天然大分子魔芋葡甘聚糖的凝聚态基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然可再生魔芋葡甘聚糖水溶液在低浓度(0.8%以上)时可完成从溶胶到凝胶的不可逆转变,并具有特殊的理化性质和独特的应用性能。本文围绕魔芋葡甘聚糖物理交联引起的凝胶化所涉及的软物质内部重新装配过程中的具有挑战意义的凝聚态物理基本科学问题,在国家科技支撑计划课题(2007BAE42804)的资助下,采用高分子化学、高分子物理理论和多种现代分析测试技术对魔芋葡甘聚糖的部分初级结构,溶剂处理方法对KGM的含量和形貌的影响,KGM在水溶液中稀至浓溶液的凝聚态行为以及KGM溶液环境对其凝聚态行为进行了详细地研究。结果表明:
     1.多种显微技术观察证实了KGM在细胞中、KGM本体、KGM稀至浓溶液的形貌以及KGM溶液环境变化对KGM形貌的影响。结果显示:魔芋葡甘聚糖颗粒存在于异细胞中,体积巨大,葡甘露聚糖颗粒为纯净的半透明晶体,晶体表面的KGM分子缠绕形成了“小格”,扫描电镜下,0.1%的KGM水溶液浓度从0.1%逐渐升高到5.0%时,KGM表面空洞的数目增多,孔径减小;最后逐渐链接成片。原子力显微镜下观察到:KGM在水溶液中的浓度为0.1ug/ml、5ug/ml、10ug/ml、60ug/ml、100ug/ml时,KGM自由伸展的链状结构聚集体宽度分别是45.50nm、30.0nm、187.91nm、218.99nm、362.46nm、高度分别是0.14nm、0.177nm、0.485nm、0.99nm、4.66nm,由于KGM大分子的溶剂化而扩张,卷曲的KGM大分子因周围包围着溶剂而伸展,KGM分子线团不能彼此接近,排斥体积增大,直观看到在分子形貌变宽。
     2高纯魔芋葡甘聚糖提取的最优方案为溶胀浓度0.1%,溶胀温度80。C,溶胀时间15h,乙醇浓度90%。其影响顺序为:溶胀时间>温度>乙醇浓度>精粉浓度。KGM含量提高到了95.45%,得率达到0%。纯化后的KGM样品中葡萄糖和甘露糖的摩尔比是1:1.7;葡甘聚糖主链链接方式为1→4、1→2连接,分支处的链接为1→6,不存在1→3链接的方式。葡萄糖残基2006个,甘露糖残基3409个。
     3.通过乌氏粘度法、激光光散射结合凝胶渗透色谱以及利用特性粘度结合GPC魔芋葡甘聚糖在水溶液中的分子链参数:KGM水中的特性粘度为1755.56ml/g,Huggins常数为O.34.Mw=877200g/ml、Mn=837700g/mol、 Mz=1803400g/mol、MP=993200g/mol,其分子量分布Mw/M,,=1.047,均方根旋转半径Z1/2=121.9nm第二维里系数A2=(1.175±0.495)×10-2(mol·ml/g2),高分子-溶剂相互作用参数χ1=0.487;KGM的Mark-Houwink方程为[η]=5.19×10-4Mn0.90,水是KGM的良溶剂,pH=l、pH=2、pH=3、pH=4和pH=5时KGM在水溶液中的特性粘度[η]分别为898.49ml/g、1511.86ml/g、1630.46ml/g、1692.91ml/g以及1715.57ml/g。Huggins常数分别为0.98、0.76、0.39、0.36以及0.35。
     4.通过稳态扫描结合动态扫描,探讨了KGM溶液、溶胶、凝胶转变及转变过程中接触浓度、浓度分区、缠结以及网络结构等基本凝聚态行为。
     (1)KGM溶液的临界浓度为0.11%, KGM线团交叠值为2.0,此浓度时分子链的扩张体积内已有分子链的重叠,其重叠度约含有5.8根分子链。KGM的溶液范围小于或等于0.1%,此时呈现牛顿流体的特性,而超过0.15%就表现出非牛顿流体的性质。KGM在溶液体系中,其孤立分子链模型可以用Rouse-Zimm珠-簧模型来描述。当KMG溶液浓度从0.025mg/ml增加到1.0mg/lKGM浓度,从体积排除色谱法中测试到的KGM分子量则从7.55×105降低到了6.35×105,降低了15.9%,表现出KGM分子在水溶液中随着浓度的增加,KGM线团相互靠近,线团尺寸收缩,甚至交叠。
     (2)随着KGM浓度的增加,KGM溶胶形成,KGM溶胶的范围为0.15%~2.3%,KGM在溶胶中的剪切应力与剪切速率偏离了线性关系,其稠度系数和非牛顿流体指数与浓度的关系分别为:K=4.29×e2.11C-7.96和n=0.79e-256C+0.29。当KGM浓度达1.5%时,交点频率为0.8,小于1,KGM溶胶中分子链达到凝聚缠结;用Winter和Chambon确立的方法确定了KGM溶胶—凝胶转变的临界浓度为2.33%,KGM分子链间的相互作用从凝聚缠结变为了拓扑缠结。KGM溶胶可以用Burgers模型来描述。
     (3)KGM在水溶液中的浓度超过2.3%时,形成了KGM凝胶。浓度与网链分子量的变化数学关系为Me=4.29e-2.31C+1.53×10-7e-0.58C+1.8×105。KGM分子由拓扑缠结转变为局部网络结构;当KGM浓度达到5.0%甚至更高的浓度时,网链分子的减小变化小,KGM分子链间局部网络结构转变形成连续网络结构。高度缠结的KGM在水中形成连续的网络是导致其凝胶化的机理。KGM在凝胶中缠结的分子链可以用蠕动模型来描述,在KGM凝胶网络结构可以用相似形变模型来描述。
     (4)随着KGM溶胶浓度的升高,KGM的G'与G”同时升高。KGM溶胶的浓度在0.5~1.5%时,其G”和G'都随着温度的升高而下降,浓度越低,模量下降越明显,储能模量G'的下降更突出,从25℃和90℃时模量的变化来看,低浓度时的模量变化率更高。KGM浓度超过凝聚缠结浓度(1.5%),随着温度的增加,体系的耗损模量和储能模量先下降,后增加的趋势,浓度越低,模量下降越明显,说明高浓度导致的局部网络结构(浓度达5.0%)甚至连续网络的力学强度比拓扑缠结更大,更能抵抗温度产生的解缠结;浓度越高,模量从降低走向升高的温度越低(如从85℃提前至60℃)。
     (5)过低的pH值,如pH=1,可以把0.5%KGM溶胶从假塑性流体变成牛顿流体,使5.0%的KGM凝胶的模量降低达1000倍;在pH为4~10的环境对KGM稀至浓体系的流变性影响小;pH=13时,导致了化学交联。
     (6)0.5%KGM溶胶和5.0%的KGM凝胶在含不同浓度尿素分子的溶液中的流体性质不发生改变。但是,低浓度尿素的存在(在0.01~0.1mol/L范围)会升高耗损模量和储能模等;高浓度尿素(浓度为0.1~1mol/L)则降低其耗损模量和储能模等值。由于氢键而新形成的物理交联点的增大,导致KGM线团运动对缠结的影响减少,体系对温度的变化不敏感。
     (7)因为盐离子介入,改变了KGM分子周围的电荷,导致KGM大分子链卷曲,KGM凝胶内部网络结构遭到破坏,从而使KGM凝胶的耗损模量和储能模量的变化;盐离子对KGM凝胶中大分子缠结点的密度影响小,但对KGM分子链缠结强度有一定的影响,这是因为水合盐离子的静电吸引作用和体积位阻效应,导致KGM分子链间的作用力增大和减小。
     高聚物是有许多高分子链聚集而成,有时即使相同链结构的同一种聚合物,在不同加工成型条件下,会产生不同的聚集态,而魔芋葡甘聚糖在不同溶剂中行为研究是高聚物多糖的凝聚态基础特性的重要内容。本文研究成果对天然大分子多糖的溶液理论的完善具有一定的学术价值。同时可以为魔芋葡甘聚糖在农业、食品、化工、石油、环保、国防军工等领域的进一步开发应用提供有价值的技术支撑。
Gel with special physical-chemical properties and unique applied performance could be transformed irreversibility from konjac glucomannan(KGM) sol as it was in aqueous solution at low concentration (over0.8%). This paper centered on the physical crosslinking KGM gelation involved in the basic problems with challenging in condensed matter physics about soft substance reassembly process. Partial primary structure, influence of solvents treatment on the contents and morphology of KGM, condensed properties of KGM in aqueous solution from diluted to concentrated polysaccharides region and influence of environmental factors on the condensed properties were investigated by polymer chemical and polymer physical theories and modern testing means. The research was supported by The National Key Technology R&D Program (2007BAE42B04).
     KGM morphology and the influence of solution environments on KGM morphology in plant cells, in bulk and in aqueous solutions from diluted to concentrated polymer region were investigated by microscopy. The enormous KGM grains which were pure translucent crystals were located in idioblast. The chain entanglement in KGM led to irregular small squares. The Scan Electron Microscope (SEM) examination showed that there had been an increase in holes and a decrease in diameter of the holes of the KGM solution as the concentration of KGM in aqueous solution increased from0.1%to5.0%. Atomic Force Microscope (AFM) examination showed that the concentrations of KGM in aqueous solution were0.1,5.0,10.0,60.0and100.0ug/ml respectively, and the aggregates of molecules were45.50,30.01,187.91,218.99and362.46nm in width and0.14,0.17,0.49,0.99and4.66nm in height. The results showed that solvation of KGM promoted molecule elongation.
     The orthogonal test design was used to arrange experiments to establish optimal purification of KGM. The optimal purification technology was as follows:0.1%KGM, at temperature of80℃for15hours,90%ethanol. KGM contents ranged up to95.45%, the yielding rate of KGM was80%. KGM consisted of1→4linked glucose and mannose units. KGM composed of1→6branched chain. There were2006glucosyls and3409mannosyls. The mole ratio was1:1.7.
     KGM samples were characterized by ubbelodhe viscodimeter and aqueous gel permeation chromatography coupled with multi angle laser light scattering (GPC-MALLS) and refractive index detector (RID). Further determination was undertaken by combining intrinsic viscosity with GPC. The intrinsic viscosity of KGM in aqueous solution was1755.56ml/g, Huggins coefficient was0.34. Mw=877200g/ml Mn=837700g/mol Mz=1803400g/mol Mp=993200g/mol, MW/MH=1.047     Rheological measurements were carried out to discuss the fundamental problem such as contact concentration, different ranges of concentration, entanglement an network of KGM solution, sol and sol-gel transform.
     The overlap concentration (c*) of KGM solution was0.11%, KGM chains became congested and eventually touch each other. At the so-called overlap concentration, there were5.8chains for each cube of a volume of a KGM sphere. At c0.15%, the KGM solution was pseudoplastic fluid. Rouse-Zimm model provided the correct expressions of KGM chain dynamics. The molecular mass determined by SEC-RID was decreased from7.55×105g/mol to6.35×105g/mol as the concentration of KGM in aqueous was increased from0.025mg/ml to1.0mg/l. The molecular mass fell15.9%. KGM coils would be closer with the increase in concentration, the size of KGM coils did not have a sufficient space available, the chains were overlapped.
     The concentration from0.15%to2.30%belonged to KGM solution, which showed a Newtonian-fluid characteristic and the exponential growth viscosity. K=4.29×e2.11C-7.96, n=0.79e256C+0.29could be used to describe the effect of concentration on the consistency coefficient and power index. The intersection of storage modulus and loss modulus for1.5%KGM aqueous solution was observed at the frequency0.8rad s-1lower than1which was suggested to mark the cohesional entanglement point of KGM chain. The Winter-Chambon method was found to be still effective in determination of the sol-gel transition. The sol-gel transition point concentration was determined to be2.33%, and the corresponding n was calculated to be0.42. Cohesional entanglement was transited to topological entanglement. Burgers model provided the correct expressions of KGM chain dynamics in sol.
     KGM gel was conformed at concentration was at concentration2.3%in which KGM chain formed the discontinuous local network structure. Me=4.29e-2.31C+1.53x10-7e-0.58C+1.8×105could be used to describe the effect of concentration on Me. When the concentration was increased up to5.0%, KGM chains transformed from discontinuous local network structure into a continuous network structure. The net work structure was the mechanism of KGM gelation. Reptation model was introduced to explain the network of KGM chain dynamics in gel.
     With increasing KGM concentration, the dynamic storage modulus (G') and loss modulus (G") increased. The G', G" kept decreasing with increasing the temperature until KGM chain reached Cohesional entanglement (KGM concentration1.5%), but storage modulus decreased sharply particularly in lower concentration. Since the concentration beyond1.5percent, The G',G" decreased at first and then increased gradually. The lower concentration, the more modulus dropped. The results showed that high concentrations would cause local network structures even contiguous net work structures with higher-strength mechanics properties than entanglement. The higher concentration, the lower temperature at turning point of modulus change (from85℃drop to60℃).
     0.5%KGM sol would be changed to Newtonian fluid from Pseudoplastic fluid at pH to1. The dynamic modulus of5.0%KGM gel would be decreased1000times as decreasing pH to1. Small pH changes had little impact on the rheological behavior of KGM from diluted to concentration region. The chemical crosslinking reaction was produced at pH to13.
     Urea had no impact on the rheological properties of0.5%KGM sol and5.0%KGM gel. With increasing urea concentration from0.01to0.1mol/L, the dynamic loss modulus and storage modulus increased while the dynamic loss modulus and storage modulus decreased. The results showed that the mobility of segments in KGM coil had little impact on entanglement as cross link density was increased. Urea/KGM systems were insensitive to temperature.
     The dynamic modulus of KGM gel would be changed by slats which changed the charge of KMG molecule in solution. That process led to damage the network of KGM gel. Salt had little impact of entanglement density of KGM gel, but had certain effect on entanglement strength. The results showed that electrostatic attraction and volume-phase effects had effect the intermolecular interactions.
     In the solid state, polymer molecules are in close contact with other polymer molecules. The physics of such a system is quite different from that of the individual molecules because of collective effects. Even in the same polymer with the same chain, different aggregative states will be produced in different conditions of processing. Behavior of KGM in solvents is an important content in the research of the condensed properties of polysaccharides. The results will be of referential values for solution theory of polysaccharides. At the same time, the results will provide tech support to further development and application of KGM in the field of agriculture, food, chemical engineering, petroleum, environmental protection and national defence.
引文
1 McKendry P. Energy production from biomass (part 1):overview of biomass[J].Bioresource Technology,2002;83(1):37-46
    2 Berndes G, Azar C., Kaberger T., Abrahamson D. The feasibility of large-scale lignocellulose~based bioenergy production[J].Biomass & Bioenergy,2001;20(5):371-383
    3 王海,卢旭东,张慧媛.国内外生物质的开发与利用[J].农业工程学报,2006;22(10):8-11
    4 Kamm B.,Kamm M. Principles of biorefineries[J].Applied Microbiology and Biotechnology,2004;64(2):137-145
    5 Ragauskas A. J., Williams C. K., Davison B. H., Britovsek G, Cairney J., Eckert C. A., Frederick W. J., Hallett J. P., Leak D. J., Liotta C. L., Mielenz J. R., Murphy R., Templer R., Tschaplinski T. The path forward for biofuels and biomaterials[J].Science,2006;311 (5760):484-489
    6 Kaplan D. L. Biopolymers from Renewable Resources[M].New York: Spinger,1998:1-25
    7汪怿翔,张俐娜.天然高分子材料研究进展[J].高分子通报,2008;(07):66-76
    8 刘楠,杨芳.魔芋葡甘聚糖的研究进展及应用现状综述[J].安康学院学报,2011;23(04):95-98
    9冲增哲.魔芋科学[M].成都:四川大学出版社,1990:7-9
    10 Elamir A. A., Tester R. F., Al~Ghazzewi F. H., Kaal H. Y., Ghalbon A. A., Elmegrahai N. A., Piggott J. R. Effects of konjac glucomannan hydrolysates on the gut microflora of mice[J].Nutrition & Food Science,2008;38(5):422-429
    11 Zhang Y. Q., Xie B. J.,Gan X. Advance in the applications of konjac glucomannan and its derivatives[J].Carbohydrate Polymers,2005;60(1):27-31
    12 Ferreira A. C. B., Hochman B., Furtado F., Bonatti S., Ferreira L. M. Keloids:a new challenge for nutrition[J].Nutrition Reviews,2010;68(7):409-417
    13 Parry J. M. Konjac glucomannan[J].Food Stabilisers, Thickeners and Gelling Agents,2009:198-217
    14 Takigami S. Konjac mannan[M].Woodhead Publishing, Cambridge, UK, 2000:50-57
    15吴贤聪,梁存钧,郭森炎.魔芋甘露聚糖的提取、鉴定及其应用的研究[J]. 食品科学,1987;3:20-22
    16 Wootton A. N., Luker-Brown M., Westcott R. J., Cheetham P. S. The extraction of a glucomannan polysaccharide from konjac corms (elephant yam, Amorphophallus rivierii) [J] Journal of the Science of Food and Agriculture,1993;61(4):429-433
    17张东华,汪庆平.硼砂在魔芋精粉生产中的应用[J].食品工业科技,1998;(3):37-38
    18李斌,汪超,吴良志.魔芋葡甘聚糖凝胶溶胀——溶解特性研究[J].食品科技,2003;(7):3-6
    19贾成禹.魔芋及魔芋多糖[J].植物杂志,1994;(5):26-27
    20唐贵丹,张伟敏,钟耕.乙醇沉淀法对魔芋葡甘露聚糖纯化研究概况[J].中国食品添加剂,2007;18(3):41-45
    21 Chua M., Chan K., Hocking T. J., Williams P. A., Perry C. J., Baldwin T. C. Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch[J].Carbohydrate Polymers,2012;87(3):2202-2210
    22 马惠玲,张院民,苏卫东.魔芋精粉的物理改性研究[J].食品工业科技,1998;(5):27-28
    23 龚加顺,彭春秀,幸治梅,庞杰.魔芋葡甘聚糖与大豆分离蛋白共混形成凝胶过程中的相互作用力研究[J].中国食品学报,2006;6(5):64-68
    24 Alonso-Sande M., Cuna M.,Remunan-Lopez C. Formation of new glucomannan-chitosan nanoparticles and study of their ability to associate and deliver proteins[J].Macromolecules,2006;39(12):4152-4158
    25 Xiao C. B., Gao S. J., Wang H., Zhang L. N. Blend films from chitosan and konjac glucomannan solutions[J] Journal of Applied Polymer Science,2000;76(4): 509-515
    26 Wang K.,He Z. M. Alginate-konjac glucomannan-chitosan beads as controlled release matrix[J].International Journal of Pharmaceutics,2002;244(l-2): 117-126
    27 Lu Y. S., Weng L. H.,Zhang L. N. Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers[J].Biomacromolecules,2004;5(3):1046-1051
    28 Liu J., Li B., Fu R. H., Yuan L. N., Huang W., Ma M. H. Study on Properties and Aggregation Structures of Deacetylated Konjac Glucomannan/Chitosan Hydrochloride Absorbent Blend Gel Films[J] Journal of Applied Polymer Science,2010;115(3):1503-1509
    29 张小菊,姜发堂.魔芋葡甘聚糖的改性修饰及其应用[J].化学与生物工程,2004;(2):4-6
    30 Katsuraya K., Okuyama K., Hatanaka K., Oshima R., Sato T., Matsuzaki K. Constitution of konjac glucomannan:chemical analysis and C-13 NMR spectroscopy[J]. Carbohydrate Polymers,2003;53(2):183-189
    31 贺珂,潘志东,王燕民.魔芋葡甘聚糖脱除乙酰基的机械力化学效应[J].高分子材料科学与工程,2009;25(2):134-137
    32潘志东,孟俊杰,王燕民.魔芋葡甘聚糖的机械力化学脱乙酰基和酯化改性[J].中国粉体技术,2012;18(1):34-39
    33 张正光,罗学刚.魔芋葡甘聚糖材料疏水改性的研究进展[J].化工进展,2007;26(3):356-361
    34李斌,谢笔钧.魔芋葡甘聚糖中乙酰基对其链结构及膜性能的影响[J].粮食与饲料工业,2005;(10):21-24
    35张升晖,吴绍艳,辛厚豪.脱乙酰基魔芋葡甘聚糖可食性膜材料研究[J].食品科学,2006(1):
    36李斌,谢笔钧.脱乙酰基对天然魔芋葡甘聚糖分子形貌的影响[J].功能高分子学报,2002;15(04):447-451
    37 Huang L., Takahashi R., Kobayashi S., Kawase T., Nishinari K. Gelation behavior of native and acetylated konjac glucomannan[J].Biomacromolecules,2002;3(6):1296-1303
    38 Liu M. M., Fan J. Y., Wang K., He Z. Synthesis, characterization, and evaluation of phosphated cross-linked konjac glucomannan hydrogels for colon-targeted drug delivery[J].Drug Delivery,2007; 14(6):397-402
    39 Yu H. Q., Huang Y. H., Ying H., Xiao C. B. Preparation and characterization of a quaternary ammonium derivative of konjac glucomannan[J].Carbohydrate Polymers,2007;69(1):29-40
    40 罗立新,冯长根.交联魔芋葡甘聚糖微球的制备与表征[J].林产化学与工业,2004;24():77-79
    41 罗立新,冯长根.羧甲基交联羧甲基魔芋葡甘聚糖微球的制备与表征[J].离子交联与吸附,2004;19(6):23-32
    42 Long X., Luo X., Wang Y, Li Z. Sorption of Pb(II) from aqueous solution by konjac glucomannan beads[J].Science in China, Series E:Technological Sciences,2009;52(1):223-226
    43 Liu F., Luo X., Lin X., Liang L., Chen Y. Removal of copper and lead from aqueous solution by carboxylic acid functionalized deacetylated konjac glucomannan[J] Journal of Hazardous Materials,2009;171(1-3):802-808
    44 Liu F., Luo X.,Lin X. Adsorption of tannin from aqueous solution by deacetylated konjac glucomannan[J] Journal of Hazardous Materials,2010;178(1-3): 844-850
    45 张正光,罗学刚.乙酸乙烯酯对魔芋葡甘聚糖的热塑改性[J].化工进展,2008;27(4):590-595
    46 Xu C., Luo X., Lin X., Zhuo X., Liang L. Preparation and characterization of polylactide/thermoplastic konjac glucomannan blends[J].Polymer,2009;50(15): 3698-3705
    47邓霄,潘思轶,林若泰.辐照法魔芋葡甘聚糖丙烯酸接枝共聚反应条件研究[J].食品科学,2005;26(8):225-230
    48耿胜荣,林若泰,熊光权,李新,张金木,陈玉霞,夏和舟.魔芋辐照接枝丙烯酸及其产物吸水性能的研究[J].核农学报,2008;22(5):650-653
    49耿胜荣,李新,廖涛,熊光权,叶丽秀,夏和舟.魔芋葡甘聚糖辐照改性产物结构分析与应用研究[J].北京工商大学学报(自然科学版),2011;29(2):33-36
    50余文洁,王勖,钱虹,刘毅,柯百胜,姜发堂.交联剂对魔芋超强吸水剂凝胶强度和吸水倍率的影响[J].食品工业科技,2012;33(02):150-154
    51 Yu H.,Xiao C. Synthesis and properties of novel hydrogels from oxidized konjac glucomannan crosslinked gelatin for in vitro drug delivery[J].Carbohydrate polymers,2008;72(3):479-489
    52 Yu H., Lu J.,Xiao C. Preparation and Properties of Novel Hydrogels from Oxidized Konjac Glucomannan Cross-Linked Chitosan for in vitro Drug Delivery[J].Macromolecular bioscience,2007;7(9-10):1100-1111
    53 Albrecht S., Van Muiswinkel G C. J., Xu J., Schols H. A., Voragen A. G. J., Gruppen H. Enzymatic production and characterization of konjac glucomannan oligosaccharides[J].Journal of Agricultural and Food Chemistry,2011;59(23): 12658-12666
    54 李光吉,廖启金,宗敏华,丁锐,陈志刚.非水相中酶催化葡甘聚糖的酯交换反应[J].华东理工大学学报(自然科学版),2006;32(6):666-672
    55陈志刚,宗敏华.分子量及酰基供体对酶促魔芋葡甘聚糖酰化反应的影响[J].催化学报,2007;28(4):339-344
    56王运,贲绍业.魔芋/聚乙烯醇塑料薄膜的研究[J].塑料,2004;33(1):24-26
    57 李娜,罗学刚.魔芋葡甘聚糖薄膜的制备和性能[J].化工进展,2005;24(9):1006-1011
    58 Xu X., Li B., Kennedy J., Xie B., Huang M. Characterization of konjac glucomannan-gellan gum blend films and their suitability for release of nisin incorporated therein[J].Carbohydrate Polymers,2007;70(2):192-197
    59 Xie C., Feng Y., Cao W., Xia Y., Lu Z. Novel biodegradable flocculating agents prepared by phosphate modification of Konjac[J].Carbohydrate polymers,2007;67(4):566-571
    60魔芋云彩涂料[J].技术与市场,2005;(3):16
    61 徐秋兰,庞杰.魔芋葡甘聚糖在环保中的应用[J].腐植酸,2003;(1)::18-23
    62 Chen L.-G, Liu Z.-L.,Zhuo R.-X. Synthesis and properties of degradable hydrogels of konjac glucomannan grafted acrylic acid for colon~specific drug delivery[J].Polymer,2005;46(16):6274-6281
    63 Wen X., Wang T., Wang Z., Li L., Zhao C. Preparation of konjac glucomannan hydrogels as DNA-controlled release matrix[J].International journal of biological macromolecules,2008;42(3):256-263
    64 Alvarez-Mancenido F., Landin M., Lacik I., Martinez-Pacheco R. Konjac glucomannan and konjac glucomannan/xanthan gum mixtures as excipients for controlled drug delivery systems. Diffusion of small drugs[J].International journal of pharmaceutics,2008;349(1):11-18
    65 Zhang H., Gu C. H., Wu H., Fan L., Li F., Yang F., Yang Q. Immobilization of derivatized dextran nanoparticles on konjac glucomannan/chitosan film as a novel wound dressing[J].BioFactors,2007;30(4):227-240
    66 Lu Y.,Zhang L. Interfacial structure and properties of regenerated cellulose films coated with superthin polyurethane/benzoyl konjac glucomannan coating[J].Industrial & engineering chemistry research,2002;41(5):1234-1241
    67葛佳丽,王佳兴,马光辉,王芳,邓利.魔芋葡甘聚糖DEAE阴离子交换介质的制备及表征术[J].离子交换与吸附,2007;23(4):289-296
    68 安青,周秋菊,罗立新.强酸型魔芋葡甘聚糖基离子交换树脂的性能[J].高分子材料科学与工程,2008;24(1):139-142
    69 Xiong X., Zhang L.,Wang Y. Polymer fractionation using chromatographic column packed with novel regenerated cellulose beads modified with silane[J] Journal of Chromatography A,2005;1063(1):71-77
    70 阳佛送,李雪华.多糖结构研究的方法和进展[J].食品科技,2008;(3): 200-204
    71 王丽霞,姚闽娜,王芹,史君彦,彭定利,刘秋丽.魔芋葡甘聚糖结构的研究进展[J].食品与机械,2011;27(3):143-147
    72 Kato K.,& Matsuda K. Studies on the chemical structure of konjacmannan. [J].Agricultural and Biological Chemistry,1973;37:2045-2051
    73 Nishinari K., Williams P. A.,Phillips G. O. REVIEW OF THE PHYSICOCHEMICAL CHARACTERISTICS AND PROPERTIES OF KONJAC MANNAN[J].Food Hydrocolloids,1992;6(2):199-222
    74 Maeda M., Shimahara H.,Sugiyama N. Detailed examination of the branched structure of konjac glucomannan[J].Agric. Biol.Chem.,1980;38:315-321
    75 Maekaji K. The mechanism of gelation of konjac mannan[J].Agricultural and Biological Chemistry,1974;38(2):315-321
    76 Ogawa K., Yui T.,Mizuno T. X-RAY-DIFFRACTION STUDY OF GLUCOMANNANS AND THEIR ACETATES [J].Agricultural and Biological Chemistry,1991;55(8):2105-2111
    77 张俐娜.天然高分子改性材料及应用[M].化学工业出版社,2006:243-276
    78 Yui T., Ogawa K.,Sarko A. Molecular and crystal structure of konjac glucomannan in the mannan Ⅱ polymorphic form[J].Carbohydr Res,1992;229(1): 41-55
    79 张俐娜. 《天然高分子科学与材料》[J].科学通报,2007;52(10):1106-1106
    80 Smirnova NI M. N., Shcherbukhin VD. Structure and characteristics of glucomannans from Eremurus iae and E.zangezuricus:detection of acetyl group localization inmacromolecules[J].Appl.Biochem. Microbiol.,2001 37(3):332
    81 Ratcliffe I., Williams P. A., Viebke C., Meadows J. Physicochemical characterization of konjac glucomannan[J].Biomacromolecules,2005;6(4):1977-86
    82 Li B., Xie B.,Kennedy J. F. Studies on the molecular chain morphology of konjac glucomannan[J].Carbohydrate Polymers,2006;64(4):510-515
    83 吴其晔.高分子凝聚态物理及其进展[J].华东理工大学出版社,2006:15-16
    84 Striegel A. M., Plattner R. D.,Willett J. L. Dilute solution behavior of dendrimers and polysaccharides:SEC, ESI-MS, and computer modeling[J].Analytical Chemistry,1999;71(5):978-986
    85 Lepoittevin B., Matmour R., Francis R., Taton D., Gnanou Y. Synthesis of dendrimer-like polystyrene by atom transfer radical polymerization and investigation of their viscosity behavior[J].Macromolecules,2005;38(8):3120-3128
    86 Burchard W., Schmidt M.,Stockmayer W. H. INFORMATION ON POLYDISPERSITY AND BRANCHING FROM COMBINED QUASI-ELASTIC AND INTEGRATED SCATTERING[J].Macromolecules,1980;13(5):1265-1272
    87 Striegel A. M. Mid-chain grafting in PVB-graft-PVB[J].Polymer International,2004;53(11):1806-1812
    88 Nishio I., Sun S. T., Swislow G., Tanaka T.1ST OBSERVATION OF THE COIL-GLOBULE TRANSITION IN A SINGLE POLYMER-CHAIN[J].Nature,1979;281(5728):208-209
    89 Wang X. H., Qiu X. P.,Wu C. Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water[J].Macromolecules,1998;31(9):2972-2976
    90 Peng S. F.,Wu C. Ca2+induced thermoreversible and controllable complexation of poly(N-vinylcaprolactam-co-sodium acrylate) microgels in water[J] Journal of Physical Chemistry B,2001;105(12):2331-2335
    91 Zhou K., Lu Y., Li J., Shen L., Zhang G., Xie Z., Wu C. The Coil-to-Globule-to-Coil Transition of Linear Polymer Chains in Dilute Aqueous Solutions:Effect of Intrachain Hydrogen Bonding[J].Macromolecules,2008;41(22): 8927-8931
    92张俐娜,薛奇,莫志深.高分子物理近代研究方法[M].武汉大学出版社,2006:36-37
    93 李晓晖,朱怀江.实用流变测量学[M].石油工业出版社(北京),1998:9-10
    94 Cross M. M. RHEOLOGY OF NON-NEWTONIAN FLUIDS-A NEW FLOW EQUATION FOR PSEUDOPLASTIC SYSTEMS [J] Journal of Colloid Science,1965;20(5):417-419
    95谭洪卓,谷文英,谢岩黎,陆建安.甘薯淀粉粉团的流变行为研究[J].中国粮油学报,2006;21(4):76-81
    96谭洪卓,谷文英,刘敦华,陆建安.甘薯淀粉糊的流变特性[J].食品科学,2008;(1):58-64
    97谭洪卓,谷文英,高虹,陆建安.绿豆粉丝生产中淀粉粉团的流变特性研究[J].食品科学,2007;(9):100-107
    98 段炼,薛宇,李国英.天然胶原的稳态流变性能和数学模拟[J].功能材 料,2010;41(12):2068~2072
    99 Carreau P. J. Rheological equations from molecular network theories[J].Transactions of the Society of Rheology,1972; 16(1):99-127
    100 Munoz J., Hudson N. E., Velez G, Alfaro M. D., Ferguson J. Rheological behaviour of spray-dried egg yolk/xanthan gum aqueous dispersions [J].Rheologica Acta,2001;40(2):162-175
    101 Lapasin R., Pricl S., Bertocchi C., Navarini L., Cesaro A., Dephilippis R. POLYSACCHARIDES FROM CYANOBACTERIA.4. RHEOLOGY OF CULTURE BROTHS AND EXOPOLYSACCHARIDE OF CYANOSPIRA-CAPSULATA AT DIFFERENT STAGES OF GROWTH[J].Carbohydrate Polymers,1992;17(1):1-10
    102 Jacon S. A., Rao M. A., Cooley H. J., Walter R. H. THE ISOLATION AND CHARACTERIZATION OF A WATER EXTRACT OF KONJAC FLOUR GUM[J].Carbohydrate Polymers,1993;20(1):35-41
    103 Goh K. K. T., Hemar Y.,Singh H. Viscometric and static light scattering studies on an exopolysaccharide produced by Lactobacillus delbrueckii subspecies bulgaricus NCFB 2483[J].Biopolymers,2005;77(2):98-106
    104 Chu B. SCALING CONCEPTS IN POLYMER PHYSICS-DEGENNES,PG[J].Journal of the American Chemical Society,1983;105(15): 5169-5169
    105 Xu X. J., Liu W.,Zhang L. N. Rheological behavior of Aeromonas gum in aqueous solutions [J].Food Hydrocolloids,2006;20(5):723-729
    106 McConaughy S. D., Stroud P. A., Boudreaux B., Hester R. D., McCormick C. L. Structural characterization and solution properties of a galacturonate polysaccharide derived from Aloe vera capable of in situ gelation[J].Biomacromolecules,2008;9(2):472-480
    107 Jampen S., Britt I. J.,Tung M. A. Gellan polymer solution properties:dilute and concentrated regimes[J].Food Research International,2000;33(7):579-586
    108 Fang Y. P.,Nishinari K. Gelation behaviors of schizophylian-sorbitol aqueous solutions[J].Biopolymers,2004;73(1):44-60
    109 Fang Y. P., Al-Assaf S., Phillips G. O., Nishinari K., Funami T., Williams P. A., Li L. B. Multiple steps and critical behaviors of the binding of calcium to alginate[J] Journal of Physical Chemistry B,2007;111(10):2456-2462
    110 Popa-Nita S., Alcouffe P., Rochas C., David L., Domard A. Continuum of Structural Organization from Chitosan Solutions to Derived Physical Forms[J].Biomacromolecules,2010;11(1):6-12
    111 Chambon F.,Winter H. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry[J].Journal of Rheology,1987;31 (8): 683-697
    112 Winter H.,Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point[J]. Journal of Rheology,1986;30(2):367-382
    113 Shchipunov Y. A. Sol-gel-derived biomaterials of silica and carrageenans[J].Journal of Colloid and Interface Science,2003;268(1):68-76
    114 Nishinari K. Rheological and DSC study of sol-gel transition in aqueous dispersions of industrially important polymers and colloids[J].Colloid and Polymer Science,1997;275(12):1093-1107
    115 Molinaro G., Leroux J. C., Damas J., Adam A. Biocompatibility of thermosensitive chitosan-based hydrogels:an in vivo experimental approach to injectable biomaterials[J].Biomaterials,2002;23(13):2717-2722
    116 Joo M. K., Park M. H., Choi B. G., Jeong B. Reverse thermogelling biodegradable polymer aqueous solutions[J] Journal of Materials Chemistry,2009; 19(33):5891-5905
    117 Chenite A., Buschmann M., Wang D., Chaput C., Kandani N. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions[J].Carbohydrate Polymers,2001;46(1):39-47
    118刘新星,钱丽颖,舒坦,鲁路,童真.海藻酸钠水溶液的Sol-Gel转变与凝胶化点的决定[J].高分子学报,2003;8(4):84-487
    119 Nomura Y., Toki S., Ishii Y., Shirai K. The physicochemical property of shark type Ⅰ collagen gel and membrane[J].Journal of Agricultural and Food Chemistry,2000;48(6):2028-2032
    120庞杰,李斌,谢笔钧,陈绍军,田世平.氧化魔芋葡甘聚糖的结构研究[J].结构化学,2004(08):912-917
    121 张升晖吴.颜.邵.魔芋葡甘露聚糖纯化及性能研究[J].食品科学,2005;(09):275-277
    122吴拥军,王嘉福.魔芋葡萄甘露低聚糖的提取及其产物对耐氧双岐杆菌的促生长作用[J].食品科学,2002;23(6):41-44
    123彭湘莲,付红军,徐悦.硼砂处理提纯魔芋葡甘聚糖的工艺研究[J].食品与机械,2009;25(6):80-83
    124 Gao S., Guo J.,Nishinari K. Thermoreversible konjac glucomannan gel crosslinked by borax[J].Carbohydrate Polymers,2008;72(2):315-325
    125 Pang J., Sun Y. J., Li B., Tian S. P., Chen S. J. The effect of boron on the properties of Glucomannan:An experimental and molecular dynamics simulation study[J].Chinese Journal of Structural Chemistry,2005;24(12):1397-1402
    126 Jian W., Zeng Y., Xiong H., Pang J. Molecular simulation of the complex of konjac glucomannan-borate in water[J].Carbohydrate Polymers,2011;85(2): 452-456
    127 孙润广,张静.甘草多糖螺旋结构的原子力显微镜研究[J].化学学报,2006;64;(24):2467-2472
    128 阳佛送,李雪华.多糖结构研究的方法和进展[J].食品科技,2008;3:200-203
    129 吴剑波王.A.多糖生物活性的研究进展[J].国外医药(抗生素分册),2001;(3):97-100
    130 Sidorczyk Z., Swierzko A., Knirel Y. A., Vinogradov E. V., Chernyak A. Y, Kononov L. O., Cedzynski M., Rozalski A., Kaca W., Shashkov A. S., Kochetkov N. K. STRUCTURE AND EPITOPE SPECIFICITY OF THE OSPECIFIC POLYSACCHARIDE OF PROTEUS-PENNERI STRAIN-12 (ATCC-33519) CONTAINING THE AMIDE OF DGALACTURONIC ACID WITH LTHREONINE[J].European Journal of Biochemistry,1995;230(2):713-721
    131 林楠,钟耀广,王淑琴,刘长江.多糖结构分析方法研究进展[J].农产食品科技,2007;1(1):34-36
    132赵志峰,雷鸣,卢晓黎.魔芋产品的加工现状及其发展前景[J].四川食品与发酵,2002;38(03):10-14
    133 钱人元.高分子凝聚态的几个基本物理问题[J].中国科学院院刊,2000;(3):174-178
    134 Jones N. A., Hill I., Stolnik S., Bignotti F., Davis S. S., Garnett M. C. Polymer chemical structure is a key determinant of physicochemical and colloidal properties of polymer-DNA complexes for gene delivery[J].Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2000;1517(1):1-18
    135 Burova T. V., Grinberg N. V., Grinberg V. Y, Kalinina E. V., Lozinsky V. I., Aseyev V. O., Holappa S., Tenhu H., Khokhlov A. R. Unusual conformational behavior of complexes of poly (N-isopropylacrylamide) with poly (methacrylic acid)[J].Macromolecules,2005;38(4):1292-1299
    136戴玲,廖洪梅,沈业寿,赵帜平,朱晓光.原子力显微镜观察丹皮多糖 分子的形貌结构及自组装行为[J].激光生物学报,2007;16(6):749-753
    137李艳青,智丽丽,陈惠敏.黄原胶分子形貌的原子力显微镜研究[J].伊犁师范学院学报(自然科学版),2011;(01):23-27
    138 Zhang X., Zhang L.,Xu X. Morphologies and conformation transition of lentinan in aqueous NaOH solution[J].Biopolymers,2004;75(2):187-195
    139 Rief M., Oesterhelt F., Heymann B., Gaub H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy[J].Science,1997;275(5304):1295-1297
    140 Shi X. W., Lu A., Cai J., Zhang L. N., Zhang H. M., Li J., Wang X. H. Rheological Behaviors and Miscibility of Mixture Solution of Polyaniline and Cellulose Dissolved in an Aqueous System[J].Biomacromolecules,2012;13(8): 2370-2378
    141 Zhou B., Wang Y., Li B., Li J., Lv G. Y., Mei T., Cui B., Fan J. S. Preparation and characterization of Konjac glucomannan-based cation exchange resin[J].Carbohydrate Polymers,2012;87(2):1877-1880
    142 Crini G Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment[J].Progress in polymer science,2005;30(1):38-70
    143 Milas M., Rinaudo M., Roure I., Al-Assaf S., Phillips G O., Williams P. A. Comparative rheological behavior of hyaluronan from bacterial and animal sources with cross-linked hyaluronan (hylan) in aqueous solution[J].Biopolymers,2001;59(4): 191-204
    144刘廷国,王洋,夏俊,李斌.纯化方法对魔芋葡甘聚糖结构及性能的影响[J].林产化学与工业,2005;25(3):71-75
    145何曼君,陈维孝,董西侠.高分子物理学[M].上海,2000:156-176
    146杨颖,王成军.魔芋粉及魔芋葡甘露聚糖的粘度和密度测定[J].中国药物应用与监测,2007;(1):44-47
    147 Funami T., Kataoka Y., Omoto T., Goto Y., Asai I., Nishinari K. Food hydrocolloids control the gelatinization and retrogradation behavior of starch.2a. Functions of guar gums with different molecular weights on the gelatinization behavior of corn starch[J].Food Hydrocolloids,2005;19(1):15-24
    148 潘雁,程时.高分子稀溶液粘度的浓度依赖性[J].高分子通报,2000;(02):10~19
    149 Fang Y., Takahashi R.,Nishinari K. Rheological characterization of schizophyllan aqueous solutions after denaturation-renaturation treatment[J].Biopolymers,2004;74(4):302-315
    150王喜云,王远亮,吴扬兰,李坤,彭晓东.凝胶渗透色谱-十八角激光散射仪(GPC-MALLS)的应用:浓度、流量、温度对高分子分子量及其分布的影响[J].光散射学报,2007;19(1):49-55
    151 Fredheim G. E., Braaten S. M.,Christensen B. E. Molecular weight determination of lignosulfonates by size-exclusion chromatography and multi-angle laser light scattering[J] Journal of Chromatography A,2002;942(1-2):191-199
    152 Viebke C.,Williams P. A. The influence of temperature on the characterization of water-soluble polymers using asymmetric flow field-flow-fractionation coupled to multiangle laser light scattering[J].Analytical chemistry,2000;72(16):3896-3901
    153 陈士勇,王勖,汪超,陈文平,江贵林,吕文平,姜发堂.魔芋葡甘聚糖分子量的GPC-LS-RI与LS法研究比较[J].高分子材料科学与工程,2011;27(4):56-59
    154 Li B., Xie B. J.,Kennedy J. F. Studies on the molecular chain morphology of konjac glucomannan[J].Carbohydrate Polymers,2006;64(4):510-515
    155 薄淑琴,杨虹,郝克君.水溶性高聚物聚丙烯酰胺的稀溶液性质(Ⅰ)[J].高分子学报,1992;(1):9-15
    156 胡文兵.高分子的良溶剂和不良溶剂的两种定义辩析[J].高分子通报,2000;(2):97-98
    157李斌,谢笔钧.魔芋葡甘聚糖分子链形态研究[J].中国农业科学,2004;(2):280-284
    158 李斌,谢笔钧.芋葡甘聚糖分子链形态研究[J].中国农业科学,2004;37(2):280-284
    159 Burchard W. Solution properties of branched macromolecules[J].Branched Polymers Ⅱ,1999:113-194
    160 Qian R., Wu L., Shen D., Napper D. H., Mann R. A., Sangster D. F. Single-chain polystyrene glasses[J].Macromolecules,1993;26(11):2950-2953
    161 吴其晔,巫静安.高分子材料流变学[M].高等教育出版社,2002:201-213
    162潘雁,程镕时.高分子稀溶液粘度方程中Huggins系数的新解释[J].高等学校化学学报,2000;21(9):1497-1499
    163 潘雁,程镕时.支化高分子稀溶液粘度的浓度依赖性[J].应用化学,1999;16(6):102-103
    164杨琥,尹唯斯,王治流,丁延伟,张广照,程镕时.种相变温度与人体正常体温相近的共聚高分子在水溶液中的自缔合行为[J].化学学报,2004;62(6):610~614
    165 Zimm B. H. Chain molecule hydrodynamics by the Monte-Carlo method and the validity of the Kirkwood-Riseman approximation[J].Macromolecules,1980; 13(3):592-602
    166 Nishinari K., Miyoshi E., Takaya T., Williams P. A. Rheological and DSC studies on the interaction between gellan gum and konjac glucomannan[J].Carbohydrate polymers,1996;30(2):193-207
    167 Abu-Lail N. I.,Camesano T. A. Polysaccharide properties probed with atomic force microscopy[J] Journal of Microscopy,2003;212:217-238
    168 Mann B. K., Gobin A. S., Tsai A. T., Schmedlen R. H., West J. L. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains:synthetic ECM analogs for tissue engineering[J].Biomaterials,2001;22(22):3045-3051
    169 Lucas N., Bienaime C., Belloy C., Queneudec M., Silvestre F., Nava-Saucedo J.-E. Polymer biodegradation:Mechanisms and estimation techniques-A review[J].Chemosphere,2008;73(4):429-442
    170郑文锐,傅尧,刘磊,郭庆祥.尿素及硫脲与羰基化合物间的氢键相互作用[J].物理化学学报,2007(07):
    171 姜绍芬,伍乐芹,戴晶晶,王艳丽,张静,孙润广.防风多糖ASPSO溶液粘度及构象研究[J].食品工业科技,2012(04):
    172 Schmitt C., Sanchez C., Desobry-Banon S., Hardy J. Structure and technofunctional properties of protein-polysaccharide complexes:A review[J].Critical Reviews in Food Science and Nutrition,1998;38(8):689-753
    173 Member M. W. N.,Morris E. R. Solubility, solution rheology and salt-induced gelation of welan polysaccharide in organic solvents[J].Carbohydrate Polymers,1995;27(1):23-36
    174 Silva D. A., Brito A. C. F., de Paula R. C. M., Feitosa J. P. A., Paula H. C. B. Effect of mono and divalent salts on gelation of native, Na and deacetylated Sterculia striata and Sterculia urens polysaccharide gels[J].Carbohydrate Polymers,2003;54(2):229-236
    175 Khouryieh H. A., Herald T. J., Aramouni F., Alavi S. Intrinsic viscosity and viscoelastic properties of xanthan/guar mixtures in dilute solutions:Effect of salt concentration on the polymer interactions[J].Food Research International,2007;40(7): 883-893
    176 Wyatt N. B., Gunther C. M.,Liberatore M. W. Increasing viscosity in entangled polyelectrolyte solutions by the addition of salt[J].Polymer,2011;52(11): 2437-2444
    177 Planchon S., Gaillard-Martinie B., Dordet-Frisoni E., Bellon-Fontaine M. N., Leroy S., Labadie J., Hebraud M., Talon R. Formation of biofilm by Staphylococcus xylosus[J].International Journal of Food Microbiology,2006; 109(1-2): 88-96
    178苏荣欣,齐崴,何志敏.水溶性多糖酶解过程分子量变化与动力学建模[J].高校化学工程学报,2006;20;(4):565-572
    179杨云松,彭红云,戚国荣.聚丙烯酸长链酯的Huggins常数与其分子量的依赖性关系[J].浙江大学学报(理学版),2003;30(5):545-551
    180 Porter R. S., Barrall Ⅱ E. M.,Johnson J. F. Some flow characteristics of mesophase types[J].The Journal of Chemical Physics,1966;45:1452
    181 范仲勇于.王.卜.链缠结对聚合物结晶行为的影响[J].高等学校化学学报,2003;24(8):1528-1530
    182庞杰,林琼,张甫生,田世平,孙远明.魔芋葡甘聚糖功能材料研究与应用进展[J].结构化学,2003;(6):633-642
    183 Zhang Y.-q., Xie B.-j.,Gan X. Advance in the applications of konjac glucomannan and its derivatives[J].Carbohydrate Polymers,2005;60(1):27-31
    184 Nishinari K., Zhang H.,Ikeda S. Hydrocolloid gels of polysaccharides and proteins[J].Current opinion in colloid & interface science,2000;5(3):195-201
    185 陈文芳,蔡扶时.非牛顿流体的一些本构方程[J].力学学报,1983;15(1):16-26
    186庞文民,吴伟泰,王雨松,聂康明,鲁非,朱清仁,范成高.超高分子量聚乙烯在溶液中的链缠结与黏度的关系[J].高分子材料科学与工程,2005;21(5):122-124
    187 Ferry J. D. Viscoelastic properties of polymers[M].Wiley New York,1980: 120-134
    188 Everaers R., Sukumaran S. K., Grest G. S., Svaneborg C., Sivasubramanian A., Kremer K. Rheology and microscopic topology of entangled polymeric liquids[J].Science,2004;303(5659):823-826
    189 Musampa R., Alves M.,Maia J. Phase separation, rheology and microstructure of pea protein-kappa-carrageenan mixtures[J].Food hydrocolloids,2007;21(1):92-99
    190 Simeone M., Alfani A.,Guido S. Phase diagram, rheology and interfacial tension of aqueous mixtures of Na-caseinate and Na-alginate[J].Food hydrocolloids,2004;18(3):463-470
    191 Zhang Z., Li G.,Shi B. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes[J] JOURNAL-SOCIETY OF LEATHER TECHNOLOGISTS AND CHEMISTS,2006;90(1):23-25
    192李洋,李艳稳,杜宗良,李国英,姜德云.天然胶原溶液的流变特性[J].中国皮革,2008;(1):8-11
    193 Te Nijenhuis K.,Winter H. H. Mechanical properties at the gel point of a crystallizing poly (vinyl chloride) solution[J].Macromolecules,1989;22(1):411-414
    194 Chambon F.,Winter H. H. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry[J] Journal of Rheology,1987;31(8): 683-697
    195 赵得禄.高分子链构象的无规自避行走模型[J].曲阜师范大学学报(自然科学版),1986;24(8):1528-1530
    196 Riviere A. Analysis of the low frequency damping observed at medium and high temperatures[J].Materials Science and Engineering:A,2004;370(1):204-208
    197 Vuoristo T.,Kuokkala V.-T. Creep, recovery and high strain rate response of soft roll cover materials[J].Mechanics of materials,2002;34(8):493-504
    198 Barnes H. A., Hutton J. F.,Walters K. An introduction to rheology[M].Elsevier Science Limited,1989:34-56
    199 沈德言,钱人元.高聚物的物理老化和链的凝聚缠结[J].高分子通报,1993;(4):193-196
    200 许元泽.高分子结构流变学的进展Ⅰ.非缠结柔性链高分子溶液[J].高分子通报,1989;2:18-25
    201 黄祖洽.软凝聚态物理研究进展[J].北京师范大学学报(自然科学版),2005;41(1):24-29
    202马红孺,陆坤权.软凝聚态物质物理学[J].物理,2000;(9):156-165
    203 Koroskenyi B.,McCarthy S. P. Synthesis of acetylated konjac glucomannan and effect of degree of acetylation on water absorbency[J].Biomacromolecules,2001;2(3):824-6
    204 Gao S., Guo J., Wu L., Wang S. Gelation of konjac glucomannan crosslinked by organic borate[J].Carbohydrate Polymers,2008;73(3):498-505
    205 Maekaji K. Determination of acidic component of konjac mannan[J].Agricultural and Biological Chemistry,1978;42:
    206 Williams M. A. K., Foster T. J., Martin D. R., Norton I. T., Yoshimura M., Nishinari K. A Molecular Description of the Gelation Mechanism of Konjac Mannan[J].Biomacromolecules,2000; 1 (3):440-450
    207 Williams M. A., Foster T. J., Martin D. R., Norton I. T., Yoshimura M., Nishinari K. A molecular description of the gelation mechanism of konjac mannan[J].Biomacromolecules,2000;1(3):440-50
    208 Yoshimura M.,Nishinari K. Dynamic viscoelastic study on the gelation of konjac glucomannan with different molecular weights[J].Food Hydrocolloids,1999;13(3):227-233
    209 Wang K.,He Z. Alginate-konjac glucomannan-chitosan beads as controlled release matrix[J].International journal of pharmaceutics,2002;244(l): 117-126
    210 Fan J., Wang K., Liu M., He Z. In vitro evaluations of konjac glucomannan and xanthan gum mixture as the sustained release material of matrix tablet[J].Carbohydrate Polymers,2008;73(2):241-247
    211 He X. J., Wang H., Amadou I., Qin X. J. Textural and rheological properties of hydrolyzed Konjac Glucomannan and Kappa-Carrageenan:Effect of molecular weight, total content, pH and temperature on the mixed system gels[J].Emirates Journal of Food and Agriculture,2012;24(3):
    212 Yoshimura M., Takaya T.,Nishinari K. Effects of konjac-glucomannan on the gelatinization and retrogradation of corn starch as determined by rheology and differential scanning calorimetry[J] Journal of agricultural and food chemistry,1996;44(10):2970-2976
    213 Djabourov M., Grillon Y.,Leblond J. The sol-gel transition in gelatin viewed by diffusing colloidal probes[J].Polymer Gels and Networks,1995;3(4): 407-428
    214 Gabriele D., de Cindio B.,D'Antona P. A weak gel model for foods[J].Rheologica Acta,2001;40(2):120-127
    215 Williams M. A., Foster T. J., Martin D. R., Norton I. T., Yoshimura M., Nishinari K. A molecular description of the gelation mechanism of konjac mannan[J].Biomacromolecules,2000; 1 (3):440-450
    216 Chu A.,Prud'homme R. Molecular network model for the rheology of gelling polymer solutions[J] Journal of non-newtonian fluid mechanics,1987;22(2): 207-218
    217 Fang Y, Takahashi R.,Nishinari K. A gel network constituted by rigid schizophyllan chains and nonpermanent cross-links[J].Biomacromolecules,2004;5(1): 126-136
    218 Rojo E., Munoz M. E., Santamaria A., Pena B. Correlation between conformational parameters and rheological properties of molten syndiotactic polypropylenes[J].Macromolecular rapid communications,2004;25(14):1314-1318
    219李艳青,智丽丽,陈惠敏.黄原胶分子形貌的原子力显微镜研究[J].伊犁师范学院学报:自然科学版,2011;(1):23-26
    220 彭湘莲,付红军,李忠海,钟海雁.乙醇提纯魔芋葡甘聚糖的研究[J].食品科技,2010;(5):248-251
    221 Du J., Sun R., Zhang S., Zhang L. F., Xiong C. D., Peng Y. X. Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. I. Physicochemical characterization of the carboxymethyl konjac glucomannan-chitosan nanoparticles[J].Biopolymers,2005;78(1):1-8
    222 Qi L., Li G,Zong M. Enzyme-catalyzed controllable degradation of konjac glucomannan[J].ACTA Polymerica Sinica,2003(5):650-654
    223 Murakami R.,Motozato Y. Viscosity of aqueous glucomannan-borate complex solutions[J].Polymer,1992;33(5):1108-1109
    224汪超,李斌,徐潇,谢笔钧.魔芋葡甘聚糖的流变特性研究[J].农业工程学报,2005;21(8):157-160
    225 Tung C. Y. M.,Dynes P. J. Relationship between viscoelastic properties and gelation in thermosetting systems [J] Journal of Applied Polymer Science,1982;27(2): 569-574
    226 McQueen-Mason S.,Cosgrove D. J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension[J].Proceedings of the National Academy of Sciences,1994;91(14): 6574-6578
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.