等离子体作用对淀粉结构及性质影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,等离子体技术(主要是低温等离子体技术)在化学合成、微电子、超导技术、材料科学、表面科学、环境科学、生物及生命科学等领域中应用呈现出巨大的发展潜力和应用前景,越来越受关注。其中介质阻挡放电(DBD)等离子体技术由于具有适应频率宽,可在较大空间内获得高密度非平衡等离子体,并且工艺简单、快速高效、节能环保,是最有可能应用于工业化的等离子技术之一,因此成为应用于改性粉体的研究热点。目前将等离子体技术应用于淀粉粉体改性的研究处于初步探索阶段,缺乏对等离子体作用对淀粉多尺度结构影响的系统研究,以至难以实现从分子水平设计利用等离子体技术对淀粉性质进行调控。因此,本论文所开展的研究有很好的学术价值和实际意义,涉及等离子体技术真正应用于淀粉改性领域的关键基础科学问题。
     本论文选择马铃薯淀粉及玉米淀粉作为研究对象,在探讨利用DBD等离子体技术并以空气作为气源对淀粉粉体进行常压干法改性的基础上,利用多种先进仪器分析技术,系统地研究了等离子体作用对两种淀粉颗粒结构、层状结构、结晶结构、链结构等多尺度结构的影响,以及等离子体对两种淀粉的作用方式和作用效果的差异,并建立了相关的物理模型。此外,还考察等离子体作用对两种淀粉的酸性、溶解度、流变性质和糊化过程的影响。
     研究结果表明等离子体作用基本不改变马铃薯淀粉和玉米淀粉的整体颗粒形貌,但却导致马铃薯淀粉颗粒表面产生裂纹,玉米淀粉颗粒孔道数量增加,孔径增大;两种淀粉的结晶形态和层状结构厚度基本不受等离子体作用的影响,但其相对结晶度降低,尤其是马铃薯淀粉的相对结晶度下降程度更高;等离子体对马铃薯淀粉和玉米淀粉偏光十字(结晶结构)的破坏形式不同,前者是由外向内发展,后者是由内向外发展。
     等离子体作用可引发两种淀粉分子链发生氧化反应,作用时间越长氧化程度越高,在玉米淀粉分子链上主要引入羧基,马铃薯淀粉分子链上引入羰基和羧基;在等离子体作用下,两种淀粉颗粒表面短程有序结构均受到破坏,马铃薯淀粉破坏程度更高,但两种淀粉颗粒内部的短程有序结构(螺旋结构)变化并不明显,表明等离子体作用主要是降低螺旋结构的一致性,导致晶格畸变而影响结晶区结构;等离子体作用使两种淀粉分子链发生断裂,分子量变小及分布变宽,马铃薯淀粉的重均分子量由107g·mol~(-1)降低到106g·mol~(-1),玉米淀粉的重均分子量由107g·mol~(-1)降低到105g·mol~(-1)。
     等离子体作用对淀粉的酸性影响显著,导致马铃薯淀粉糊和玉米淀粉糊的pH值由中性分别快速下降至2.23和1.88。水分子的迁移和强酸性环境,一方面导致改性淀粉结构在水体系中进一步发生变化,出现部分螺旋结构解旋,并形成新的尺度更大的重复结构;另一方面会强化改性效果,即等离子体改性前后淀粉性质的变化是由等离子体和水分子协同作用的结果。等离子体作用改变了马铃薯淀粉的糊化历程,但对玉米淀粉的糊化历程影响不明显;等离子体作用能有效促进淀粉溶解,使马铃薯淀粉的常温溶解度由1.4%提高至64.1%,玉米淀粉的溶解度由0.8%提高至40.6%;经等离子体作用两种淀粉糊仍为假塑性非牛顿流体,但其稠度系数和表观粘度均大幅度降低,流动系数增大,剪切稀化作用减缓,触变性降低,并向牛顿流体趋近。
     等离子体对两种淀粉的作用方式和作用效果存在差异,对马铃薯淀粉的作用途径是作用于颗粒表面再不断往内部渗透,而玉米淀粉的作用途径则是在作用表面结构的同时通过孔道结构进入内部作用,可见等离子体的改性效果很大程度上受淀粉自身结构的影响。
     研究结果充分显示,等离子体的高能粒子撞击、辐射、能量传递和聚集、应力集中等多种效应,能不同程度的影响淀粉的多尺度结构,进而调控淀粉的性质,特别是赋予了淀粉常温较高溶解度和高浓低粘的特性。这不仅丰富了粉体等离子体改性的理论,而且也为等离子体技术应用于淀粉深加工,为淀粉粉体改性提供了一种方便、快速、高效和绿色的新型干法改性技术。
In recent years, plasma technology (mainly low-temperature plasma technology) hasexhibited great developmental potential and applicable prospect in the fields of chemicalsynthesis, micro-electronics, superconducting technology, materials science, surface science,environmental science, biotechnology and life science, and has drawn increasing concern.Due to the advantages on broadness in frequency range, availability of the high-densitynon-equilibrium plasma in the larger space, simplicity in process, rapidity, efficiency, as wellas other characteristics including energy-saving and environmental friendly, dielectric barrierdischarge (DBD) plasma is considered to be the most likely plasma technology can be appliedin industry, thus becomes a major concern in the research field of powder modification. Atpresent, as plasma technology is still in the initial exploration stage of application to theresearch of modified starch, and the systematic study of the effects of plasma on themulti-scale structures of starch remains limited, it is difficult to regulate the starch propertiesat the molecular level by using plasma technology. Therefore, this study deals with somecritical scientific concerns of plasma technology used in starch modification, with the greatacademic value and practical significance.
     In this dissertation, a variety of advanced instrumental analysis techniques have beenused to systematically study the effects of plasma on multi-scale structures (such as thegranular structure, the lamellar structure, the crystalline structure and the chain structure) ofpotato and corn starches based on atmospheric dry starch modification using air as the gassource by DBD. The differences in the mechanism of plasma on potato and corn starches havebeen further studied, followed by establishment of the relative physical model to explain theaction mode and effects. In addition, the effects of plasma on the acidity, solubility,rheological property and gelatinization of potato and corn starches were also beeninvestigated.
     According to the results, the plasma basically did not change the overall granularmorphology of potato and corn starches, but caused new surface cracks on potato starchgranules, and increased channels and channel diameter to corn starch granules. The crystallineform and the thickness of the lamellar structure of the two kinds of starches were substantiallyfree from the influence of plasma. However, the relative crystallinity was reduced, and inparticular, potato starch showed a higher degree of decrease. Significant difference was foundfor the destruction modes of plasma to the polarization cross (crystalline structure) of potatoand corn starches. The former was destructed from outside to inside and the latter was opposite.
     Plasma could initiate the oxidation reaction of starch chains, which introduced thecarboxyl group into corn starch but the carboxyl group and the carbonyl group into potatostarch. Moreover, the longer duration of treatment led to the higher degree of oxidation. Withthe plasma process, the short-range ordered structure of the surface for the both starchgranules was damaged, and potato starch displayed a higher degree of destruction to thisstructure, while the short-range ordered structure (helical structure) inside granules changedslightly, which indicated that the plasma reduced the consistency of the helix and causedlattice distortion to affect the crystalline structure. Plasma could break starch molecular chains,leading to the decrease of weight-average molecular molar mass. For example, theweight-average molecular weight of potato starch decreased from107g·mol~(-1)to106g·mol~(-1),and this value of corn starch reduced from107g·mol~(-1)to105g·mol~(-1).
     The significant effect of plasma on the acidity of starch was also been found, whichcaused the result that the pH value of potato and corn starch slurries rapidly decreased to2.23and1.88respectively. The migration of water molecules and the strongly acidic environmentcould not only result in the further change in the structure of modified starch in the watersystem, for example that helix unwinded partly and formed new larger repeating structure, butalso enhance the extent of modification, indicating the changes of starch properties were theresulted from the combined actions of plasma and water. Plasma changed the gelatinizationprocess of potato starch, while it had no significant affect on the corn starch. Plasma alsoeffectively promoted the dissolution process and increased the solubility form1.4%to64.1%for potato starch, and0.8%to40.6%for corn starch. The two kinds of starches still remainedthe form of non-Newtonian pseudoplastic fluid, while the consistency coefficient andapparent viscosity significantly decreased, the thixotropism also decreased, the flow exponentincreased, and the shear thinning effect mitigated. Finally, the paste of potato and cornstarches approached to the form of Newtonian fluid.
     The differences in the action mode and effect of plasma on potato and corn starches wererevealed. The mechanism to the potato starch was that the plasma initially acted on thegranular surface and then continued to penetrate into the inside of potato starch, while forcorn starch, it was the result of combined actions of acting on the granular surface and actingthrough the pore structure into the inside of the corn starch granule. Thus, the effect of plasmaon the modification is significantly influenced by the starch structure.
     In conclusion, the above results demonstrated that the variety of effects of plasma, suchas high-energy particle collisions, radiation, energy transfer and accumulation, stress concentration, could impact the starch multi-scale structure in different degrees, therebyregulating the starch properties, especially giving the starch high solubility at roomtemperature, high concentration and low viscosity characteristics. This study offers significantevidences for further investigations on the powder plasma modified theory, and provides aconvenient, rapid, efficient and green new modification technology for starch deepprocessing.
引文
[1]张力田.碳水化合物化学[M].北京:中国轻工业出版社,1988
    [2]张力田.改性淀粉[M].北京:中国轻工业出版社,1992
    [3] Juansang J.; Puttanlek C.; Rungsardthong V., et al. Effect of gelatinisation on slowlydigestible starch and resistant starch of heat-moisture treated and chemically modified cannastarches[J]. Food Chemistry.2012,131(2):500-507
    [4] Pu H.Y.; Chen L.; Li X.X., et al. An Oral Colon-Targeting Controlled Release SystemBased on Resistant Starch Acetate: Synthetization, Characterization, and Preparation ofFilm-Coating Pellets[J]. Journal of Agricultural and Food Chemistry.2011,59(10):5738-5745
    [5] Chen L.; Pu H.; Li X., et al. A novel oral colon-targeting drug delivery system based onresistant starch acetate[J]. Journal of Controlled Release.2011,152(S1): e51-e52
    [6] Bastos D.C.; Santos A.E.F.; da Silva M.L.J., et al. Hydrophobic corn starch thermoplasticfilms produced by plasma treatment[J]. Ultramicroscopy.2009,109(8):1089-1093
    [7] Pérez S.; Bertoft E. The molecular structures of starch components and their contributionto the architecture of starch granules: A comprehensive review[J]. Starch-St rke.2010,62(8):389-420
    [8] Le Corre D.b.; Bras J.; Dufresne A. Starch Nanoparticles: A Review[J].Biomacromolecules.2010,11(5):1139-1153
    [9] Jane J.L. Current Understanding on Starch Granule Structures[J]. Journal of AppliedGlycoscience.2006,53(3):205-213
    [10] Gidley M.J.; Cooke D.; Darke A.H., et al. Molecular order and structure inenzyme-resistant retrograded starch[J]. Carbohydrate Polymers.1995,28(1):23-31
    [11] Zhang B.; Chen L.; Zhao Y., et al. Structure and enzymatic resistivity of debranched hightemperature–pressure treated high-amylose corn starch[J]. Journal of Cereal Science.2013,57(3):348-355
    [12] Zou J.-J.; Liu C.-J.; Eliasson B. Modification of starch by glow discharge plasma[J].Carbohydrate Polymers.2004,55(1):23-26
    [13] Lii C.-y.; Liao C.-d.; Stobinski L., et al. Behaviour of granular starches in low-pressureglow plasma[J]. Carbohydrate Polymers.2002,49(4):499-507
    [14] Lii C.-y.; Liao C.-d.; Stobinski L., et al. Effects of hydrogen, oxygen, and ammonialow-pressure glow plasma on granular starches[J]. Carbohydrate Polymers.2002,49(4):449-456
    [15] Lii C.-y.; Liao C.-d.; Stobinski L., et al. Exposure of granular starches to low-pressureglow ethylene plasma[J]. European Polymer Journal.2002,38(8):1601-1606
    [16]柯杨传;何平笙.高分子物理教程[M].北京:化学工业出版社,2006
    [17] Hall D.M.; Sayre J.G. A scanning electron-microscope study of starches. Part1. Rootand tuber starches[J]. Textile Research Journal.1969,39:1044-1052
    [18] Hall D.M.; Sayre J.G. A scanning electron-microscope study of starches. Part2. Cerealstarches.[J]. Textile Research Journal.1970,40:256-266
    [19] Jane J.-L.; Kasemsuwan T.; Leas S., et al. Anthology of Starch Granule Morphology byScanning Electron Microscopy[J]. Starch-St rke.1994,46(4):121-129
    [20] Tetlow I.J. Starch biosynthesis in developing seeds[J]. Seed Sci. Res.2011,21(1):5-32
    [21] Buleon A.; Colonna P.; Planchot V., et al. Starch granules: structure and biosynthesis[J].International Journal of Biological Macromolecules.1998,23(2):85-112
    [22] Baldwin P.M.; Adler J.; Davies M.C., et al. Starch Damage Part1: Characterisation ofGranule Damage in Ball-milled Potato Starch Study by SEM[J]. Starch-St rke.1995,47(7):247-251
    [23] Baldwin P.M.; Davies M.C.; Melia C.D. Starch granule surface imaging usinglow-voltage scanning electron microscopy and atomic force microscopy[J]. InternationalJournal of Biological Macromolecules.1997,21(1-2):103-107
    [24] Baldwin P.M.; Adler J.; Davies M.C., et al. High Resolution Imaging of Starch GranuleSurfaces by Atomic Force Microscopy[J]. Journal of Cereal Science.1998,27(3):255-265
    [25] Juszczak L.; Fortuna T.; Krok F. Non-contact Atomic Force Microscopy of StarchGranules Surface. Part I. Potato and Tapioca Starches[J]. Starch-St rke.2003,55(1):1-7
    [26] Sevenou O.; Hill S.E.; Farhat I.A., et al. Organisation of the external region of the starchgranule as determined by infrared spectroscopy[J]. International Journal of BiologicalMacromolecules.2002,31(1-3):79-85
    [27] Fuentes-Zaragoza E.; Riquelme-Navarrete M.J.; Sánchez-Zapata E., et al. Resistantstarch as functional ingredient: A review[J]. Food Research International.2010,43(4):931-942
    [28] Leach H.W.; Schoch T. Structure of the starch granlue, II.Action of various amylases ongranular starches[J]. Cereal Chemistry.1961,38:34-46
    [29] Chen P.; Yu L.; Simon G., et al. Morphologies and microstructures of cornstarches withdifferent amylose-amylopectin ratios studied by confocal laser scanning microscope[J].Journal of Cereal Science.2009,50(2):241-247
    [30] Huber K.C.; BeMiller J.N. Channels of maize and sorghum starch granules[J].Carbohydrate Polymers.2000,41(3):269-276
    [31] Fannon J.E.; Huber R.J.; BeMiller J.N. Surface pores of starch granules[J]. CerealChemistry.1992,69:284-288
    [32] Huber K.C.; BeMiller J.N. Visualization of Channels and Cavities of Corn and SorghumStarch Granules[J]. Cereal Chemistry.1997,74(5):537-541
    [33] Gallant D.J.; Bouchet B.; Baldwin P.M. Microscopy of starch: Evidence of a new levelof granule organization[J]. Carbohydrate Polymers.1997,32(3-4):177-191
    [34] Buleon A.; Veronese G.; Putaux J.L. Self-association and crystallization of amylose[J].Australian Journal of Chemistry.2007,60:706-718
    [35]陈佩.不同链/支比玉米淀粉的形态及其在有/无剪切力下糊化的研究[D].广州:华南理工大学,2010
    [36] Jenkins P.J.; Donald A.M. Gelatinisation of starch: a combined SAXS/WAXS/DSC andSANS study[J]. Carbohydrate Research.1998,308(1-2):133-147
    [37] Oostergetel G.T.; van Bruggen E.F.J. On the Origin of a Low Angle Spacing in Starch[J].Starch-St rke.1989,41(9):331-335
    [38] Badenhuizen N.P. The structure of starch grains[J]. Protoplasma.1937,28:293-326
    [39] Gallant D.J.; Bouchet B.; Buléon A., et al. Physical characteristics of starch granules andsusceptibility to enzymatic degradation[J]. European Journal of Clinical Nutrition.1992,46(S2): S3-S16
    [40] Baker A.A.; Miles M.J.; Helbert W. Internal structure of the starch granule revealed byAFM[J]. Carbohydrate Research.2001,330(2):249-256
    [41]李斌.淀粉粒超微结构模型新发展-从簇结构到止水塞[J].现代化工.2006,26(2):64-66
    [42] Oostergetel G.T.; van Bruggen E.F.J. The crystalline domains in potato starch granulesare arranged in a helical fashion[J]. Carbohydrate Polymers.1993,21(1):7-12
    [43] Yamaguchi M.; Kainuma K.; French D. Electron microscopic observations of waxymaize starch[J]. Journal of Ultrastructure Research.1979,69(2):249-261
    [44] Waigh T.A.; Kato K.L.; Donald A.M., et al. Side-Chain Liquid-Crystalline Model forStarch[J]. Starch-St rke.2000,52(12):450-460
    [45] Tester R.F.; Karkalas J.; Qi X. Starch-composition, fine structure and architecture[J].Journal of Cereal Science.2004,39(2):151-165
    [46] Cameron R.E.; Donald A.M. A small-angle X-ray scattering study of the annealing andgelatinization of starch[J]. Polymer.1992,33(12):2628-2635
    [47] Cameron R.E.; Donald A.M. A small-angle x-ray scattering study of starch gelatinizationin excess and limiting water[J]. Journal of Polymer Science Part B: Polymer Physics.1993,31(9):1197-1203
    [48] Cameron R.E.; Donald A.M. Small-angle X-Ray Scattering and Differential ScanningCalorimetry from Starch and Retrograded Starch[J]. Special Publication-Royal Society ofChemistry1991,82:301-309
    [49] Cameron R.E.; Donald A.M. A small-angle X-ray scattering study of the absorption ofwater into the starch granule[J]. Carbohydrate Research.1983,244(2):225-236
    [50] Daniels D.R.; Donald A.M. An improved model for analyzing the small angle x-rayscattering of starch granules[J]. Biopolymers.2003,69(2):165-175
    [51] Daniels D.R.; Donald A.M. Soft Material Characterization of the Lamellar Properties ofStarch: Smectic Side-Chain Liquid-Crystalline Polymeric Approach[J]. Macromolecules.2004,37(4):1312-1318
    [52] Waigh T.A.; Gidley M.J.; Komanshek B.U., et al. The phase transformations in starchduring gelatinisation: a liquid crystalline approach[J]. Carbohydrate Research.2000,328(2):165-176
    [53] Waigh T.A.; Jenkins P.J.; Donald A.M. Quantification of water in carbohydrate lamellaeusing SANS[J]. Faraday Discussions.1996,103:325-337
    [54] Imberty A.; Buléon A.; Tran V., et al. Recent Advances in Knowledge of StarchStructure[J]. Starch-St rke.1991,43(10):375-384
    [55] Imberty A.; Chanzy H.; Pérez S. The double-helical nature of the crystalline part ofA-starch[J]. Journal of Molecular Biology.1988,201(2):365-378
    [56] Imberty A.; Pérez S. A revisit to the three-dimensional structure of B-type starch[J].Biopolymers.1988,27:1205-1221
    [57] Vallons K.J.R.; Arendt E.K. Effects of high pressure and temperature on the structuraland rheological properties of sorghum starch[J]. Innovative Food Science&EmergingTechnologies.2009,10(4):449-456
    [58] Katopo H.; Song Y.; Jane J.L. Effect and mechanism of ultrahigh hydrostatic pressure onthe structure and properties of starches[J]. Carbohydrate Polymers.2002,47(3):233-244
    [59] Oh H.E.; Hemar Y.; Anema S.G., et al. Effect of high-pressure treatment on normal riceand waxy rice starch-in-water suspensions[J]. Carbohydrate Polymers.2008,73(2):332-343
    [60] Gidley M.J.; Bulpin P.V. Crystallisation of malto-oligosaccharides as models of thecrystalline forms of starch: minimum chain-length requirement for the formation of doublehelices[J]. Carbohydrate Research.1987,161(2):291-300
    [61] Sarko A.; Wu H.C.H. The Crystal Structures of A-, B-and C-Polymorphs of Amyloseand Starch[J]. Starch-St rke.1978,30(3):73-78
    [62] Gernat C.; Radosta S.; Damaschun G., et al. Supramolecular Structure of LegumeStarches Revealed by X-Ray Scattering[J]. Starch-St rke.1990,42(5):175-178
    [63] Yu J.L.; Wang S.J.; Jin F.M., et al. The structure of C-type Rhizoma Dioscorea starchgranule revealed by acid hydrolysis method[J]. Food Chemistry.2009,113(2):585-591
    [64] Wang S.J.; Yu J.L.; Yu J.G., et al. Structure characterization of C-type starch granule byacid hydrolysis[J]. Food Hydrocolloids.2008,22(7):1283-1290
    [65] Chen L.; Li X.X.; Pang Y.S., et al. Resistant starch as a carrier for oral colon-targetingdrug matrix system[J]. Journal of Materials Science: Materials in Medicine.2007,18(11):2199-2203
    [66] Singh J.; Dartois A.; Kaur L. Starch digestibility in food matrix: a review[J]. Trends inFood Science&Technology.2010,21(4):168-180
    [67] Shamai K.; Bianco-Peled H.; Shimoni E. Polymorphism of resistant starch type III[J].Carbohydrate Polymers.2003,54(3):363-369
    [68]赵凯.淀粉非化学改性技术[M].北京:化学工业出版社,2009
    [69] Hizukuri S.; Takeda Y.; Yasuda M., et al. Multi-branched nature of amylose and theaction of debranching enzymes[J]. Carbohydrate Research.1981,94(2):205-213
    [70] CuráJ.A.; Jansson P.-E.; Krisman C.R. Amylose is not Strictly Linear[J]. Starch-St rke.1995,47(6):207-209
    [71]耿凤英.预处理对淀粉结构及化学反应活性的影响[D].天津:天津大学,2010
    [72] Atwell W.A.; Hood L.F.; Lineback D.R., et al. The terminology and methodologyassociated with basic starch phenomena[J]. Cereal Food World.1988,33:306-311
    [73] Bernazzani P.; Peyyavula V.K.; Agarwal S., et al. Evaluation of the phase composition ofamylose by FTIR and isothermal immersion heats[J]. Polymer.2008,49(19):4150-4158
    [74] Kohyama K.; Matsuki J.; Yasui T., et al. A differential thermal analysis of thegelatinization and retrogradation of wheat starches with different amylopectin chain lengths[J].Carbohydrate Polymers.2004,58(1):71-77
    [75]谭洪卓;谭斌;刘明,等.淀粉流变学特性的研究进展[J].中国粮油学报.2008,23(4):215-220
    [76] Ao Z.; Jane J.-l. Characterization and modeling of the A-and B-granule starches ofwheat, triticale, and barley[J]. Carbohydrate Polymers.2007,67(1):46-55
    [77] Hayashi M.; Kiribuchi-Otobe C.; Seguchi M. Ghosts of B-type Wheat Starch Granules inConcentrated KI/I2Solution[J]. Starch-St rke.2005,57(8):384-387
    [78] Wei C.; Zhang J.; Chen Y., et al. Physicochemical properties and development of wheatlarge and small starch granules during endosperm development[J]. Acta PhysiologiaePlantarum.2010,32(5):905-916
    [79] Kim H.-S.; Huber K.C. Physicochemical properties and amylopectin fine structures of A-and B-type granules of waxy and normal soft wheat starch[J]. Journal of Cereal Science.2010,51(3):256-264
    [80] Salman H.; Blazek J.; Lopez-Rubio A., et al. Structure–function relationships in A and Bgranules from wheat starches of similar amylose content[J]. Carbohydrate Polymers.2009,75(3):420-427
    [81] Shamai K.; Shimoni E.; Bianco-Peled H. Small Angle X-ray Scattering of ResistantStarch Type III[J]. Biomacromolecules.2003,5(1):219-223
    [82] Ao Z.H.; Simsek S.; Zhang G.Y., et al. Starch with a slow digestion property producedby altering its chain length, branch density, and crystalline structure[J]. Journal ofAgricultural and Food Chemistry.2007,55(11):4540-4547
    [83] Shi Y.C.; Cai L.M. Structure and digestibility of crystalline short-chain amylose fromdebranched waxy wheat, waxy maize, and waxy potato starches[J]. Carbohydrate Polymers.2010,79(4):1117-1123
    [84] Koksel H.; Ozturk S.; Kahraman K., et al. Effect of debranching and heat treatments onformation and functional properties of resistant starch from high-amylose corn starches[J].European Food Research and Technology.2009,229(1):115-125
    [85] Witt T.; Gidley M.J.; Gilbert R.G. Starch Digestion Mechanistic Information from theTime Evolution of Molecular Size Distributions[J]. Journal of Agricultural and FoodChemistry.2010,58(14):8444-8452
    [86]刘兴训.淀粉及淀粉基材料的热降解性能研究[D].广州:华南理工大学,2011
    [87]王雪毓.淀粉基水分散体薄膜包衣材料及其释放行为的研究[D].广州:华南理工大学,2011
    [88] Singh J.; Kaur L.; McCarthy O.J. Factors influencing the physico-chemical,morphological, thermal and rheological properties of some chemically modified starches forfood applications-A review[J]. Food Hydrocolloids.2007,21(1):1-22
    [89] Stolt M.; Taoukis P.S.; Stoforos N.G., et al. Evaluation and modelling of rheologicalproperties of high pressure treated waxy maize starch dispersions[J]. Journal of FoodEngnieering.1999,40(4):293-298
    [90] Vittadini E.; Carini E.; Chiavaro E., et al. High pressure-induced tapioca starch gels:physico-chemical characterization and stability[J]. European Food Research and Technology.2008,226(4):889-896
    [91]马成林;左春柽;张守勤,等.玉米高压糊化淀粉的老化特性和变色性质[J].农业工程学报.1997,(2):203-205
    [92] Baks T.; Bruins M.E.; Janssen A.E.M., et al. Effect of pressure and temperature on thegelatinization of starch at various starch concentrations[J]. Biomacromolecules.2008,9(1):296-304
    [93] Buckow R.; Heinz V.; Knorr D. High pressure phase transition kinetics of maizestarch[J]. Journal of Food Engineering.2007,81(2):469-475
    [94] Ahromrit A.; Ledward D.A.; Niranjan K. Kinetics of high pressure facilitated starchgelatinisation in Thai glutinous rice[J]. Journal of Food Engineering.2007,79(3):834-841
    [95] Che L.M.; Wang L.J.; Li D., et al. Starch pastes thinning during high-pressurehomogenization[J]. Carbohydrate Polymers.2009,75(1):32-38
    [96] Blaszczak W.; Bidzinska E.; Dyrek K., et al. Effect of high hydrostatic pressure on theformation of radicals in maize starches with different amylose content[J]. CarbohydratePolymers.2008,74(4):914-921
    [97] Blaszczak W.; Bidzinska E.; Dyrek K., et al. EPR study of the influence of highhydrostatic pressure on the formation of radicals in phosphorylated potato starch[J].Carbohydrate Polymers.2010,82(4):1256-1263
    [98]李坚斌;温雪馨;李琳,等.超声场对马铃薯淀粉颗粒形貌与结晶结构的影响[J].农业工程学报.2008,24(4):284-286
    [99]王敏妮;罗志刚;涂雅俊,等.超声处理对玉米淀粉颗粒性质的影响[J].现代食品科技.2010,26(5):448-450
    [100] Isono Y.; Kumagal T.; Watanabe T. Ultrasonic degradation of waxy rice starch[J].Bioscience Biotechnology and Biochemistry.1994,58(10):1799-1802
    [101] Iida Y.; Tuziuti T.; Yasui K., et al. Control of viscosity in starch and polysaccharidesolutions with ultrasound after gelatinization[J]. Innovative Food Science&EmergingTechnologies.2008,9(2):140-146
    [102] Jambrak A.R.; Herceg Z.; Subaric D., et al. Ultrasound effect on physical properties ofcorn starch[J]. Carbohydrate Polymers.2010,79(1):91-100
    [103]林静韵;李琳;李坚斌,等.马铃薯淀粉糊在超声场中凝胶质构特性的变化研究[J].食品科学.2007,2(8):120-123
    [104]罗志刚;卢静静.超声处理对玉米淀粉热性质的影响[J].现代食品科技.2010,26(7):666-668,755
    [105]黎晓;童张法;赵奕玲,等.不同介质中木薯淀粉磷酸酯透明度及流变特性的研究[J].食品科技.2008,(10):20-24
    [106] Wu Y.; Du X.F.; Ge H.H., et al. Preparation of microporous starch by glucoamylase andultrasound[J]. Starch-St rke.2011,63(4):217-225
    [107] Lewandowicz G.; Janowski T.; Fornal J. Effect of microwave radiation onphysico-chemical properties and structure of cereal starches[J]. Carbohydrate Polymers.2000,42(2):193-199
    [108]张冶;马涛.微波辐射技术在淀粉改性中的应用[J].农产品加工(学刊).2006,(1):33-35,77
    [109]邱怡;叶君;熊犍.微波辐射对淀粉结构及性质的影响[J].高分子通报.2007,(2):57-62
    [110] Anderson A.K.; Guraya H.S. Effects of microwave heat-moisture treatment onproperties of waxy and non-waxy rice starches[J]. Food Chemistry.2006,97(2):318-323
    [111]徐丽霞;扶雄;黄强,等.水分对微波辐射玉米淀粉性质的影响[J].现代化工.2008,28(S2):218-220
    [112] Zhang J.; Wang Z.W.; Shi X.M. Effect of microwave heat/moisture treatment onphysicochemical properties of Canna edulis Ker starch[J]. Journal of The Science of Food andAgriculture.2009,89(4):653-664
    [113] Luo Z.G.; He X.W.; Fu X., et al. Effect of microwave radiation on the physicochemicalproperties of normal maize waxy, maize and amylomaize V starches[J]. Starch-St rke.2006,58(9):468-474
    [114]罗志刚;扶雄.微波辐射对高链玉米淀粉热性质的影响[J].高分子材料科学与工程.2007,23(4):122-124
    [115]罗志刚;扶雄;罗发兴,等.微波辐射下蜡质玉米淀粉性质的变化[J].华南理工大学学报(自然科学版).2007,35(4):35-38
    [116] Palav T.; Seetharaman K. Impact of microwave heating on the physico-chemicalproperties of a starch-water model system[J]. Carbohydrate Polymers.2007,67(4):596-604
    [117] Palav T.; Seetharaman K. Mechanism of starch gelatinization and polymer leachingduring microwave heating[J]. Carbohydrate Polymers.2006,65(3):364-370
    [118]刘培玲;张本山;刘族安.微波辐射处理对玉米淀粉颗粒非晶化的影响[J].食品与发酵工业.2007,33(6):80-83
    [119] Treppe K.; Dixit O.; Mollekopf N., et al. Vacuum Microwave Treatment of PotatoStarch and the Resultant Modification of Properties[J]. Chemie Ingenieur Technik.2011,83(3):262-272
    [120]熊犍;叶君;王茜.微波辐射对木薯淀粉结构的影响[J].化工学报.2006,57(5):1204-1208
    [121]石文娟;赵国华.辐射变性淀粉研究进展[J].食品工业科技.2008,29(2):305-307
    [122]王晓广;丁钟敏;郭艳彪.电离辐射对淀粉改性的机理研究[J].棉纺织技术.2005,33(10):577-580
    [123] Raffi J.; Dauberte B.; d'Urbal M., et al. Gamma Radiolysis of Starches Derived fromDifferent Foodstuffs. Part IV. Study of Radiodepolymerization[J]. Starch-St rke.1981,33(9):301-306
    [124] Raffi J.; Agnel J.P.; Dauberte B., et al. Gamma Radiolysis of Starches Derived fromDifferent Foodstuffs. Part III. Study of Induced Hydrogen Peroxide[J]. Starch-St rke.1981,33(8):269-271
    [125] Raffi J.; Fréjaville C.; Dauphin J.F., et al. Gamma Radiolysis of Starches Derived fromDifferent Foodstuffs. Part II. Study of Induced Acidities[J]. Starch-St rke.1981,33(7):235-240
    [126] Raffi J.; Agnel J.P.; Dauberte B., et al. Gamma Radiolysis of Starches Derived fromDifferent Foodstuffs. Part1. Study of Some Induced Carbonyl Derivatives[J]. Starch-St rke.1981,33(6):188-192
    [127]张喻.马铃薯淀粉γ-射线辐照效应研究[D].长沙:湖南农业大学,2010
    [128] Chung H.J.; Liu Q. Effect of Gamma Irradiation on Molecular Structure andPhysicochemical Properties of Corn Starch[J]. Journal of Food Science.2009,74(5):C353-C361
    [129] Kume T.; Tamura N. Change in Digestibility of Raw Starch by Gamma-Irradiation[J].Starch-St rke.1987,39(3):71-74
    [130]钱瑞生;赵阳;秦佚. γ-射线辐照甘薯淀粉对酶促水解的影响[J].无锡轻工业学院学报.1992,11(4):280-284
    [131] Ciesla K.; Eliasson A.C. Influence of gamma radiation on potato starch gelatinizationstudied by differential scanning calorimetry[J]. Radiation Physics and Chemistry.2002,64(2):137-148
    [132]赵青;刘述章;童洪辉.等离子体技术及应用[M].北京:国防工业出版社,2009
    [133]张谷令;敖玲;胡建芳.应用等离子体物理学[M].北京:首都师范大学出版社,2008
    [134]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993
    [135]王长全.大气压介质阻挡放电等离子体对材料表面改性及其建模研究[D].杭州:浙江大学,2006
    [136]管井秀郎,张海波张丹译.等离子体电子工程学[M].北京:科学出版社,2002
    [137] Yan K.; Hui H.; Cui M., et al. Corona induced non-thermal plasmas: Fundamental studyand industrial applications[J]. Journal of Electrostatics.1998,44(1-2):17-39
    [138] Kanazawa S.; Chang J.S.; Round G.F., et al. Removal of NOxfrom flue gas by coronadischarge activated methane radical showers[J]. Journal of Electrostatics.1997,40-41:651-656
    [139]许根慧;姜恩永;盛京.等离子体技术与应用[M].北京:化学工业出版社,2006
    [140]张芝涛.大气压窄间隙DBD等离子体源与应用基础研究[D].沈阳:东北大学,2003
    [141] Manakhov A.; Moreno-Couranjou M.; Choquet P., et al. Diene functionalisation ofatmospheric plasma copolymer thin films[J]. Surface&Coatings Technology.2011,205(S2):S466-S469
    [142] Niu J.; Zhang L.; Zhang Z., et al. Deposition of hydrogenated amorphous carbon nitridefilms by dielectric barrier discharge plasmas[J]. Applied Surface Science.2010,256(22):6887-6892
    [143] D’Sa R.A.; Meenan B.J. Chemical Grafting of Poly(ethylene glycol) Methyl EtherMethacrylate onto Polymer Surfaces by Atmospheric Pressure Plasma Processing[J].Langmuir.2009,26(3):1894-1903
    [144] Da Ponte G.; Sardella E.; Fanelli F., et al. Atmospheric pressure plasma deposition oforganic films of biomedical interest[J]. Surface&Coatings Technology.2011,205(S2):S525-S528
    [145] Kostov K.G.; Rocha V.; Koga-Ito C.Y., et al. Bacterial sterilization by a dielectricbarrier discharge (DBD) in air[J]. Surface&Coatings Technology.2010,204(18-19):2954-2959
    [146]马丕波;徐卫林;范东翠,等.等离子体处理对淀粉性能影响研究[J].武汉科技学院学报.2008,21(6):38-42
    [147] Kim H.-S.; Kang W.S.; Kim G.-H., et al. Metal surface oxidation by using dielectricbarrier discharge[J]. Thin Solid Films.2010,518(22):6394-6398
    [148] Bringmann P.; Rohr O.; Gammel F.J., et al. Atmospheric Pressure Plasma Deposition ofAdhesion Promotion Layers on Aluminium[J]. Plasma Processes and Polymers.2009,6(S1):S496-S502
    [149] Andrade C.T.; Simao R.A.; Thire R.M.S.M., et al. Surface modification of maize starchfilms by low-pressure glow1-butene plasma[J]. Carbohydrate Polymers.2005,61(4):407-413
    [150] Pascu M.C.; Popescu M.C.; Vasile C. Surface modifications of some nanocompositescontaining starch[J]. Journal of Physics D-applied Physics.2008,41(17):1-12
    [151] Alves C.M.; Yang Y.; Carnes D.L., et al. Modulating bone cells response ontostarch-based biomaterials by surface plasma treatment and protein adsorption[J]. Biomaterials.2007,28(2):307-315
    [152] Yang S.Y.; Huang C.Y. Plasma treatment for enhancing mechanical and thermalproperties of biodegradable PVA/starch blends[J]. Journal of Applied Polymer Science.2008,109(4):2452-2459
    [153]刘昌俊;邹吉军.酸性等离子体作用下淀粉水解及其等离子体酸定义[J].天津大学学报.2004,37(3):189-192
    [154]于红;刘彦民;韩治德,等.介质阻挡放电等离子体与淀粉溶液的反应[J].中国石油大学学报(自然科学版).2008,32(1):108-112
    [155] Szymanowski H.; Kaczmarek M.; Gazicki-Lipman M., et al. New biodegradablematerial based on RF plasma modified starch[J]. Surface&Coatings Technology.2005,200(1-4):539-543
    [156] Ma Y.H.C.; Manolache S.; Sarmadi M., et al. Synthesis of starch copolymers by silicontetrachloride plasma-induced graft polymerization[J]. Starch-St rke.2004,56(2):47-57
    [157]高锦章;王友娣;王爱香,等.接触辉光放电等离子体引发合成淀粉接枝丙烯酸超强吸水树脂[J].应用化学.2009,26(3):282-286
    [158]陈慧黯.介质阻挡放电等离子体对酵母细胞作用机理及诱变研究[D].大连:大连理工大学,2010
    [159] Vander Wielen L.C.; stenson M.; Gatenholm P., et al. Surface modification ofcellulosic fibers using dielectric-barrier discharge[J]. Carbohydrate Polymers.2006,65(2):179-184
    [160] Hoover R. Composition, molecular structure, and physicochemical properties of tuberand root starches: a review[J]. Carbohydrate Polymers.2001,45(3):253-267
    [161]叶宪曾;张新祥.仪器分析教程(第二版)[M].北京:北京大学出版社,2007
    [162] Ockleford C. The confocal laser scanning microscope (CLSM)[J]. Journal of Pathology.1995,176(1):1-2
    [163]屠一锋;严吉林;龙玉梅,等.现代仪器分析[M].北京:科学出版社,2011
    [164] Adler J.; Baldwin P.M.; Melia C.D. Starch Damage Part2: Types of Damage inBall-milled Potato Starch, upon Hydration Observed by Confocal Microscopy[J]. Starch-St rke.1995,47(7):252-256
    [165] Lynn A.; Cochrane M.P. An Evaluation of Confocal Microscopy for the Study of StarchGranule Enzymic Digestion[J]. Starch-St rke.1997,49(3):106-110
    [166] Baldwin P.M.; Adler J.; Davies M.C., et al. Holes in Starch Granules: Confocal, SEMand Light Microscopy Studies of Starch Granule Structure[J]. Starch-St rke.1994,46(9):341-346
    [167] van de Velde F.; van Riel J.; Tromp R.H. Visualisation of starch granule morphologiesusing confocal scanning laser microscopy (CSLM)[J]. Journal of The Science of Food andAgriculture.2002,82(13):1528-1536
    [168] Blennow A.; Hansen M.; Schulz A., et al. The molecular deposition of transgenicallymodified starch in the starch granule as imaged by functional microscopy[J]. Journal ofStructural Biology.2003,143(3):229-241
    [169]张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2001
    [170] Kaur B.; Fazilah A.; Karim A.A. Alcoholic-alkaline treatment of sago starch and itseffect on physicochemical properties[J]. Food and Bioproducts Processing.2011,89(4):463-471
    [171] Kaur L.; Singh J.; Singh N. Effect of glycerol monostearate on the physico-chemical,thermal, rheological and noodle making properties of corn and potato starches[J]. FoodHydrocolloids.2005,19(5):839-849
    [172] Chen G.; Zhang B. Hydrolysis of granular corn starch with controlled pore size[J].Journal of Cereal Science.2012,56(2):316-320
    [173]陈洁;郭泽镔;刘贵珍,等.超声波处理木薯淀粉对其流变特性的影响[J].福建农林大学学报(自然科学版).2013,42(1):86-92
    [174] Perry P.A.; Donald A.M. The effects of low temperatures on starch granule structure[J].Polymer.2000,41(16):6361-6373
    [175] Lopez-Rubio A.; Flanagan B.M.; Shrestha A.K., et al. Molecular Rearrangement OfStarch During In Vitro Digestion: Toward A Better Understanding Of Enzyme ResistantStarch Formation In Processed Starches[J]. Biomacromolecules.2008,9(7):1951-1958
    [176] Sujka M.; Jamroz J.; Kwiatkowski R. Influence of α-amylolysis on the formation ofelectron density inhomogeneities on the surface of starch granules[J]. Starch-St rke.2011,63(1):17-23
    [177] Zhu J.; Li L.; Chen L., et al. Study on supramolecular structural changes of ultrasonictreated potato starch granules[J]. Food Hydrocolloids.2012,29(1):116-122
    [178] Zabar S.; Lesmes U.; Katz I., et al. Studying different dimensions of amylose–longchain fatty acid complexes: Molecular, nano and micro level characteristics[J]. FoodHydrocolloids.2009,23(7):1918-1925
    [179] Lopez-Rubio A.; Clarke J.M.; Ben S., et al. Structural modifications of granular starchupon acylation with short-chain fatty acids[J]. Food Hydrocolloids.2009,23(7):1940-1946
    [180] Ciesla K.; Zoltowski T.; Mogilevski L.Y. SAXS Investigations of Structural Changesafter Gamma Ray Irradiation of Potato Starch and Starch Suspensions[J]. Starch-St rke.1992,44(11):419-422
    [181] Pikus S.; Olszewska E.; B cal M. Investigation of the staling process of bread using thesmall-angle X-ray scattering (SAXS) method[J]. Flavour and Fragrance Journal.2006,21(1):37-41
    [182] Vermeylen R.; Goderis B.; Delcour J.A. An X-ray study of hydrothermally treatedpotato starch[J]. Carbohydrate Polymers.2006,64(2):364-375
    [183] Kiseleva V.I.; Krivandin A.V.; Fornal J., et al. Annealing of normal and mutant wheatstarches. LM, SEM, DSC, and SAXS studies[J]. Carbohydrate Research.2005,340(1):75-83
    [184] Vermeylen R.; Derycke V.; Delcour J.A., et al. Gelatinization of Starch in Excess Water:Beyond the Melting of Lamellar Crystallites. A Combined Wide-and Small-Angle X-rayScattering Study[J]. Biomacromolecules.2006,7(9):2624-2630
    [185]姜传海;杨传铮.材料射线衍射和散射分析[M].北京:高等教育出版社,2010
    [186]裴光文;钟维烈;岳书彬.单晶、多晶和非晶物质的X射线衍射[M].济南:山东大学出版社,1989
    [187] Lopez-Rubio A.; Flanagan B.M.; Gilbert E.P., et al. A novel approach for calculatingstarch crystallinity and its correlation with double helix content: A combined XRD and NMRstudy[J]. Biopolymers.2008,89(9):761-768
    [188]陈福泉;张本山;卢海凤,等. X射线衍射在淀粉颗粒结晶度研究中的应用[J].食品科学.2010,31(3):284-287
    [189]张本山;张友全;杨连生,等.淀粉多晶体系结晶度测定方法研究[J].华南理工大学学报(自然科学版).2001,(5):55-58
    [190] Myll rinen P.; Buleon A.; Lahtinen R., et al. The crystallinity of amylose andamylopectin films[J]. Carbohydrate Polymers.2002,48(1):41-48
    [191] Hermans P.H.; Weidinger A. Quantitative X-ray investigations on the crystallinity ofcellulose fibers. A background analysis[J]. Journal of Applied Physics.1948,19(5):491-506
    [192]陈翠兰;张本山;陈福泉.淀粉结晶度计算的新方法[J].食品科学.2011,32(9):68-71
    [193]朱育平.小角X射线散射:理论、测试、计算及应用[M].北京:化学工业出版社,2008
    [194] Witt T.; Doutch J.; Gilbert E.P., et al. Relations between Molecular, Crystalline, andLamellar Structures of Amylopectin[J]. Biomacromolecules.2012,13(12):4273-4282
    [195] Hizukuri S. Polymodal distribution of the chain lengths of amylopectins, and itssignificance[J]. Carbohydrate Research.1986,147(2):342-347
    [196] Cardoso M.B.; Westfahl Jr H. On the lamellar width distributions of starch[J].Carbohydrate Polymers.2010,81(1):21-28
    [197] Putaux J.-L.; Molina-Boisseau S.; Momaur T., et al. Platelet Nanocrystals Resultingfrom the Disruption of Waxy Maize Starch Granules by Acid Hydrolysis[J].Biomacromolecules.2003,4(5):1198-1202
    [198]张俐娜;薛奇;莫志深,等.高分子物理近代研究方法(第二版)[M].武汉:武汉大学出版社,2006
    [199] van Soest J.J.G.; Tournois H.; de Wit D., et al. Short-range structure in (partially)crystalline potato starch determined with attenuated total reflectance Fourier-transform IRspectroscopy[J]. Carbohydrate Research.1995,279(0):201-214
    [200] Cael J.J.; Isaac D.H.; Blackwell J., et al. Polarized infrared spectra of crystallineglycosaminoglycans[J]. Carbohydrate Research.1976,50(2):169-179
    [201] Goodfellow B.J.; Wilson R.H. A fourier transform IR study of the gelation of amyloseand amylopectin[J]. Biopolymers.1990,30(13-14):1183-1189
    [202] Capron I.; Robert P.; Colonna P., et al. Starch in rubbery and glassy states by FTIRspectroscopy[J]. Carbohydrate Polymers.2007,68(2):249-259
    [203]吴正龙;刘洁.现代X光电子能谱(XPS)分析技术[J].现代仪器.2006,(1):50-53
    [204]尹诗衡;黄强. X射线光电子能谱(XPS)在变性淀粉表面基团分布研究中的应用[J].粮食与饲料工业.2007,(6):28-29,32
    [205] Saad M.; Gaiani C.; Mullet M., et al. X-ray Photoelectron Spectroscopy for WheatPowders: Measurement of Surface Chemical Composition[J]. Journal of Agricultural andFood Chemistry.2011,59(5):1527-1540
    [206]徐忠;缪铭.高分子物理近代分析方法在淀粉研究中的应用[J].食品工业科技.2006,27(4):197-200
    [207] Morgan K.R.; Furneaux R.H.; Larsen N.G. Solid-state NMR studies on the structure ofstarch granules[J]. Carbohydrate Research.1995,276(2):387-399
    [208]刘延奇;吴史博;毛自荐.马铃薯淀粉双螺旋结构定量分析方法的研究[J].中国粮油学报.2010,25(2):54-56,61
    [209] Mihhalevski A.; Heinmaa I.; Traksmaa R., et al. Structural Changes of Starch duringBaking and Staling of Rye Bread[J]. Journal of Agricultural and Food Chemistry.2012,60(34):8492-8500
    [210] Tan I.; Flanagan B.M.; Halley P.J., et al. A Method for Estimating the Nature andRelative Proportions of Amorphous, Single, and Double-Helical Components in StarchGranules by13C CP/MAS NMR[J]. Biomacromolecules.2007,8(3):885-891
    [211] Baik M.-Y.; Dickinson L.C.; Chinachoti P. Solid-State13C CP/MAS NMR Studies onAging of Starch in White Bread[J]. Journal of Agricultural and Food Chemistry.2003,51(5):1242-1248
    [212] Zainon O.; Saphwan A.-A.; Osman H. Molecular Characterisation of Sago Starch UsingGel Permeation Chromatography Multi-Angle Laser Light Scattering[J]. Sains Malaysiana.2010,39(6):969–973
    [213]柳志强;平立凤;高嘉安,等.酶解辛烯基琥珀酸淀粉酯的性质及应用[J].食品科学.2007,28(2):125-130
    [214] Kizil R.; Irudayaraj J.; Seetharaman K. Characterization of irradiated starches by usingFT-Raman and FTIR spectroscopy[J]. Journal of Agricultural and Food Chemistry.2002,50(14):3912-3918
    [215] Zhou J.; Ren L.; Tong J., et al. Effect of surface esterification with octenyl succinicanhydride on hydrophilicity of corn starch films[J].Journal of Applied Polymer Science.2009,114(2):940-947
    [216]杨光杰.氧等离子体对聚丙烯粉体的表面处理研究[J].安徽化工.2011,37(4):28-29,33
    [217] Thielemans W.; Belgacem M.N.; Dufresne A. Starch Nanocrystals with Large ChainSurface Modifications[J]. Langmuir.2006,22(10):4804-4810
    [218] Angellier H.; Molina-Boisseau S.; Belgacem M.N., et al. Surface ChemicalModification of Waxy Maize Starch Nanocrystals[J]. Langmuir.2005,21(6):2425-2433
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.