009.
    [151]物理化学简明教程[M].高等教育出版社,2007.
    [152]韩德刚,高盘良.化学动力学基础[M].北京大学出版社,1987.
    [153]刘粉荣,郭慧卿,胡瑞生,等.含硫模型化合物在不同载体上的担载及其燃烧过程硫的释放行为[J].化工进展,2012,31(11):2570-2573.
    [154]王宝俊,张玉贵,谢克昌.综述与专论量子化学计算在煤的结构与反应性研究中的应用[J].化工学报,2003.
    [155]孙林兵,倪中海,张丽芳,等.煤热解过程中氮,硫析出形态的研究进展[J].洁净煤技术,2002,8(3):47-50.
    [156]Bruinsma O S L, Tromp P J J, de Sauvage Nolting H J J, et al. Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor:2. Heterocyclic compounds, their benzo and dibenzo derivatives[J]. Fuel,1988,67(3):334-340.
    [157]凌丽霞.杂原子类煤结构模型化合物的热解及含硫化合物脱除的量子化学研究[D].太原理工大学,2010.
    [158]Ren Q, Zhao C, Wu X, et al. Formation of NO< i> x precursors during wheat straw pyrolysis and gasification with O< sub> 2 and CO< sub> 2[J]. Fuel,2010,89(5):1064-1069.
    [159]杨笺康,邬纫云,程秀秀.煤的介电性质和脱硫的关系[J].化学世界,1983,6:010.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.