用改性中空纤维超滤膜技术回收甘薯淀粉生产废水中蛋白质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘薯淀粉加工时间短,废水具有量大、有机物浓度高、集中处理难度大等特点,废水处理已成为制约甘薯产业发展的瓶颈;亟待研发适合中小型甘薯淀粉加工企业的废水处理技术。甘薯生产废水中含大量的蛋白质,由于缺少有效的分离提取技术,蛋白质只能随废水排放,不仅造成资源浪费,而且成为甘薯废水排放的主要污染物质。本文以提取甘薯淀粉生产废水中的蛋白质为目标,采用膜材料制备、预处理、中试评价等相结合的研究方法,确定了以聚氯乙烯为原料制备中空纤维超滤膜纺丝的最佳工艺条件,摸清了铸膜液组成、成孔剂、改性剂等对中空纤维超滤膜性能的影响,明确了中空纤维超滤膜改性的机理,制备了具有高效、抗污染的改性中空纤维超滤膜组件。筛选了甘薯废水预处理的工艺,获得了与膜分离技术相结合的蛋白质提取工艺参数。通过中试,评价了改性中空纤维超滤膜组件对蛋白质的截留及COD等污染物的去除效果。
     新型抗污染的聚氯乙烯(PVC)中空纤维超滤膜被自主研发。获得最佳铸膜液配方,聚氯乙烯、二甲基乙酰胺(DMAc)的质量百分含量分别为16、80wt%,最佳凝胶温度为25℃,最佳预蒸发时间为30s,同时获得中空纤维超滤膜最佳纺丝条件为:芯液流量20ml/min,计量泵转速42r/min,绕丝机卷绕速度20r/min,凝胶浴温度20℃。在聚氯乙烯中空纤维超滤膜铸膜液中适量添加纳米粉体改性剂,可明显改善膜的抗污染性能。其改性机理是改性剂比表面积大,表面富含的羟基与聚氯乙烯分子链产生吸附作用,从而形成机械性能稳定的大分子网络结构,改善了聚氯乙烯的亲水性,增加膜丝韧性,增强膜的抗污染能力。添加一定量改性剂时,膜的空隙率取得最大值,且膜的通量和截留率改性效果最好,膜丝性能稳定。当工作压力从0.04MPa上升到0.2MPa时,随工作压力的增大,膜通量逐渐增大,而截留率变化平缓,考虑膜丝耐受压力,聚氯乙烯中空纤维超滤膜的工作压力选择0.18MPa。对比研究酸化沉淀、冷藏、离心、化学絮凝、生物絮凝等预处理工艺,筛选出酸化沉淀、离心和生物絮凝是较好的预处理工艺,将筛选出的预处理工艺联合改性聚氯乙烯中空纤维膜处理甘薯淀粉生产废水,获得最佳组合工艺运行参数和处理效果。最后设计组装中试规模设备回收企业实际生产废水中蛋白来评价超滤膜改性效果。
     采用改性聚氯乙烯中空纤维超滤膜回收甘薯淀粉生产废水中蛋白质,膜通量恢复率92.5%,比未改性超滤膜提高5.8%;蛋白截留率83.2%,比未改性超滤膜提高2%且运行稳定,实验结果表明聚氯乙烯中空纤维超滤膜改性效果良好。大量实验数据明确在酸化沉淀、冷藏、离心、化学絮凝、生物絮凝等几种预处理工艺中酸化沉淀是最佳预处理方式。酸化沉淀后废水经过超滤处理,透过液COD浓度去除率为14.2%,蛋白截留率为95.7%。应用改性PVC中空纤维膜制成内压式超滤膜设备处理山东威海某淀粉厂实际生产废水,设备连续运行10周期(天),每个周期工作10小时,设备运行基本稳定。超滤设备连续运行10小时后废水COD的平均去除率仍为15.3%;可溶性蛋白平均截留率83.3%;连续运行10天,超滤出水COD平均去除率20.8%;可溶性蛋白平均截留率83.6%;总氮和总磷的平均去除率为21.2%和8%。实验证明,改性聚氯乙烯中空纤维超滤膜能高效截留甘薯淀粉生产废水中的可溶性蛋白。
Content:Environmental pollution has become the bottleneck of the development of sweet potato starch production because the wastewater has the characteristics of containing high concentration of organic substance, concentrated of discharging time and difficult to be treated. The new treat technique is expected and which fit for Chinese middle and small starch fabrication enterprise. The sweet potato starch has a rich source of protein, however, they have to be discharged in the wastewater because of lacking of effective separation technology, so large amount of protein resources are wasted and the environment is polluted. The object of this paper is extracted protein from wastewater of sweet potato starch production. The optimum conditions are determined of spinning conditions of hollow fiber membrane with polyvinyl chloride (PVC).The influences of dope solutions composition, Pore-forming agent and modifier on properties of such modified ultra filtration membrane are investigated through the methods of preparing hollow fiber membrane, Pretreatment and field experiment evaluation. The mechanism of membrane modification was discussed. The anti-fouling and high efficiency hollow fiber membrane modules with polyvinyl chloride (PVC) are prepared by phase-inversion. The pretreatment of sweet potato starch production wastewater has been filtered out. The extraction parameters were determined through combing membrane separation technology. The effect for protein retention and contamination removal are evaluated though pilot test.
     The experimental results show that a new anti-pollution that nanometer powder was added into PVC hollow fiber ultrafiltration membrane was developed. The optimum membrane formula is determined. The PVC, DMAc, content were16,80wt%, the best coagulant bath temperature is25℃, the best pre-evaporation time is30s.At the same time, the optimal conditions for preparing the hollow fiber membrane spinning is core liquid flow rate20ml/min, speed of metering pump42r/min, the winding speed of wire machine20r/min, coagulant bath temperature20℃. The membrane performance is significantly improved because of the modifier moderately to be added in the casting solution of PVC hollow fiber UF membrane. The specific surface area of modifier was large, the adsorption was produced between hydroxyl groups and PVC molecular chain, mechanical stability and hydrophily were increased because of large molecular network structure was formed,were the main mechanisms of modification. It was shown that the modified membranes expressed better anti-fouling ability in the ultrafiltration. When the moderate modifier concentration was added, membrane flux and the rejection of the modification effect is best. The pressure increased from0.04MPa to0.2MPa, the membrane flux increases and rejection is stable with the increases of pressure. So we choose0.18MPa as the working pressure of PVC hollow fiber ultrafiltration membrane. Then, the processes of hydrolysis acidification precipitation, cold storage, centrifugal, chemical flocculation and biological flocculation were studied as pretreatment methods for sweet potato starch production wastewater. The best pretreatment process was screened out through comparison. Sweet potato production wastewater was treated by the best pretreatment method and UF process, and the optimum process parameters and processing was obtained. Finally, pilot scale treatment device is designed and assembled for treating actual production wastewater from enterprises, operating parameters, the combined process treatment effect and protein retention effect were further evaluated.
     The protein from wastewater of sweet potato production was recoved with modified PVC hollow fiber ultrafiltration membrane. The membrane flux recovery rate is92.5%,and retention of protein is83.2%。The modified ultrafiltration membrane increased by more5.8%and2%compared with that of unmodified membrane. Experiments show that the optimal pretreatment is hydrolysis acidification precipitation. Wastewater was pre-treated by hydrolysis acidification precipitation, after that, Effluent was treated by ultrafiltration. The removal rate of COD and soluble protein is14.2%and95.7%. The inside-out hollow fiber ultrafiltration equipment was made by modification of PVC hollow fiber membranes. Wastewater from starch factory in Weihai was treated by this equipment. Equipment operated continuous period (10days),10hours of work per cycle. The average removal rate of COD is15.3%when Ultrafiltration equipment run10hours. The average removal rate of COD and soluble protein is20.8%and83.6%. The average removal rate of total nitrogen and total phosphorus is21.2%and8%.when ultrafiltration equipment continuous operated10days.The test results show that, the soluble protein in wastewater can be efficient intercepted by ultrafiltration equipment of modified PVC hollow fiber membrane.
引文
[1]安树林.1993.聚砜/二甲基乙酰胺/聚乙二醇中空纤维铸膜液的流变性能[J].膜科学与技术,13(4):2-28.
    [2]安树林.1994.聚乙烯毗咯烷酮为成孔剂的中空纤维铸膜液研究[J].天津纺织工学院学报,13(4):15-18.
    [3]北京中水源膜技术有限公司.2009.聚氯乙烯合金七孔膜用于污水处理的实践[J].中国环保产业,(11):16-17.
    [4]陈红霞.2005.水处理中膜技术的应用与展望[J].山东化工,2005(34):8-14.
    [5]蔡自建.2005.甘薯糖蛋白的分离纯化及其糖链结构鉴定[D].西南农业大学,3:51-58.
    [6]程坷伟,许时婴,王璋.2004.甘薯糖蛋白离纯化和组成[J].食品与发酵工艺,30(11):130-134.
    [7]程坷伟,许时婴,王潭.2003.甘薯淀粉生产的废液中提取糖蛋白的超滤工艺研究[J].食品工业科技,24(10):109-11.
    [8]陈钰,潘晓琴,钟振声.等.2010.马铃薯淀粉加工废水中超滤回收马铃薯蛋白质[J].食品研究与开发,31(9):39-41。
    [9]迟莉娜,奚旦立,陈季华,等.2002.共混相容性及其对膜结构[J].水处理技术,37:27-32.
    [10]陈艳,伏小勇,于晓华,等.2010.混凝防止膜污染的研究[J].给水排水,36(1):113-116.
    [11]邓述波,胡筱敏.1999.微生物絮凝剂处理淀粉废水的研究[J].工业水处理,19(5):8-10.
    [12]丁马太,余乃梅,何旭敏,等.1992.聚氯乙烯/聚丙烯晴共混超滤膜的研究Ⅲ.制膜工艺条件对共混超滤膜结构与性能的影响[J].水处理技术,18(3):155-161.
    [13]丁马太,余乃梅,何旭敏,等.1991.1993PVC/PAN共混超滤膜的研究I PVC/PAN相容性对共混超滤膜结构与性能的影响[J].水处理技术,17(4):211-218.
    [14]冯晓,任南琪,陈兆波.2009.超滤膜分离工艺处理大豆乳清蛋白废水的效能[J].化工学报,60(6):1478-1485.
    [15]管运涛,蒋展鹏,祝万鹏,等.1998.两相厌氧膜生物系统处理有机废水的研究[J].环境科学,19(6):56-59.
    [16]甘海南,李善平,庞艳,等.2000UASB、SR、CASS法处理淀粉生产高浓度废水[J].云南环境科学,19(8):180-182.
    [17]高以垣,马炳伦,李佩衍.等.1988.聚氯乙烯超滤膜及其稳定[J].水处理技术,(14)5:278-283.8.
    [18]高以恒,缪亚岸.1988.聚氯乙烯超滤膜及其稳定性水处理技术[J].14(5):278-283。
    [19]高春梅,孟彦斌.2008.凝胶条件对肥中空纤维膜性能及结构的影响[J].膜科学与技术,28(2):38-43。.
    [20]韩冬,安兴才,李杰.2009.混凝沉淀法处理马铃薯淀粉废水的应用研究[J].水处理技术935(2):68-71。
    [21]胡威夷.2000.常温UASB反应器在淀粉废水处理中的应用[J].工业用水与废水,31(2):31-33.
    [22]贺晓红,祝万鹏,杨志华.1999.常温纵向折流套筒式厌氧污泥床反应器处理淀粉废水的研究[J].给水排水,22(3):35-38
    [23]皇甫浩,罗德春.1999.玉米淀粉废水处理工艺的研究[J].西安公路交通大学学报,19(3):139-142.
    [24]华松,贾战生,武浩,李蓉.2006.甘薯糖蛋白对小鼠血脂水平的影响[J].中国农学通报,22(4):1-3.
    [25]金离尘.2009.中空纤维膜技术的现状与发展[J].纺织导报,2009(5):47-52.
    [26]纪永亮.2005.中空纤维超滤一-Clenn P. Vicevic [J].IWC-03-03工业水处理,25(6)::61.
    [27]贾永志,吕锡武,周海峰.2007.超滤技术及其在水处理领域研究进展[J].净水技术,26(4):12-14.
    [28]阚健全,闻磊,陈宗道.2000.甘薯糖蛋白的免疫调节作用研究[J].西南农业大学学报,22(3):257-260.
    [29]阚健全,王雅茜,陈宗道,等.2001.甘薯活性多糖抗突变作用的体外实验研究[J].中国粮油学报,16(1):24-24.
    [30]阚建全.2003.甘薯糖蛋白的糖链结构与保健功能研究[D].重庆西南农业大学2003.101-158.
    [31]刘耕耘,李亚威,赛音.2002.淀粉废水的絮凝沉淀及生物处理[J].内蒙古大学学报(自然科学版),33(2):231-236.
    [32]栾兴社,张长铠,周凤岩.2005.现代生物化工产品:微生物絮凝剂[J].化工科技,13(1):63-67.
    [33]李琳,张清敏,杨建华.2006.复合微生物絮凝处理红薯淀粉废水的研究[J].环境科学与技术,29(7):75-76.
    [34]李尉卿,段雪梅.2002.粉煤灰漂珠活化处理废水的研究[J].粉煤灰,2002.(2):11-13.
    [35]李尉卿,王春峰,崔淑敏。2003.粉煤灰活化制作吸附材料的初步研究下[J].粉煤灰,15(6):17-19.
    [36]李尉卿,崔淑敏.2004.煤歼石活化制作吸附材料的初步研究[J].环境工程,22(1):53-56.
    [37]李媚,廖安平,粱炳池,等.2001.混凝法处理木薯淀粉废水[J].广西民族学院学报自然科学版,7(2):101-103.
    [38]李亚峰,马强,曹丽丹等.1999.混凝—吸附法处理淀粉废水[J].沈阳建筑工程学院学报,15(1):4043.
    [39]李艳春.2009UASB/接触氧化工艺处理玉米淀粉废[J].气象与环境学报,25(1):68-71.
    [40]廖鑫凯,李清彪,等.2004.法处理模拟淀粉废水的工艺条件研究[J].厦门大学学报自然科学版,43(3):376-380.
    [41]栾金义,彭成中.1990.复合生物流化床处理淀粉废水[J].石油化工,19(8):560-563.
    [42]刘桂香,黄向阳.等.1996.干湿法纺制聚矾中空纤维N2-H2分离膜—料液及膜厚的影响[J].膜科学与技术,16(1):33-38.
    [43]刘福谅,韩式荆.1993.超滤技术在环境工程中的应用现状[J].环境化学,12(6):23-28.
    [44]梁立军.1998.大庆油田回流水过滤净化的研究[J].膜科学与技术,18(5):32-34.
    [45]李刚.2008.中空纤维超滤膜处理乳化液废水的技术研究[J].中国环境科学学会学术年会优秀论文集,32(2):632-636.
    [46]李娜,梁伟,李志东,等.2006.A/O型IMBR处理生活污水的研究[J].中国给水排水,22(15):25-28.
    [47]刘主,朱必风,彭凌,高建林.2007.甘薯糖蛋白的体外抗氧化作用研究[J].食品与生物技术学报,26(2):38-42.
    [48]李亚娜,林永成,余志刚.2004.甘薯糖蛋白的分离、纯化私结构分析[J].华南理工大学学报(自然科学版),32(9):59-62.
    [49]李郁,木泰华,孙艳丽,等.2007.不同溶剂和超滤浓缩倍率对甘薯蛋白提取及纯度的影响[J].、食品研究与开发,28(6):1-4.
    [50]吕建国,安兴才.2008.膜技术回收马铃薯淀粉废水中蛋白质的中试研究[J].中国食物与营养,2008(4):3740。
    [51]陆晓峰,刘光全,刘忠英,等.1998.膜科学与技术[J].1998,18(5):50-53.
    [52]罗川南,杨勇.2006.聚偏氟乙烯膜的亲水化改性研究进展[J].材料导报,3:23-26.
    [53]凌爱莲,焦庆影,鲍世耀,等1994.聚丙烯晴共混超滤膜的研究[J].膜科学与技术,14(4):62-69.
    [54]芦澍,李星,杨艳玲,李圭白.2006.PVC与PVDF超滤膜处理微污染原水中试研究[D].城镇饮用水安全保障及超滤组合工艺应用研讨会论文集(C):120-124.
    [55]陆俊宇,李伟英,赵勇,等.2010.不同预处理工艺对超滤膜运行影响的中试试验研究[J].水处理技术,36(6):119-122.
    [56]马代夫.2001.世界甘薯生产现状和发展预测[M].世界农业,1:17-19.
    [57]马晓建,任俊艳,韩秀丽,等.2006.小麦谷朊粉及淀粉生产废水处理中超滤膜的选择[J].工业用水与废水,37(2):3840.
    [58]牧剑波,任慧,丁一刚,等.2002.气浮一体化装置处理淀粉废水的应用研究[J].河南化工,2009(8):14-15.
    [59]莫日根,刘卫,王涛.2001.马铃薯淀粉废水的碱式聚合氯化铝处理[J].内蒙古环境保护,12(1):44-45.
    [60]买文宁.2002.气浮提取蛋白-UASB-SBR工艺处理淀粉废水[J].工业水处理,22(6):4246.
    [61]买文宁,周荣敏.2002.从淀粉废水中提取蛋白饲料[J].工业用水与废水,33(3):57-64.
    [62]孟宪革.2006.内压式中空纤维超滤膜在水处理中的应用[J].西北电子技术,34(4):47-49.
    [63]木泰华,孙艳丽,刘鲁林,等.2005.甘薯可溶性蛋白的分离提取及特性研究[J].食品研究与开发,26(5):16-20。
    [64]马敬环,李娟,项军,等.2010.混凝超滤工艺处理天津渤海湾海水[J].膜科学与技术,30(5):71-76.
    [65]聂凌鸿.2003.甘薯资源的开发利用.现代商贸工业,5:45-47.
    [66]潘巧明,何昌生.1998.工业化生产聚矾中空纤维超滤膜工艺条件的研究[J].水处理技术,24(6):329-332.
    [67]潘碌亭.1998.TOA孔状液膜法处理造纸黑液的初步研究[J].膜科学与技术,18(4):15-17.
    [68]裴亮,姚秉华,王理明,等.2009PAC-HFUM系统处理微污染水的实验研究[J].西安理工大学学报,25(1):85-88.
    [69]钱英,潘力军,叶晓,等.2004.共混改性膜的研究[J].膜科学与技术,24(6):20-24.
    [70]齐鲁,程荣,王洪臣,等.2011.浸没式超滤膜净化松花江水的集成工艺[J].沈阳建筑大学学报(自然科学版),27(1):119-124.
    [71]沈连峰,王谦,高俊红,等.2006,淀粉废水处理技术研究进展[J].河南农业大学学报,40(4):440444.
    [72]孙乾刚.2009.木薯淀粉废水生化处理及资源化利用工艺研究:[硕十学位论文][D],南宁:广西大学.
    [73]苏宏,等.2000.加压处理淀粉废水的研究[J].吉林化工学院学报,17(1):33-35.
    [74]沈耀良,王惠民,赵丹.2002.厌氧折流板反应器处理淀粉废水及污泥特性[J].上海环境科学,21(3):139-142.
    [75]史绪盛,王德涛.2004.UASB反应器一接触氧化法处理淀粉废水[J].西南给排水,26(3):19-20.
    [76]孙册,莫汉庆.1998.糖蛋白与蛋白聚糖的结构、功能和代谢[D].北京科学出版社.
    [77]隋燕.2004.聚氯乙烯改性超滤膜的研究及其应用:[硕士学位论文][D],北京:工业大学。
    [78]伍婵翠.2004.木薯淀粉生产废水的水质特征及其资源化利用研究:[硕士学位论文][D],桂林:桂林工学院.
    [79]王荣民,王艳,何玉凤.2009.固体复合聚合硫酸铁絮凝剂及其制备方法.CN,101348294[P].2009-9-04.
    [80]王有乐,张宝茸,范志明,等.复合型微生物絮凝剂处理马铃薯淀粉废水的研究[J].水处理技术,2009.35(5):79-82.
    [81]王宇新,刘春朝,钱新民.1995.光合细菌处理淀粉废水的中试研究[J].环境科学,16(3):39-40.
    [82]王军,奚旦立,徐大同,等.2002.聚氯乙烯中空纤维膜的研制[J].膜科学与技术,22(4):7-12.
    [83]吴玲玲,赵世威.1993.用超滤技术处理和回收玻璃纤维废水[J].膜科学与技术,13(4):13-17.
    [84]王连军.2000.无机膜-生物反应器处理废水及其膜清洗的实验研究[J].工业水处理,20(2):32-34.
    [85]武冠英,孙本惠,戴卫国,等.1988.铸膜液结构对聚氯乙烯超滤膜性能的影响[J].水处理技术,3(14)5:271-277.
    [86]吴培熙,张留城.1984.聚合物共混改性原理及工艺[M].轻工业出版社,1984:239-240.
    [87]王军,奚旦立,陈季华.表面活性剂对聚氯乙烯中空纤维膜性能的影响[J].东华大学学报,2003,32(11):58-64.
    [88]王军,奚旦立,徐大同,等.2002.聚氯乙烯中空纤维膜的研制[J].膜科学与技术,22(4):7-12.
    [89]王文侠,翟丽萍,宋春丽,等.2008.玉米浸泡液蛋白质的超滤分离研究[J].黑龙江省普通高校农产品加工重点实验室,2008(7):115-117.
    [90]徐淼,隋峰,邹克华,等。2004.城市环境与城市生态[J],17(5):38-39.
    [91]徐淑红,马春燕,戎静.2009.聚氯乙烯/热塑性聚氨酯中空纤维膜的研制及应用[J].工程塑料应用,37(2):55-59.
    [92]席淑淇,成玮,刘培富.1997.利用废水生产光合细菌提取天然色素的研究[J].污染防治技术,10(2):65-67.
    [93]邢丹敏.武冠英.胡家俊.1996.改性聚氯乙烯超滤膜的研究一共混改性膜性能的研究[J].膜科学与技术,16(2):45-50。
    [94]奚旦立,杨晓波,陈季华,等.2005.聚偏氟乙烯聚氯乙烯共混中空纤维膜及其制备方法[P].CN1669624.
    [95]邢丹敏,武冠英,胡家俊.1996.改性聚氯乙烯超滤膜的研究(Ⅱ)共混改性膜性能的研究[J].膜科学与技术,16(2):45-49.
    [96]许振良,魏永明.2008.PVC共混超滤膜制备及其对印染废水处理的研究[J].化学世界,增刊:110-111.
    [97]徐淑红,马春燕,戎静.2009.聚氯乙烯/热塑性聚氨酯中空纤维膜的研制及应用[J].工程塑料应用,37(2):55-59.
    [98]谢水波,姜应和.2010.水质[程学[M]北京:机械工业出版社,82-84.
    [99]殷永泉,单文坡,纪霞,等.2005.淀粉废水处理方法综述[J].环境污染与防治,27(8):625-629.
    [100]杨启峰,张萍,赵永志.2000.淀粉废水的处理技术[J].黑龙江环境通报,24(2):55-56.
    [101]杨丽娟.2001.用石灰、聚丙烯酰胺处理淀粉生产废水[J].辽宁城乡环境科技,21(2):52-53.
    [102]杨萍,王文安,盖世义.2004.固定化微生物颗粒吸附平衡方程和动力学模型[J].河北建筑工程学院学报,22(4):29-30.
    [103]于慧卿.2007.UASB-SBR 工艺处理淀粉废水[D].西安:长安大学.
    [104]俞三传,金可勇,等.1996.高性能聚砜支撑膜的研制[J].膜科学与技术,19(6):45-49.
    [105]杨磊,王栋,等.1998.超滤膜生物反应处理生活污水的实验研究[J].膜科学与技术,19(3):29-31.
    [106]杨婷,孙斌,李文昌,等.1995.第二组聚合物(P2)对PVC/P2合金膜结构与性能的影响[A].中国膜工业首届学术报告会论文集(C).北京:中国膜工业协会,1995:190-193.
    [107]杨弋星,吴文标,张敏.2005.超滤膜制膜材料研究进展和发展趋势[J].粮食与油脂.2005(5):15-18.
    [108]杨亚楠,张会轩,王鹏,等.2007PSF/TiO2杂化超滤膜形成过程的热力学和动力学研究[J].化学学报,63(13):1258-1264.
    [109]杨亚楠,张明耀,金晶,等.2009.聚砜/纳米TiO2有机-无机复合超滤膜及其性能[J].化工进展,28:145-148.
    [110]曾建忠,胡萃,李爱平,等.2010.微生物絮凝剂预处理废纸造纸废水实验研究[J].中国造纸,29(3):27-30.
    [111]朱吴.2007.淀粉废水处理及黄浆回收技术研究:[硕士学位论文][D],南京:东南大学.
    [112]张晓平,董银卯,刘永国,等.2010.中空纤维膜分离燕麦蛋白工艺及膜清洗方案[J].农业工程学报,26(3):332-340.
    [113]张之丹,荆海乐.2002.厌氧-好氧-气浮工艺处理[J].中国给水排水,18(11):67-68.
    [114]周李鑫.2005.超滤在污水深度处理中的应用研究[D].武汉:华中科技大学.
    [115]钟璟.2002.中空纤维超滤膜处理染料废水的试验研究[J].江苏石油化工学院学报,14(3):5-7.
    [116]周涛,周集体.2002.垂直折流反应器一超滤膜水处理技术的实验研究[J].工艺水处理,22(3):23-25.
    [117]赵梅.2005.甘薯水溶性糖蛋白的分离纯化及结构初探[J].食品与生物技术学报,28(1):77-80.
    [118]周晶晶,金鹰.2008.膜分离技术处理淀粉污水试验研究[J].水资源保护,24(5):91-98.
    [119]赵梓年,张楠.2007PVC/PVB共混超滤膜性能研究及应用[J].天津科技大学学报,22(3):37-39.
    [120]赵河立.2008.中空纤维超滤膜在海水淡化预处理中的中试研究:[硕士学位论文][D].天津大学.
    [121]周媛,奚旦立.2007.用于处理染料废水的PVDF/PUR-T共混中空纤维膜的制备[J].塑料工业,35(1):66-68.
    [122]张耀鹏,邵惠丽.2002.NMMO法纤维素膜的结构与性能[J].膜科学与技术,22(4):13-20.
    [123]曾有文,王启山,赵宁,等.2010.膜的预处理及污染防治技术研究进展[J].水处理技术,36(5):1-4.
    [124]周邵萍,洪磊,葛晓陵.2005.超细二氧化钛的离心分离实验研究[J].硅酸盐通报,2005(6):120-123.
    [125]Ahn J H,Forster C F.2000.Kinetic analyses of the operation of mesophilic and thermophilic anaerobic filters treating a simulated starch wastewater[J]. Process Biochemistry,35:19-23.
    [126]Ann Marie Eilersen,Mogens Henze, Lene Kloft.1999.Effect of volatile fatty acids and trimethylamine on denitrification in activated sludge[J] Wat. Res.29(5):1259-1266.
    [127]Akon Higuchi, Kazunobu Shirano, Masaharu Harashima,2002, Biomaterials [J].23(6):2659-2666.
    [128]Aerts P, Genne I, Kuypers S, et al.2000.Polysulfone-aerosil composite membranes Part 2. The influence of the addition of aerosil on the skin characteristics and membrane properties[J]. J. Membr. Sci.,178:1-11.
    [129]Bryson B, Glenn V, Kalliat T.2002. Solvent sublation for waste minimization in a process waste stream a pilot-scale study [J].Journal of Hazardous Materials. B82:65-75.
    [130]Bodalo A, Gomez J L, Gomez E, etal.[J].Desalination,2004,168:277-282.
    [130]BodzekM, KOnleeZnyK.1991.The Influence of molecular mass of Poly (vinyl chloride)on the Structure and transport characteristics of ultrafiltration membranes.[J]Membr Sci,61:131-156.
    [131]Christoph W, Aurich.1995.Waste water treatment-choosing theright membrane system[J]. Journal of the Society of Dyersand Colourists,111(6):175-181.
    [132]Chang Yujung.1996.Iron oxide adsorption and ultrafiltration to remove NOM and control fouling[J].Jour.AWWA,88(12):74-88.
    [133]EKINER O M, VASSILATOS G.2001. Polyaramide hollow fibers for H2/CH4 separation Ⅱ. spinning and properties[J]. Journal of membrane science,186(1):71-84.
    [134]Fkunaga, M asam. i Treatment of wastewater containing starch:JP,05096281A2[P].1993-01-21.
    [135]Guohua Chen, Xijun Chai, Po Lock, et al.1997.Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation[J].Journal Membrane Science,1997,127:93-99.
    [136]Irvine R L,Wilderer P A,Flemming H C.2004.Controlled unsteady—state process andtechnologies an overview[J]. Wat SciTech,35(1):1-10.
    [137]ICHIKAWA T, TAKAHARS K, SHIMODA K, et al.1987.Hollow fiber membrane and method for manufacture thereof[P]. US Patent No:4708800,1987-11-24.
    [138]John Brid.1996.The application of membrane systems in the dairyindustry[J]. Journal of Society of Dairy Technology,49(1):16-21.
    [139]J.Davey,A.I.Schafer.2009. Ultrafiltration to Supply Drinking Water.in International Development:A Review of Opportunities[J]. E.K. Yanful(ed.),Appropriate Technologies for Environmental Protection, 151-166.
    [140]J.Davey,A.I.Schafer.2009. Ultrafiltration to Supply Drinking Water in International Development:A Review of Opportunities[J]. E.K. Yanful(ed.),Appropriate Technologies for Environmental Protection, 151-166.
    [141]Jin B, Van Leeuwen J, Patel B etal Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater[J].Process Biochem,1999(34):59-65.
    [142]J.Lemanski and G.G. Lipscomb.2002.Effect of Shell-side Flows on the Performance of Hollow -fiber Gas Separation Modules [J]. Membr. Sci.2002(195):215.
    [143]J. Lemanski and G.G. Lipscomb.2000.Effect of Fiber Variation on the Performance of Counter-current Hollow-fiber Gas Separation Modules[J]. Membr, Sci.2000(167):241.
    [144]JianhuaQiu,YanwuZhang,YataoZhang,etal.2011. Synthesis and antibacterial activity of copper immobilized membrane comprising grafted poly(4-vinylpyridine) chains[J].ColloidInterface Sci 354:152-159.
    [145]Jianhua Li, Youyi Xu,2009.Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance[J]. Membr.Sci.326:659-666.
    [146]Kumaresan R, Sundara Ram akr ishnan N, Prema latha Aerob ic treatment of d istillery wastewa ter in a three phase fluid ized bed b io film reactor[J]. Inte rnational Journal Chem ica 1 Eng ineer ing Research,2009,1(1):13-20.
    [147]KHAYET M.2003.The elects of air gap length on the internal and external morphology of hollow fiber membranes[J].Chemical engineering science,58(14):3091-3104.
    [148]KAZAMA S, SAKASHITA M.2004. Mas separation properties and morphology of asymmetric hollow fiber membranes made from cardo polyamide[J]. Journal of membrane science,243 (1-2):59-68.
    [149]Kim K. S. Lee K. H. Cho K. et al.2002. J. Membr. Sci. [J],199(4):135-145.
    [150]Lulu Li, Zehua Yin,2010.Preparation and characterization of poly(acrylonitrile-acrylic acid-N-vinyl pyrrolidinone) terpolymer blended polyethersulfone membranes[J]. Membr.Sci,349:56-64.
    [151]Liping Zhu, Chunhui Du.2007.Amphiphilic PPESK-g-PEG graft copolymers for hydrophilicmodiWcation of PPESK microporous membranes[J]. Eur.Polym.J.43:1383-1393.
    [151]Leos J Zeman, Andrew L Zydney.1996. Microfiltration and Ultrafiltration:Principles and Applications, New York:M. Dekker.
    [152]Maria N, Pinho D, M Vitor Geraldes.1996.Water recovery from bleached pulp effluent[J].. Tappi Journal,7(2):127-134.
    [153]Matgorzata Kabsch-Korbutowicz,Tomasz Winnicki.1996.Application of modified polys ulfone membranes to the treatment of water solutions containing humic substances and metal ions[J].Desalination,105:41-49.
    [154]Montreuil J. Vliegenthart J F G. 1995.Glycoproteins.Amsterdam:Elsevier Science Publishing Company. INC.
    [155]Mulder, M(荷兰),李琳译.1999.膜技术基本原理(第2版).北京清华大学出版社,1999:50-53.
    [156]Nimaradee Boonapatcharoenl, Kulyanee Meepian, Pawinee Chaiprasert.2007. Molecular Monitoring of Microbial Population Dynamics During Operational Periods of Anaerobic Hybrid Reactor Treating Cassava Starch Wastewater[J]. Microbia Ecology,54:21-30.
    [157]POESPONEGORO,MILINO.1999.Microbial flocculation in relationship to wastewater treatment processes isolation and screening of flo-producing microorganisms [J]. Biotechnol. Util. Biol. Resour. Trop,13:104-114.
    [158]Pinho D, Halma M.2000. Integration of flotation ultrafiltration for treatment of bleached pulp effluent.[J] Pulp&Paper Canada,101:4.
    [159]Qing-Zhu Zheng, Peng Wang, Ya-Nan Yang.2006.The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane[J]. Journal of Membrane Science, 2006, (7):7-11.
    [160]R.O. Crowder and E.L. Cussler.1997.Mass Transfer in Hollow-fiber Modules with Non-uniform Fibers[J]. Membr. Sci.1997(134):235.
    [161]R.C. Schucker, C.P. Darnell and M.M. Hafez.1992.Hollow Fiber Module Using Fluid Flow Control Baffles[D]. US Patent 5,169,530 December.
    [162]R.P. de, Filippi and R.W. Pierce.1970.Membrane Device and Method[D]. US Patent3,536,611 October.
    [163]R. Prasad, C.J. Runkle and H.F. Shuey.1994.Spiral-Wound Hollow Fiber Cartridge and Modules Having Flow Directing Baffles[D]. US Patent 5,352,361 October.
    [164]Ramamoorthy Malaisamy, Doraiswamy Raju Mohan, Munnuswamy Rajendran.2003.Membrane synthesis study for COD removal of a starch effluent [J], Polym Int,52:412-419.
    [165]Ribeim R.M., Bergamasco R.,Gimenes M. L.2002.Membrane synthesis study for color removal of a textile effluent[J].Desalination,145:61-63.
    [166]Sohair I.Abou-Elela, Fayza A.Nasr, Saber A,El-Shafai.2008. Wastewater management in small and medium size enterprises:case studies[J]. Environmentalist,28:289-296.
    [167]Sun-Jong Lee, Yoon-Jin Lee, Sang-ho Nam.2008.Improvement in the coagulation performance by combining Al and Fe coagulants in water purification[J]. Korean J. Chem.Eng,25(3):505-512..
    [168]S.B.Deng, R.B.Bai, X.M.Hu.2003.Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment[J].Appl Microbiol Biotechnol, 60:588-593.
    [169]Suvajittanont W, Chaiprasert P.2008.Potential of biogas recirculation to enhance biomass accumulation on supporting media[J]. Bioresource Technology,88:157-162.
    [170]Steve F, Tony H. Eero.2000. discharge at Kronospan Mill-Recent advances in wood pulp effluent treatment[J]. Paper Technology,2:75-81.
    [171]Strathman H.1985. Production of microporous media by phase inversion process[M].New York, ACS Symp.Ser.1985:165.
    [172]Tapas Nandy, Sunita Shastry, P.P.Pathe.2003.Pre-Treatment of Currency Printing Ink Wastewater through Coagulation-Flocculation Process[J]. Water, Air, and Soil Pollution,148:15-30.
    [173]Torriios M,Cerro R M,Capdeville B.2002.Sequencing batch reactor. A tool for wastewater characterization for the lawprc model [J].Wat Sci Tech,29:81-90.
    [174]T.J. Eckman.1995.Hollow Fiber Cartridge[D]. US Patent 5,470,469 November 1995.
    [175]Tsai H A, Huang D H, Fan S C, etal.2002,.Investigation of surfactant addition effect on the vapour permeation of aqueous ethanol mixtures through ploysulfone hollow fiber membranes[J]. J. Membr. Sci.,198:245-258.
    [176]Tran T, Gray S, Nanghton R,etal.2006.Polysilicato-iron for improved NOM removal and membrane performance[J].Journal of Membrane Science,280(1-2):560-571.
    [177]Ulbricht Belfort G, J. Membr. Sci. [J].1996,111(2):193-215.
    [178]Ulbricht M. Matuschewski H. Oechel A, et al,1996, J. Membr. Sci. [J].115(12):31-47.
    [179]Varki A.1993.Glycobiology[M].3(20):97-130.
    [180]Wanzhong Lang, Zhenliang Xu,2007.Preparation and characterization of PVDF-PFSA blend hollow fiber UF membrane[J]. embr.Sci,288:123-131.
    [181]Wang D M, Lin F C, Wu T T, el al.1998.Formation mecha-nism of the macrovoids induced by surfactant additives[J]. J. Membr. Sci.,142:191-201.
    [182]Yuan Yu-li, Wen Yue-zhong, Li Xiao-ying.2006.Treatment of wastewater from dye manufacturing industry by coagulation[J]. Yuan et al./J Zhejiang Univ SCIENCE A,7(Suppl.Ⅱ):340-344.
    [183]Yunfeng Yang, Lingshu Wan,2009.Surface hydrophilization for polypropylene microporous membranes:A facile interfacial crosslinking approach[J]. Membr.Sci.326:372-381.
    [184]Zhang Z H, Shen Z, Shao C S.1997. The adsorption and organic modification of titamium dioxide[J]. China Surfactant Detergent& Cosmetics, (5):13-15.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.