盐地碱蓬积累甜菜红素的抗氧化功能探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜红素在繁殖器官如花瓣、雄蕊、种子和果实特定的发育阶段合成;也存在于营养器官中,但受环境因子的高度调控。有关甜菜红素的早期研究,主要集中在影响其合成的相关因子方面,主要包括生长调节物质、光照、光质(远红光、红光、蓝光)、温度及营养元素(K+、NO3+、PO43-、蔗糖及Cu2+)等。
     盐地碱蓬(Suaeda salsa L.)是典型的稀盐盐生植物,生长在黄河三角洲滨海潮间带和洼地生长的盐地碱蓬由于受低氧、高盐与低温等综合逆境胁迫,在整个生长季节地上部分皆为紫红色,而在地势较高或距海边较远的重盐碱地生长季地上部分皆为绿色。王长泉等已鉴定潮间带生长的盐地碱蓬积累的色素为甜菜红素。我们把两种表型盐地碱蓬种子都种在温室河砂中,其表型均为绿色,说明甜菜红素的积累主要是受环境因子诱导。作为一种真盐生植物,盐地碱蓬的耐盐机理已得到了比较广泛的研究,但有关盐地碱蓬积累甜菜红素的生物学意义尚未见报道。本论文目的是研究甜菜红素在抗氧化方面的功能,为盐地碱蓬的抗盐机理提供新的依据。
     对盐地碱蓬进行低氧、不同盐及低温处理,以研究不同环境因子对盐地碱蓬甜菜红素含量的影响。结果表明:低氧处理2 h/d,处理60 d时,盐地碱蓬茎与叶甜菜红素含量最高;一定浓度的盐处理对盐地碱蓬甜菜红含量有促进作用,其中15 mmol/L MgSO4、20 mmol/L KCl和CaCl2及150 mmol/L MgCl2和KNO3作用显著。但有趣的是NaCl处理对盐地碱蓬甜菜红素的积累有抑制作用;低温(4±2℃)处理4 h/d,处理60 d时,甜菜红素含量最高;相同处理对盐地碱蓬体内甜菜红素合成的影响具有器官差异性,茎内甜菜红素含量高于叶片。这些结果表明:盐地碱蓬甜菜红素的合成受低氧、盐及低温等因子的综合影响,其中低氧和低温是主要因子。
     在综合处理(15 mmol/L MgSO4、150 mmol/L MgCl2、20 mmol/L KCl、150 mmol/L KNO3、20 mmol/L CaCl2、缺氧处理2 h/d和低温处理4 h/d)条件下,茎内H2O2含量显著高于叶,说明过氧化氢可能是作为一个信号分子起作用的。茎与叶的DAB染色表明,H2O2对甜菜红素的诱导不仅与H2O2的含量有关,可能还与H2O2的维管运输或分布有关。在茎的形态学上部,甜菜红素含量低,而H2O2的含量却高,说明甜菜红素的合成过程或分子结构本身可能对H2O2存在清除作用。
     无论是添加酪氨酸酶抑制剂处理,还是综合处理条件下茎与叶的比较,甜菜红素的含量皆有显著性差异,但甜菜红素的存在对抗氧化酶活性的影响却不尽相同。其中,APX酶活性增加,但SOD的酶活性升高或降低,而CAT酶活性则不变,说明甜菜红素可能对超氧阴离子亦存在清除作用。
     以自然条件潮间带生境下的紫红色表型和绿色表型的盐地碱蓬为实验材料,对二者在抗氧化酶、过氧化氢含量等方面进行了比较研究,并对紫红色表型盐地碱蓬进行外源过氧化氢处理,分析了外源H2O2浓度与叶片甜菜红素含量的相关性。结果表明:绿色叶表型的盐地碱蓬叶内过氧化氢含量极显著高于紫红色叶表型盐地碱蓬,而二者的抗氧化酶(SOD、CAT和APX)的酶活性无显著性差异。外源过氧化氢的浓度与叶片内甜菜红素含量存在显著负相关。
     以上结果表明,甜菜红素可能作为一种非酶促抗氧化剂参与过氧化氢水平的调节,从而减少胁迫引起的氧化伤害。
Betacyanin is synthesized in vegetative and reproductive organs of some plants. In vegetative organs, its accumulation is highly affected by enviromental condition, but in reproductive organs such as petals, stamens, seeds and fruits, betacyanin is mainly controlled by developmental stages. Previous studies were mainly focused on the factors, which influenced the accumulation of betacyanin, e.g. plant growth regulators, light quality (e.g. red light, far-red light and blue light), light quantity, temperature and nutrition elements (e.g. K+、NO3+、PO43-、sucrose and Cu2+).
     The Chenopodiaceae Suaeda salsa L., a C3 plant, is a succulent euhalophyte. Shoots of S. salsa are violet-red throughout the whole growth period under hypoxia, high salt and low temperature conditions in the intertidal zone, but green on saline inland far from the seaside. Nowadays, the pigment in plants has been identified as betacyanin in S. salsa which occurs in the intertidal zone. In our previous investigations, when seeds of S. salsa from either violet-red phenotype plants grown in the intertidal zone or green phenotype plants grown in saline inland were sown in sand and cultivated in a greenhouse, their phenotype were green regardless of their mother plants. The result demonstrates that the accumulation of betacyanin is mostly regulated by enviromental factors. As a halophyte, physiological and molecular responses of Suaeda salsa to salinity stress have been extensively studied. But nothing is known about the antioxidant function of betacyanin accumulating in S. salsa.
     In the present study, firstly, the effects of hypoxia, salt and low temperature on the betacyanin accumulation of S. salsa were investigated. The results indicated that the betacyanin contents were the highest in both stems and leaves of S. salsa plants treated with flooding for 2 h daily for 60 d. Different salts in a certain range of concentrations led to different betacyanin accumulation, e.g. 15 mmol/L MgSO4, 20 mmol/L KCl, 20 mmol/L CaCl2, 150 mmol/L MgCl2 and 150 mmol/L KNO3 gave rise to the higher betacyanin content, compared with control. Surprisingly, NaCl had an inhibitory effect on the betacyanin accumulation. Under the 4 h/d of low temperature (4±2℃) treatment for 60 d, the betacyanin of S. salsa was the hightest among the all treatments. Nevertheless, the effects of various treatments on the betacyanin content were different in different organs of S. salsa, e.g. the betacyanin content in stems was significantly higher than that in leaves. These results suggested that the accumulation of betacyanin in S. salsa is comprehensively influenced by different factors such as hypoxia, salts and low temperature, and hypoxia and low temperature is the main factor.
     Under comprehensive consitions (15 mmol/L MgSO4, 150 mmol/L MgCl2, 20 mmol/L KCl, 150 mmol/L KNO3, 20 mmol/L CaCl2, hypoxia treatment for 2 h/d and low temperature treatment for 4 h/d), the H2O2 content of stem was significantly higher than that of leaf. The DAB staining of stem and leaf showed that the H2O2 induction for betacyanin was not only related to the content of H2O2, but also related to the H2O2 transport through vascular or its distribution. The result indicated that H2O2 may be acted as a signal molecule. At the morphological top of stem, the betacyanin content was lower, but the H2O2 content was higher. The biosynthesis of betacyanin or its molecular structure may have an activity of eliminating H2O2. Both under the treatment of the tyrosinase inhibitor, arbutin, and the comparision of stem and leaf treated with comprehensive condition, the betacyanin contents were significantly different from the control. But the existence of betacyanin had different effects on the antioxidant enzymes activities. The APX activity was increased, the SOD activity was increased or decreased, and the CAT activity was not affected. These results suggested that the betacyanin may have an activity of eliminating O2˙. In the present study, the leaves of red-violet phenotype and green phenotype S.
     salsa grown in the same intertidal zone were used to comparatively study the activity of antioxidant enzymes (SOD, APX and CAT) and the content of H2O2, and to examine the correlation between the exogenous H2O2 concentration and betacyanin content of red-violet phenotype using detached leaves. The results showed that the H2O2 content of green phenotype S.salsa leaves was significantly higher than that of red-violet phenotype leaves, while no significant differences in the activity of antioxidant enzymes (SOD, APX and CAT) were detected between the two phenotypes of S. salsa. Correlative analysis showed that the exogenous H2O2 concentration was significantly negative correlated to betacyanin content of the detached leaves of violet-red phenotype S. salsa.
     These results suggest that betacyanin possibly plays an important role as a non-enzymatic antioxidant in regulating the level of H2O2, sequentially alleviating the oxidative damage caused by oxidative stress.
引文
[1] 陈清西,林建峰,宋康康.酪氨酸酶抑制剂的研究进展[J].厦门大学学报:自然科学版.2007,46(2):274-282.
    [2] 刘俊,吕波,徐郎莱.植物叶片中过氧化氢含量测定方法的改进[J].生物化学与生物物理进展.2000,27(5):548-551.
    [3] 刘 彧,丁同楼,王宝山.不同自然盐渍生境下盐地碱蓬叶片肉质化研究[J].山东师范大学学报:自然科学版.2006,21(2):102-104.
    [4] 陆珊,胡源,刘鑫,李佳等.曲酸对马铃薯酪氨酸酶的抑制作用研究[J].化学研究与应用.2005,17(6):729-732.
    [5] 吕玉兰.镁肥对台湾青枣叶片光合色素和矿质养分含量的影响[J].热带农业科技.2006,29(3):16-17,31.
    [6] 庞彩红.盐地碱蓬叶绿体 APX(CHLAPX)基因的克隆及功能分析[D].济南:山东师范大学生命科学学院,2007.
    [7] 唐传核.植物生物活性物质[M].北京:化学工业出版社.2005:177.
    [8] 王长泉,刘涛,王宝山.植物甜菜素研究进展[J].植物学通报.2006,23(3):302-311.
    [9] 王长泉, 赵吉强, 陈敏, 王宝山盐地碱蓬甜菜红素苷的鉴定及环境因素对其积累的影响(英文)[J]. 植物生理与分子生物学学报.2006,32(2):(195-201).
    [10] 王长泉.盐地碱蓬甜菜红素的鉴定及其生物合成的生理机制研究[D].济南:山东师范大学生命科学学院,2007.
    [11] 王芳,刘鹏,朱靖文.镁对大豆根系活力叶绿素含量和膜透性的影响[J].农业环境科学报.2004,23(2):235-239.
    [12] 张廷红,葛长海,万海清.酪氨酸酶的应用研究进展[J].沿海企业与科技.2005,60(2):161-163.
    [13] 赵世杰,史国安,董新纯等.植物生理学实验指导[M].北京:中国农业科学技术出版社.2002:130-144.
    [14] Akira Yagi, Toshimitsu Kanbara, and Naoko Morinobu. Inhibition of Mushroom-Tyrosinase by Aloe extract[J]. Planta medica. 1987: 515-517.
    [15] Antonio Rescigno, Enrico Sanjust, Giulia Soddu, Andrea C. Rinaldi, Francesca Sollai, Nicoletta Curreli, Augusto Rinaldi. Effect of 3-hydroxyanthranilic acid on mushroom tyrosinase activity[J]. Biochimica et Biophysica Acta, 1998, 1384: 268-276.
    [16] Asada N., Fukumitsu T., Fujimoto K., Masuda K. I.. Activation of prophenoloxidase with 2-propanol and other organic compounds in Drosophila melanogaster [J]. Insect Biochem. Mol. Biol.. 1993, 23, 515-520.
    [17] Berlin J.,Sieg S.,Strack D.,et al.Production of betalains by suspension cultures of Chenopodium rubrum L.[J].Plant Cell Tissue Organ Cult.1986,5:163-174.
    [18] Bianco-Colomas J., Hugue M.. Establishment and characterization of a betacyanin producing cell line of Amaranthus tricolor: inductive effects of light and cytokinin [J]. J. Plant Physiol. 1990, 136: 734-739.
    [19] Bohm H., Bohm L., Rink E.. Establishment and characterization of a betaxanthin-producing cell culture from Portulaca grandiflora [J]. Plant Cell Tissue Organ Cult. 1991, 26: 75-82.
    [20] Bohm H.,Rink E.,Betalains.In:Vasil I.K.,ed.Cell Culture and somatic cell genetics of plants,vol.5.New York:Academic Press;1988:449-463.
    [21] Bothe H. Salzresistenz bei Pflanzen. Biologie in unserer Zeit. 1976, 6: 3-9.
    [22] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem. 1976, 72: 248-254.
    [23] Butera D, Tesoriere L, Di Gaudio F, Bongiorno A, Allegra M, Pintaudi AM, Kohen R, Livrea MA. Antioxidant activities of sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin[J]. J Agric Food Chem. 2002, 50 (23): 6895-6901.
    [24] Chang-Quan Wang and Tao Liu. Crytochrome 2 is involved in betacyanin decomposition induced by blue light in Suaeda salsa[J]. Functional Plant Biology. 2006, 33: 697-702.
    [25] Chosa N., Fukumitsu T., Fujimoto K., Ohnishi E.. Activation of prophenoloxidase A1 by an activating enzyme in Drosophila melanogaster [J]. Insect Biochem. Mol. Biol. 1997, 27, 61-68.
    [26] Christinet L, Burdet FX, Zaiko M, Hinz U, Zryd JP. Characterization and functional identification of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora [J]. Plant Physiol. 2004, 134(1): 265-74.
    [27] Clement, JS, Mabry, TJ. Pigment evolution in the Caryophyllales: a systematic overview [J]. Bot Acta. 1996, 109: 360-367.
    [28] Constabel F., Nassif-Makki H.. Betalainbildu in betacalluskulturen [J]. Ber.Dtsch. Bot. Ges. 1971, 84: 629-636.
    [29] Daphne C. Elliott and Andrew W. Murray. Evidence against an involvement of cyclic nucleotides in the induction of betacyanin synthesis by cytokinins[J]. Biochem. J..1975, 146, 333-337.
    [30] Elliott D. C.. Ionic regulation for cytokinin-dependent betacyanin synthesis in Amaranthus seedlings [J].Plant Physiol.1979,63:264-268.
    [31] Elliott D. C.. Temperature-dependent expression of betacyanin synthesis in Amaranthus seedlings[J].Plant Physiol.1979,63:277-279.
    [32] Elliott D. C.. The pathway of betalain biosynthesis: effect of cytokinin on enzymic oxidation and hydroxylation of tyrosine in Amaranthus tricolor seedlings [J]. Physiol. 1983, 59: 428-437.
    [33] Eltis Lindsay D. and Bolin Jeffrey T.. Evolutionary relationships among extradiol dioxygenases[J]. Journal of Bacteriology. 1996, 178(20): 5930-5937.
    [34] Endress R..Betacyan-akkumulation in kallus von Portulaca grandiflora var.JR unter dem einfluss von phytohormonen und Cu2+-ionen auf unterschiedlichen grundmedien [J].Biochem.Physiol.Pflanzen.1976,169:87-98.
    [35] Gabriela Sepulveda-Jimenez, Patricia Rueda-Benitez, Helena Porta and Mario Rocha-Sosa. A red beet(Beta vulgaris) UDP-glucosyltransferase gene induced by wounding, bacterial infiltration and oxidative stress[J]. Journal of Experimental Botany. 2005, 56(412): 605-611.
    [36] Giannopolitis C.N. and Ries S.K. Superoxide dismutases, I. Occurrence in higher plants [J]. Plant Physiol. 1977, 59: 309–314.
    [37] Giudici de Nicola M.,Amicl V.,Piattelli M..Effect of white and far-red light on betalain formation [J].Phytochemistry.1974,13:439-442.
    [38] Girod P.-A.,Zryd J.-P..Clonal variability and light induction of betalain synthesis in red beet cell cultures [J].Plant Cell Rep.1987,6:27-30.
    [39] Girod P.-A.,Zryd J.-P..Secondary metabolism in cultured red beet(Beta vulgaris L.) cells: differential regulation of betaxanthin and betacyanin biosynthesis [J].Plant Cell Tissue Organ Cult.1991,25:1-12.
    [40] Hans J., Brandt W., Vogt T.. Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis [J]. Plant J. 2004, 39(3): 319-333.
    [41] Ha T. J., Yang M. S., Jang D. S., Choi S. U., Park K. H.. Inhibitory activities offlavanone derivatives isolated from Sophora flavescens for melanogenesis [J]. Bull. Korean Chem. Soc. 2001, 22: 97-99.
    [42] Hernández JA, Corpas FJ, Gómez M, del Río LA, and Sevilla F. Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria [J]. Physiologia Plantarum, 1993, 89: 103–110.
    [43] Hinz UG, Fivaz J, Girod PA, Zyrd JP. The gene coding for the DOPA dioxygenase involved in betalain biosynthesis in Amanita muscaria and its regulation [J]. Mol Gen Genet. 1997, 256(1): 1-6.
    [44] Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves[J]. Plant Physiol 114: 275–284.
    [45] Joy RW, Sugiyama M, Fukuda H, Komamine A. 1995. Cloning and characterization of polyphenol oxidase cDNAs of Phytolacca americana [J]. Plant Physiol, 107(4): 1083-1089.
    [46] Juan Carlos Espin and Harry J. Wichers. Activation of a latent mushroom(Agaricus bisporus) tyrosinase isoform by sodium Dodecyl sulfate (SDS). Kinetic properties of the SDS-Activated isoform[J]. J. Agric. Food Chem. 1999, 47: 3518-3525.
    [47] Jun Ogata, Yoshio Itoh, Madoka Ishida, Hiroyuki Yoshida. Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus[J]. Plant Biotechnology. 2004, 21(5): 367-375.
    [48] Kenten R. H. Latent phenolase in extracts of broad-bean (Vicia faba L.) leaves. 1. Activation by acid and alkali [J]. Biochem. J. 1957, 67: 300-307.
    [49] Ken-ichi Yamamoto, Naoko Kobayashi, Kunijiro Yoshitama, Susumu Teramoto and Atsushi Komamine. Isolation and purification of tyrosine Hydroxylase from callus cultures of Portulaca grandiflora[J]. Plant Cell Physiol. 2001, 42(9): 969-975.
    [50] King R. S., Flurkey W. H.. Effects of limited proteolysis on broad bean polyphenoloxidase [J]. J.Sci. Food Agric. 1987, 41: 231-240.
    [51] Kishima Y.,Nozaki K.,Asashi R.,et al.Light-inducible pigmentation in Portulaca callus;selection of a high betalain producing cell line [J].Plant Cell Rep.1991,10:304-307.
    [52] Kubo I., Kinst-Hori I. 2-Hydroxy-4-methoxy benzaldehyde: a potent tyrosinase inhibitor from African medicinal plants [J]. Planta Med. 1999, 65: 19-22.
    [53] Lee H. S.. Tyrosinase inhibitors of Pulsatilla cernua root-derived material [J]. J. Agric. Food Chem. 2002, 50: 1400-1403.
    [54] Lukas A. Mueller, Ursula Hinz and Jean-Pierre Zryd. Characterization of a tyrosinase from Amanita Muscaria involved in betalain biosynthesis[J]. Phytochemistry. 1996, 42(6): 1511-1515.
    [55] Mabry TJ. Betalains. In: Bell EA, Charwood BV, editors. Encyclopedia of plant physiology. Secondary plant products, 8. Berlin: Springer; 1980. p. 513–533.
    [56] McClure, J. W. Physiology and functions of flavonoids. In The Flavonoids. Eds. J. B. Harbome, T. J. Mabry, and H. Mabry. Academic Press, New York, pp. 1975: 970-1055.
    [57] M. Ibdah, A. Krins, H. K. Seidlitz, W. Heller, D. Strack and T. Vogt. Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation[J]. Plant Cell and Environment. 2002, 25: 1145-1154.
    [58] Nobuhiro Sasaki, Yutaka Abe, Katsuhiro Wada, Takatoshi Koda, Yukihiro Goda, Taiji Adachi and Yoshihiro Ozeki. Amaranthin in feather cockscombs is synthesized via glucuronylation at the cyclo-DOPA glucoside step in the betacyanin biosynthetic pathway [J]. Journal of Plant Research. 2005, 118(6):439-442.
    [59] Obrenovic S..Effect of Cu( Ⅱ ) D-penicillamine on phytochrome-mediated betacyanin formation in Amaranthus caudatus seedlings [J]. Plant Physiol.Biochem.1990,28:639-646.
    [60] Piattelli, M. The Betalains [J]. The Biochemistry of Plants , 1981, 1: 560-590.
    [61] Rao MV, Paliyath G, Ormrod DP (1997) Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2–metabolizing enzymes [J]. Plant Physiol 115: 137-149.
    [62] Robb D. A., Gutteridge S.. Polypeptide composition of two fungal tyrosinases [J]. Phytochemistry. 1981, 20: 1481-1485.
    [63] Robinson S. P., Dry I. B.. Broad bean leaf polyphenol oxidase is a 60-kilodalton protein susceptible to proteolytic cleavage [J]. Plant Physiol. 1992, 99: 317-323.
    [64] Roland R. Leathers. Catherine Davin, and Jean Pierre Zryd. Betlain producing cell cultures of Beta vulgaris L. Var. bikores monogerm(red beet)[J]. In Vitro Cell. 1992, 28P: 39-45.
    [65] Sakuta M.,Takagi T.,Komamine A..Growth related accumulation of betacyaninin cell suspension cultures of Phytolacca americana L. [J]. J . Plant Physiol.1986,125:337-343.
    [66] Sanchez-Ferrer A., Rodriguez-Lopez J N., Garcia—Canovas F., et a1. Tyrosinase: a comprehensive review of its mechanism[J].Biochimics et Biophysica Acta. 1995, 1247: 1-11.
    [67] Sanchez-Ferrer A., Villalba J., Garcia-Carmona F.. Triton X-114 as a tool for purifying spinach polyphenol oxidase [J]. Phytochemistry. 1989, 28, 1321-1325.
    [68] Sepulveda-Jimenez G, Rueda-Benitez P, Porta H, Rocha-Sosa M. 2004. Betacyanin synthesis in red beet (Beta vulgaris) leaves induced by wounding and bacterial infiltration is preceded by an oxidative burst [J]. Physiological and Molecular Plant Pathology, 64: 125-133.
    [69] Soler-Rivas C., Arpin N., Olivier J. M., Wichers H. J.. Activation of tyrosinase in Agaricus bisporus strains following infection by Pseudomonas tolaasii or treatment with a tolaasin-containing preparation [J]. Mycol. Res. 1997, 101: 375-382.
    [70] Stafford, HA. 1994. Anthocyanins and betalains: evolution of the mutually exclusive pathways [J]. Plant Sci, 101: 91-98.
    [71] Steglich W, Strack D. 1990. Betalains. In: Brossi, A. (Ed.), The Alkaloids, Chemistry and Pharmacology [J]. Academic Press, London, pp. 1-62.
    [72] Steiner U, Schliemann W., Bohm H., Strak D.. Tyrosine involved in betalain biosynthesis of higher plants [J]. Planta. 1999, 208: 114-124.
    [73] Stintzing FC, Carle R. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition [J]. Trends Food Sci & Technol. 2004, 15: 19-38.
    [74] Stintzing FC, Schieber A, Carle R. Amino acid composition and betaxanthin formation in fruits from Opuntia ficusindica [J]. Planta Medica. 1999, 65: 632-635.
    [75] Stintzing FC, Schieber A, Carle R. Betacyanins in fruits from red-purple pitaya, Hylocereus polyrhizus Britton & Rose [J]. Food Chemistry. 2002, 77: 101-106.
    [76] Stintzing FC, Schieber A, Carle R. Evaluation of colour properties and chemical quality parameters of cactus juices. European Food Research and Technology [J]. 2003, 216: 303-311.
    [77] Stobart A. K., Kinsman L. T.. The hormonal control of betacyanin synthesis inAmaranthus caudatus [J]. Phytochemistry. 1977, 16: 1137-1142.
    [78] Strack D, Vogt T, Schliemann W. 2003. Recent advances in betalain research [J]. Phytochemistry, 62: 247-269.
    [79] Strothkemp K. G., Jolley R. L., Mason H. S.. Quaternary structure of mushroom tyrosinase [J]. Biochem. Biophys. Res. Commun. 1976, 70, 519-524.
    [80] Sugumaran M., Nellaiappan K.. Lysolecithin –a potent activator of prophenoloxidase from the hemolymph of the lobster. Homarus americanas [J]. Biochem. Biophys. Res. Commun. 1991, 176, 1371-1376.
    [81] Sung-Yum Seo, Vinay K. Sharma and Niti Sharma. Mushroom tyrosinase: recent prospects [J]. J. Agric. Food Chem. 2003, 51: 2837-2853.
    [82] Trezzini and Zryd. Portulaca grandiflora: a model system for study of the biochemistry and genetics of betalain synthesis [J]. Acta horticulturae. 1990, 280, 581-585.
    [83] U. G. Hinz, J. Fivaz, P.-A. Girod J.-P. Zyrd. The gene coding for the DOPA dioxygenase involved in betalain biosynthesis in Amanita muscaria and its regulation[J]. Mol Gen Genet. 1997, 256: 1-6.
    [84] Ulrike Steiner,Willibald Schliemann,Hartmut Bohm,Dieter Strack.Tyrosinase involved in betalain biosynthesis of higher plants [J].Planta.1999,208:114-124.
    [85] Valero E., Garcia-Moreno M., Varon R., Garcia-Carmona F.. Time-dependent inhibition of grape polyphenoloxidase by tropolone [J]. J. Agric. Food Chem. 1991, 39: 1043-1046.
    [86] van Gelder C. W. G., Flurkey W. H., Wichers H. J.. Sequence and structural features of plant and fungal tyrosinases [J]. Phytochemistry. 1997, 45: 1309-1323.
    [87] Vogt T, Grimm R, Strack D. 1999. Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin- and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae [J]. Plant J, 19(5): 509-519.
    [88] Vogt T, Ibdah M, Schmidt J, Wray V, Nimtz M, Strack D. 1999. Light induced betacyanin and flavonols accumulation in bladder cells of Mesembryanthemum crystallinum [J]. Phytochemistry; 52: 583–592.
    [89] Vogt, T. Substrate specificity and sequence analysis define a polyphyletic origin of betanidin 5- and 6-O-glucosyltransferase from Dorotheanthus bellidiformis[J]. Planta, 2002, 214 (3): 492-495.
    [90] Wicher H. J., van den Bosch T., Gerritsen Y. A., Oyevaar J. I., Ebbelaar M. C. E. M., Rocourt K.. Enzymology and molecular biology of Agaricus bisporus tyrosinase [J]. Mushroom Sci. 1995, 2: 723-728.
    [91] Yizhong Cai, Mei Sun, and Harold Corke. Antioxidant activity of betalains from plants of the Amaranthaceae[J]. J. Agric. Food Chem. 2003, 51: 2288-2294.
    [92] Zakharova NS, Petrova TA. 1998. Relationship between the structure and antioxidant activity of various betalains[J]. Prikl Biokhim Mikrobiol, 34 (2): 199-202.
    [93] Zaiko M. Colour-specific genes from betalain producing plants [D]. PhD thesis. University of Lausanne, Lausanne, Switzerland. 2000.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.