一、甜菊UDPG糖基转移酶基因的克隆和功能分析 二、甜菊肌动蛋白和EF1α基因的克隆、序列分析和分子进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菊(Stevia rebaudiana)叶片中富集了约占干重10-30%的甜菊糖苷。以二萜类化合物甜菊醇(Steviol)为糖苷非糖配基,根据13位上的羟基和19位上的羧基上以O-糖苷键相连的糖基种类及数最不同,已有至少8种糖苷被发现。甜菊糖苷生物合成过程与赤霉素生物合成密切相关。已有研究表明赤霉素合成过程中的一些酶,在甜菊叶片细胞内的含量及其活性都比较高,表达方式也与其它植物有较大的差异,这将导致赤霉素和甜菊糖苷的共同前体物质内贝壳杉烯酸的大量积累。为了避免合成过量的赤霉素,这些前体物质被转化成为甜菊醇,并被糖基化形成甜菊糖苷。类黄酮UDPG糖基转移酶很有可能在甜菊糖苷的合成过程中起了重要作用,保证了赤霉素的代谢正常进行。为了证实这一点,实验克隆得到了甜菊类黄酮UDPG糖基转移酶基因,并对其功能进行了分析。
     利用与植物次生代谢产物糖基化相关的UDPG糖基转移酶的特征性保守区域,设计了同源简并引物,以甜菊基因组DNA为模板,PCR扩增获得甜菊糖基转移酶基因片段GTASE-Ⅰ和GTASE-Ⅱ。基因片段包括了UDPG糖基转移酶基因的部分特征性序列。与其他同类UDPG糖基转移酶基因的氨基酸序列比较,具有较高的相似性,达53%至70%,约40%-50%氨基酸序列完全一致。表明获得的基因片段属于UDPG糖基转移酶。根据获得的基因片段设计引物,分别与cDNA文库的T3和T7通用引物配合,以cDNA文库为模板,扩增获得甜菊糖基转移酶基因Gt1和Gt2全长的核苷酸序列。获得的甜菊糖基转移酶Gt1基因全长1568bp(GenbankTM序列号:AF515727),包括一个1419bp的开放阅读框,编码473个氨基酸。Gt2基因全长1662bp(GenbankTM序列号:AF548025),包括一个1362bp的开放阅读框,编码454个氨基酸。Gt1和Gt2基因与常见的糖基转移酶基因的相似性分别达26-46%和44-74%。Gt1和Gt2都具有UDPG糖基转移酶的44个氨基酸的特征性保守序列,它被认为是UDP-glucose的结合区
    
    厦门大学博d二庵开究生学位创含文
    域。实验对Gtl基因进行了原核融合表达,获得的融合蛋白的大小约55kDa。功
    能分析表明,纯化后的Gtl融合蛋自以UDPG为糖基供体,能以甜菊醇(steviof)
    以及花青素(eyanidin)、飞燕草素(delphinidin)、芍药花素(伴on,din)和锦葵
    花素(malvidin)等花色素为糖基受体合成甜菊糖昔和花色素昔。其中,对花青
    素的催化活性最高,对甜菊醇的活性为花青素的33.5%。结果表明,Gtl作为甜
    菊体内的类黄酮糖基转移酶,具有广泛的底物特异性,它不仅参与类黄酮的糖基
    化,而且能够作用于甜菊醇,形成甜菊糖昔。在大量的GA前体物质被合成,使
    甜菊的正常代谢受到了威胁的情况下,甜菊很有可能利用了细胞内的类黄酮糖基
    转移酶基因合成惰性的甜菊糖苔。
The pathway for steviol glycoside biosyntheses is shared with that of gibberellins. The highly activity nature and over expression of HMG-CoA reductase, CPS and KS would result in the production of a large amount of mevaloic acid, (-)-copalyl diphosphate and (-)-kaurene, the precursors of GAs and steviol in stevia rebaudiana leaves. To avoid the synthesis of an excess of GA, the precursor of which is also ent-kaurenoic acid must be converted to steviol, and then glucosylated into steviol glycosides, which accumulated in leaves at concentrations ranging from 10-30% of the leaf, dry weight.
    We report here the cloning and characterization of S. rebaudiana UDP-glucosyltransferase. Degenerate oligonucleotide primers were designed based on identical or highly conserved amino acid sequences of known flavonoid glucosyltransferase, and used to PCR amplify stevia glucosyltransferase gene fragments GTASE-I and GTASE-II. Two fragments with strong homology to known flavonoid glucosyltransferases were used to design other two primers to amplify 5' and 3'-half cDNA of stevia glucosyltransferase Gtl and Gt2, respectively. The full-length Gtl gene is 1568bp in length, with an open reading frame encoding 473 amino acids (Genbank?accession numbers AF515727). The full-length Gt2 gene is 1662bp in length, with an open reading frame encoding 454 amino acids (GenbankTM accession numbers AF548025). The predicted amino acid sequences of Gtl and Gt2 were 26-46% and 44-74% identical to the known UDPG glucosyltransferase respectively. The deduced amino acid sequences of Gtl and Gt2 were comfirmed to have one conserved
    region of glucosyltransferases, which is the region for the UDPG-glucose binding domain. Plasmid was prepared from recombinant clones and transformed into the E. coli BL21 DE3 strain for production of recombinant Gtl. The Gtl products of in vitro translation, which were ~55 kDa recombinant protein, had
    
    
    anthocyanidins and steviol glucosyltransferase activity. Incubation of the purified recombinant Gtl with steviol and other aglycones in the presence of UDP-glucose donor substrate resulted in the formation of the glucosides. Relative active against a range of acceptor substrates, including steviol, cyanidin, delphinidin, peonidin and malvidin, was determined by HPLC analysis. Cyanidin gave the highest rates of glucosylation. The average rate of steviol glucosylation was approximately 33.5% toward that observed for cyanidin. Comparison the activity of the recombinant UDP-glucosyltransferase Gtl toward a range of acceptor substrates, suggests that it may participate in the synthesis of steviol glycosides. The results support the hypothesis that the flavonoid glucosyltransferases, which have broad substrate specificity, may be not only involving in flavonoid glucosylation but also playing a role to produce the water-soluble steviol-glycosides in S. rebaudiana.
引文
陈睦传,洪维廉,陈绍潘,汪德耀.甜菊叶片细胞液泡系的电镜观察,植物学报,1983,25(5):425-431.
    陈睦传,洪维廉,汪德耀.甜菊叶片和根尖细胞微体的超微结构研究.植物学报,1988,30(1):96-98.
    陈睦传,李里焜,洪维廉,汪德耀.甜菊叶片细胞UDPG PPLase特性及亚细胞定位研究.厦门大学学报自然科学版,32(5):634-639.
    丁亮,陈睦传,沈明山.氮离子注入甜菊的幼苗基因组DNA变异.生物物理学报.1999,15(4):430-435.
    洪维廉,陈睦传,陈绍潘,汪德耀.甜菊不同叶龄细胞叶绿体超微结构研究.植物学报.1984,20(1):109-111.
    洪维廉,陈睦传,李里焜,刘丹.甜菊不同叶龄细胞结构及其糖苷含量分布研究.武汉植物学研究,1987,5(3):211-217.
    洪维廉,陈睦传,刘丹,欧阳学智.几种植物酚省组织细胞高尔基体的超微结构.厦门大学学报自然科学版,1989,28(1):97-100.
    胡松年,阎隆飞.1999.肌动蛋白与真核生物的进化.动物学报45(4):440-447.
    李里焜,汪德耀.甜菊叶肉细胞FBPase和UDPG焦磷酸化酶的电镜细胞化学研究.中国科学(B辑),1987,11:1174-1176.
    李里焜,应芸书,汪德耀.甜菊叶肉细胞FBPase的电镜细胞化学定位及FBPase的碱性性质.植物学通讯,1988,5(2):122-124.
    李里焜.1991.厦门大学生物系博士生毕业论文.
    刘丹,陈睦传,洪维廉,汪德耀.甜菊叶片细胞微体晶体立体构犁研究,生物物理学报,1991,7(1):18-24.
    欧阳学智,洪维廉,陈睦传,汪德耀.甜菊叶愈伤组织诱导过程中叶绿体超微结构的变化.武汉植物学研究,1993,11(1):61-67.
    汪小全,洪德元,1997.植物分子系统学近五年的研究进展概况.植物分类学报35(5):465-480.
    
    
    谢绍萍,欧阳学智,洪维廉,陈睦传,汪德耀.1998.甜菊愈伤组织生长、分化与甜菊糖苷积累的关系.热带亚热带植物学报.1998,6(1):8-14.
    Ait-Ali T., Swain S.M, Reid J.B., Sun T., and Kamiya Y., 1997. The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A Plant J. 11, 443-454.
    Alves L.M., and Ruddat M., 1979. The presence of gibberellin A20 in Stevia rebaudiana and its significance for the biological activity of steviol. Plant Cell Physiol. 20, 123-130.
    An, Y. Q., S. Huang, J. M. McDowell, E. C. McKinney and R. B. Meagher. 1996. Conserved expression of the Arabidopsis ACT1 and ACT3 actin subclass in organ primordia and mature pollen. Plant Cell 8:15-30.
    Axelos M., Bardet C., Liboz T., et al., 1989. The gene family encoding the Arabidopsis thaliana translation elongation factor EF1α: Molecular cloning, characterization and expression. Mol. Gen. Genet., 219:106-112.
    Baird, W. V., and R. B. Meagher, 1987. A complex gene superfamily encodes actin in petunia. EMBO J. 6:3223-3231.
    Baldauf S.L. and Doolittle W.E, 1997. Origin and evolution of the slime molds (Mycetozoa). Proc. Natl. Acad. Sci. USA 94:12007-12012.
    Bandurski, R.S., Cohen, J.D., Slovin, J., and Reinecke, D.M. 1995. in Plant Hormones: Physiology, Biochemistry and Molecular Biology (Davies, P.J, ed) 2nd Ed., pp. 39-65, Kluwer Academic Publishers Group, Dordrecht, Netherlands
    Bennett, R. et al. 1967. Biosynthesis of steviol from (-)-kaureneo Phytochemistry 6: 1107-1110.
    Bensen R.J., Johal G.S., Crane V.C., Tossberg J.T., Schnable P.S., Meeley R.B. and Briggs S.E, 1995. Cloning and characterization of the maize Anl gene. Plant cell, 7, 75-84.
    Bohlmann, J., Meyer-Gauen, G. and Croteau, R. 1988. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc. Natl Acad. Sci. USA. 95:4126-4133.
    Bonafonte M.T., Preist J.W., Garmon D., et al., 1997. Isolation of the gene coding for
    
    elongation factor 1α in Cryptosporidium parvum. Biochim et Biophys Acta, 1351: 256-260.
    Bovanova L., Brandsteterova E., Baxa S., 1998. HPLC determination of stevioside in plant material and food samples. Z Lebensm Unters Forsch A 207, 352-355.
    Brandle J.E., A. N. Starratt and M. Gijzen. 1998. Stevia rebaudiana: Its agricultural, biological, and chemical properties. Can. J. Plant Sci. 78:527-536.
    Brandle J.E., and Rosa, N. 1992. Heritability for yield, leaf: stem ratio and stevioside content estimated from a landrace cultivar of Stevia rebaudiana. Can. J. Plant Sci. 72, 1263-1266.
    Brouillard, R., and Dangles, O. 1993. in The Flavonoids: Advances in Research Since 1980 (Harborne, J.B., ed) pp. 565-588, Chapman and Hall Ltd., London
    Brugliera E, Holton T.A., Stevenson T.W., Farcy E. Lu C.Y. and Cornish E.C., 1994. Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida. Plant J., 5 81-92.
    Clore A.M., Dannenhoffer J.M., Larkins B.A. 1996. EF1 α is associated with a cytoskeletal network surrounding protein bodies in maize enosperm cells. The Plant Cell, 8: 2003-2014.
    Cresnar B.W., Mages W., Muller K., Salbaum J.M. and Schmitt R., 1990. Structure and expression of a single actin gene in Volvox cartei. Curr. Genet. 18: 337-346.
    Durso N.A., Cyr R.J., 1994. A calmodulin sensitive interaction between microtubule and a higher plant homolog of elongation factor 1α. The Plant Cell, 6: 893-905.
    Ford C. M., P. K. Boss, and P. Bordier. 1998. Cloning and characterization of Vitis vinifera UDP-Glucose: flavonoid 3-O-Glucosyltransferase, a Homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in Vivo. The Journal of Biological Chemistry 273:9224-9233.
    Fraissinet-Tachet L., Baltz R., Chong J., Kauffmann S., Fritig B., Saindrenan P., 1998. Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyltransferases acting on phenypropanoids and benzoic acid derivatives, including salicylic acid. FEBS Letters 437, 319-323.
    
    
    Galtier N., and Gouy M., 1995. Inferring phylogenies from DNA sequences of unequal base compositions. Pro. Natl. A cad. Sci. USA 92:11317-11321.
    Gaucher,E. A., Miyamoto, M. M., Benner, S. A. 2001. Function-structure analysis of proteins using covarion-based evolutionary approaches: Elongation factors. Proc. Natl. Acad. Sci. USA 98: 548-552.
    Gaucher, E. A., Das, U. K., Miyamoto, M. M., Benner, S. A. 2002. The Crystal Structure of eEF1A Refines the Functional Predictions of an Evolutionary Analysis of Rate Changes Among Elongation Factors. Mol Biol Evol 19:569-573
    Gong Z., Yamazaki M., Sugiyama M., Tanaka Y., and Saito K., 1997. Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in perilla frutescens. Plant Mol. Biol. 35, 915-927.
    Habben J.E., Moro G.L., Hunter B.G, et al., 1995. Elongation factor 1α concentration is highly correlated with the lysine content of maize endosperm. Proc. Natl. Acad. Sci. USA. 92: 8640-8644.
    Hanson, J.R. and White, A.F. 1968. Studies in terpenoid biosyntheses. Ⅱ. The biosynthesis of steviol. Phytochemistry 7: 595-597.
    Harborne, J.B., and Williams, C.A. 1988. in The Flavonoids: Advances in Research Since 1980 (Harborne, J.B., ed) pp. 303-328, Chapman and Hall Ltd., London
    Harzdina G. 1988. Biochim. Biophys. Acta 955,301-309.
    Hedden, P. and Kamiya, Y. 1997. Gibberellin biosyntheses enzymes, genes and their regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 431-460.
    Helliwell C.A., Sheldon C.C., Olive M.R., Walker A.R., Zeevaart J.A.D., Peacock W.J. and Dennis E.S. 1998. Cloning the Arabidopsis ent-kaurene oxidase gene GA3. Pro. Natl Acad. Sci. USA, 95, 9019-9024.
    Hightower R.C. and Meagher R.B., 1986. The molecular evolution of actin. Genetics 112: 315-332.
    Goodson H.V. and Hawse W.F., 2002. Molecular evolution of the actin family. Journal of Cell Science 115:2619-2622.
    Jones P.R., Moller B.L. and Hoj P.B., 1999. The UDP-glucose:
    
    p-Hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. The journal of Biological Chemistry 274, 35483-35491.
    Kalinowska ,M., and Wojciechowski, Z.A. 1987. Phytochemisty 26, 353-357.
    Kim K. K., Y. Sawa, and H. Shibata. 1996. Hydroxylation of ent-kaurenoic acid to steviol in Stevia rebaudiana Bertoni-Purification and partial characterization of the enzyme. Archives of Biochemistry and Biophysics 332: 223-230.
    Kim K. K., H. Yamashita, Y. Sawa and H. Shibata. 1996. A high activity of 3-Hydroxy-3-methylglutaryl coenzyme A reductase in chloroplasts of Stevia rebaodiana Bertoni. Biosci. Biotech.Biochem. 60: 685-686.
    Kinghorn, A.D., Soejarto, D.D., Nanayakkara, N.P.D., Compadre, C.M., Makapugay, H.C., Hovanec-Brown, J.M., Medon, P.J. and Kamath, S.K. 1984. A phytochemical screening procedure for sweet ent-kaurene glucosides in the genus Stevia. J. Nat. Prod 47, 439-444.
    Kita M., Hirata Y., Moriguchi T., Endo-Inagaki T., Matsumoto R., Hasegawa S., Suhayda C.G., Omura M., 2000. Molecular cloning and characterization of a novel gene encoding limonoid UDP-glueosyltransferase in Citrus. FEBS Letters 469, 173-178.
    Kolb N., Herrera J.L., Ferreyra D.J., and Hliana R.E, 2001. Analysis of sweet diterpene glycosides from Stevia rebaudiana improved HPLC method. J. Agric. Food Chem., 49, 4538-4541.
    Kurasawa Y., Hanyu K., Watanabe Y., et al., 1996. Fact in bundling activity of Tetrahymena elongation factor 1α is regulatio by Ca~(2+)/calmodulin. J. Biochem, 119: 791-798.
    Larson, R.L. 1971. Phytochemistry 29, 1533-1538.
    Larson, R.L., and Lonergan, C.M. 1972. Planta 103, 361-364.
    Larson, R.L., and Lonergan, C.M. 1973. Cereal Res. Commun. 1, 13-22.
    Lee H. and I. Raskin. 1999. Purification, cloning, and expression of a pathogen inducible UDP-glucose salicylic acid glucosyltransferase from tobacoo. The Journal of Biological Chemistry 274:36637-36642.
    
    
    Li Y., Baldauf S., Lim E.K., and Bowles D.J., 2001. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. The Journal of Biological Chemistry 276, 4338-4343.
    Lloyd, C. W., and J. A. TRAAS, 1988. The role of F-actin in determining the division plane of carrot suspension cells. Development102:211-221.
    Loomis W.F., and Smith D.W., 1990. Molecular phylogeny of Dictyostelium discoideum by protein sequence comparison. Proc. Natl. Acad. Sci. USA 87: 9093-9097.
    Martin R., M. C. Mok, and D. W. S. Mok. 1999. Isolation ofa cytokinin gene, ZOG1, encoding zeatin O-glycosyltransferase from Phaseolus lunatus. Proc. Natl. Acad. Sci. USA. 96:284-289.
    Martin C.R., Prescott A., Mackay S., Bartlett J., Vrijlandt E., 1991. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J., 1: 37-49.
    Mauri E, Catalano G, Gardana C., Pietta E, 1996., Analysis of Stevia glycosides by capillary eleetrophoresis. Electrophoresis 17, 367-371.
    McDowell J M., S. Huang, E. C. McKinney, Y. Q. An and R. B. Meaghed, 1996. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 12: 587-602.
    McHugh, D. 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proc. Natl. Acad. Sci. USA 94:8006-8009.
    McLean, M., A. G M. Gerats, W. V. Baird and R. B. Meagher, 1990. Six actin gene subfamilies map to fivechromosomes of Petunia hybrida. J. Hered. 81:341-346.
    Meagher, R. B., 1994 The impact of historical contingency on gene phylogeny: plant actin diversity, pp. in Evolutionaly Biology, Vol.28, edited by M. K. Hecht, R. J. MacIntyre, and M. T. Clegg. Plenum Press, New York.
    Moniz de Sa', M. and G Drouin, 1996. Phylogeny and substitution rates of angiosperm actin genes. Mol. Biol. Evol. 13:1198-1212.
    Nanayakkara N.P.D., Klocke J.A., Compadre C.M., Hussain R.A., Pezzuto J.M, and Kinghorn A.D., 1987. Characterization and feeding deterrent effects on the aphid, Schizaphis graminum, of some derivatives of the sweet compounds, stevioside
    
    and rebaudioside A. J. Nat. Prod. 50, 434-441.
    Ohtani, K., Aikawa, Y., Kasai, R., Chou, W.H., Yamasaki, K. and Tanaka, O. 1992. Minor diterpene glycosides from sweet leaves of Rubus sauvissimus. Phytochemistry, 31, 1553-1559.
    Perler E, Efstratiadis A., Lomedico P., Gilbert W., Kolodner R. and Dodgson J., 1980. The evolution of genes: the chicken preproinsulin gene. Cell 20: 555-566.
    Phillips, K.C. 1987. Stevia: steps to developing a new sweetener. In Developments in Sweetneners Volume 3 (Grenby, T.H., ed.) London: Elsevier Applied Science, pp. 1-43.
    Pokalsky A.R., Hiatt W.R., Ridge N., et al., 1989. Structure and expression of elongation factor 1α in tomato. Nucl. Acids Res., 17: 4661-4673.
    Qing Y.L., Baldauf S.L., Reith M.E., et al., 1996. Elongation factor 1α genes of the red alga Porphyra purpurea include a novel, developmentally specialized variant. Plant Molecular Biology, 31: 77-85.
    Ralston E.J., English J.J., Dooner H.K., 1988. Sequence of three bronze alleles of maize and correlation with the genetic fine structure. Genetics 119, 185-197.
    Richman A. S., M. Gijzen, A. N. Starratt, Z. Yang and J. E. Brandle. 2001. Diterpene synthesis in Stevia rebaudiana: recruitment and up-regulation of key enzymes grom the gibberellin biosynthetic pathway. The Plant Journal 19: 411-421.
    Riis B., Rattan S.L.S., Clark B.F.C., et al., 1990. Eukaryotic protein elongation factors. TIBS 15: 420-424.
    Ruddat, M. et al. 1965. Biosynthesis of steviol. Ach. Biochem. Biophys. 110:496-499.
    Soejarto D.D., 1983. Potential sweating agents of plant origin. Ⅱ. Field search for sweet-tasting Stevia species. Econ. Bot., 37, 74-82.
    Soltis D.E., Soitis P.S., Nickrent D.L., et al., 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequence. Ann Missouri Bot Gard 84: 1-49.
    Schiefelbein J.W., Johnston F., Nelson O.E., 1988. Squence comparisons of three wild-type Bronze-1 alleles from Zea mays. Plant Mol. Biol. 11,473-481.
    Shibata H., Y. Sawa, T. Oka, S. Sonoke, K. K. Kim, and M. Yoshioka. 1995. Stevioi
    
    and stevioi-glycoside: glucosyltransferase activities in Stevicl rebaudiana Bertonipurificatio and partial characterization. Archives of Biochemtstry and Biophysics 321:390-396.
    Shiina N.G., Gotoh Y., Kubomura N., et al., 1994. Microtule severing by elongation factor 1α. Science 266:282-285.
    Sogin M.L. 1991. Early evolution and the origin of eukaryotes. (lurr. Opin. Genet. Dev. 1: 457-463.
    Sparvoli F., Martin C., Scienza A., Gavazzi G., and Tonelli C., 1994. Cloning and molecular analysis of structural genes involved flavonoid and stilbene biosyntheses in grape (Vitis binifera L.). Plant Molecular biology 24, 743-755.
    Sun T.P., Kamiya Y., 1994. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant ('ell 6, 1509-1518.
    Szerszen J. B., K. Szczyglowski and R. S. Bandurski. 1994. iuglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science 265:1699-1701.
    Tanaka Y., Yonekura K., Fukuchi-Mizutani M., Fukui Y., Fujiwara H., Ashikari O., and Kusumi T., 1996. Molecular and biochemical characterization of three anthocyanin synthetic enzymes from Gentiana triflora. Plant Cell Physiol., 37, 711-716.
    Totte, N., L. Charon, M. Rohmer, F. Compernolle, I. Baboeuf and J. M. C. Geuns, 2000. Biosynthesis of the diterpenoid steviol, an ent-kaurene derivative from Stevia rebaudiana Bertoni, via the methylerythritol phosphate pathway. Tetrahedron Letters 41: 6407-6410.
    Williams, C.A., and Harborne, J.B. 1993. in The Flavonoids: Advances in Research Since 1980 (Harborne, J.B., ed) pp. 337-385, Chapman and Hall Ltd., London
    Williams, P.J., Strauss, C.R., and Wilson, B. 1981. Am. J. Enol. Vitic. 32, 230-235.
    Wise R.P., Rohde W., and Salamini F. 1990. Necleotide sequence of the Bronze-1 homologous gene from Hordeum vulgate. Plant Mol. Biol. 14, 277-279.
    Yamaguchi S., Sun T.E, Kawaide H. and Kamiya Y., 1998. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis.
    
    Plant Physiol., 116, 1271-1278.
    Yamazaki M., Gong Z., Fukuchi-Mizutani M., Fukuui Y., Tanaka Y., Kusumi T., and Saito K., 1999. Molecular cloning and biochemical characterzation of a novel anthocyanin 5-O-Glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin. The Journal of Biological Chemistry 274, 7405-7411.
    Zuckerandl E. and Pauling L., 1965. Evolutionary divergence and convergence in proteins. In Bryson V. HJ Vogel (ens). Evolving Genes and Proteins. Academic Press, New York.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.