丙酸杆菌的耐药研究及盐酸小檗碱对耐药株的抑制机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究从痤疮患者皮损中分离的丙酸杆菌对红霉素、克林霉素和四环素的药敏情况及耐药机制,研究盐酸小檗碱对丙酸杆菌的抑制作用并探讨其可能机制。
     方法:分离丙酸杆菌,厌氧培养经革兰染色、16SrRNA和23SrRNA测序等方法鉴定,采用E-test方法检测分离株对红霉素、克林霉素和四环素的MIC值,PCR扩增ermX、ermX (cj)、IS1249a、IS1249b并测序。采用微量肉汤稀释法检测盐酸小檗碱对丙酸杆菌的MIC值,采用real time PCR方法研究小檗碱是否调节erm基因的表达和逆转23S rRNA点突变。
     结果:共分离84株丙酸杆菌,72株、12株分别鉴定为痤疮丙酸杆菌(Propionibacterium acnes, P.acnes)、贪婪丙酸杆菌(Propionibacterium avidum,P.avidum)。所有菌株对四环素敏感。29株(34.52%)对红霉素耐药,均为高度耐药(MIC>25μg/ml);其余55株对红霉素敏感。19株P.acnes耐药株中,16株对克林霉素高度耐药(MIC>256μg/ml);10株P. avidum对克林霉素高度耐药(MIC>256μg/ml)。19株P.acnes耐药株中,7株在相当于Escherichia coli23S rRNA2058位点发现由A→G点突变,均对红霉素和克林霉素高度耐药;4株在相当于E.coli23S rRNA2059位点发现由A→G点突变,其中1株对克林霉素耐药,3株敏感;另外8株P.acnes扩增ermX阳性,其序列与Genbank中P.acnes ermX基因100%同源。10株P. avidum中,2株ermX扩增阳性,其序列与P.acnes ermX基因100%同源;另外8株扩增ermX (cj)得到预期片段PCR产物,与Genbank中Corynebacterium jeikeium ermX (cj)99%同源,而与P.acnes ermX仅有94%的同源性。10株扩增ermX基因阳性的菌株扩增IS1249a和IS1249b均阳性,而其余菌株均阴性。盐酸小檗碱对丙酸杆菌的MIC值在1-8μg/ml,未发现其有调控erm基因、逆转23SrRNA点突变的作用。经盐酸小檗碱溶液共孵育后的耐药P. acnes透射电镜下可见DNA扭曲碎裂、细胞核固缩、空泡化。
     结论:本研究中痤疮患者携带的丙酸杆菌包括P. acnes对红霉素耐和克林霉素耐药率高,对四环素敏感。对红霉素和克林霉素的耐药与在相当于E.coli23S rRNA2058、2059位点由A→G点突变、携带ermX(cj)基因及位于转座子Tn5432中的ermX基因相关。盐酸小檗碱对耐药和敏感丙酸杆菌均有较好的抑制作用,其MIC值在1-8μg/ml,其不是通过抑制erm基因、逆转23SrRNA点突变介导抑制。透射电镜下观察经盐酸小檗碱孵育后,丙酸杆菌DNA结构破坏、胞核固缩空泡化,提示其可能通过整体抑制DNA发挥作用,是否通过抑制FtsZ蛋白或与DNA结合后诱发SOS反应抑制丙酸杆菌,有待在今后的研究中进一步探讨
Abjective To evaluate the susceptibility test of propionibacteria and determine whether erythromycin resistant propionibacteria is due to the mutation in23S rRNA and Tn5432with ermX located plus two copies of IS1249flanked was transferred to propionibacteria. To determine the susceptibility test of propionibacteria to berberine.
     Methods Samples were collected from acne lesions of84acne patients. All samples were cultured in anaerobic conditions and identified by o sequencing of16s rRNA and23s rRNA respectively. The susceptibility test of propionibacteria isolated from acne patients to erythromycin and clindamycin was tested with E-test23S rRNA, ermX, ermX (cj), IS1249a and IS1249b was amplified and sequenced respectively. To determine the susceptibility test of propionibacteria to berberine with broth microdilution method. Real time PCR was evaluated to detect if erm was regulated by berberine.
     Results72Propionibacterium acnes and12Propionibacterium avidum were isolated respectively. Isolates resistant to erythromycin (29/84,34.52%) were observed and all isolates were susceptible to tetracycline. Isolates resistant to erythromycin were observed in P.acnes (26.39%,19/72) and P.avidum (83.33%,10/12) respectively.19P.acnes isolates and10Ravidum isolates were all high resistant to erythromycin.16P.acnes isolates were high resistant (MIC>256μg/ml) and3susceptible to clindaymcin respectively.10P.avidum isolates were all high resistant to erythromycin and clindaymcin (MIC>25μg/ml). In7P.acnes isolates, cross high resistant to erythromycin and clindamycin was associated with an A→G transition at a position cognate with Escherichia coli23S rRNA2058. These isolates were resistant to>256μg/ml of erythromycin and clindamycin respectively. In4P.anees isolates, high resistant to clindamycin and partly susceptible to clindamycin was associated with an A→G transition at a position cognate with E.coli23S rRNA2059. ermX gene located in Tn5432with two copies of IS1249was detected in the other8P.acnes isolates and2Ravidum isolates. These isolates were all high resistant to clindamycin and erythromycin. ermX(cj) gene was detected in the other8P.avidum isolates which shows99%homology with Corynebacterium jeikeium ermX (cj), while94%with P. acnes ermX. Berberine inhibited propionibacteria(MIC1-8μg/ml). The mutation of23S rRNA and erm gene weren't regulated by berberine.
     Conclusion Antimicrobial resistance in propionibacteria in this population has a higher prevalence than those reported in Japan and Korea and follows a similar pattern to findings in Europe. No isolates were resistant to tetracycline. Clinical resistant propionibacteria to erythromycin is associated with an A→G transition at a position cognate with E.coli23S rRNA2058and2059respectively, erm located in Tn5432and ermX(cj) also account for the resistance. Berberine inhibited P.acnes, which provides a good choice for treatment of acne.
引文
[1]COGEN A L, NIZET V, GALLO R L. Skin microbiota:a source of disease or defence? [J]. Br J Dermatol,2008,158(3):442-55.
    [2]GUIO L, SARRIA C, DE LAS CUEVAS C, et al. Chronic prosthetic valve endocarditis due to Propionibacterium acnes:an unexpected cause of prosthetic valve dysfunction [J]. Rev Esp Cardiol,2009,62(2):167-77.
    [3]VIRARAGHAVAN R, JANTAUSCH B, CAMPOS J. Late-onset central nervous system shunt infections with Propionibacterium acnes:diagnosis and management [J]. Clin Pediatr (Phila), 2004,43(4):393-7.
    [4]FINCHER M E, FORSYTH M, RAHIMI S Y. Successful management of central nervous system infection due to Propionibacterium acnes with vancomycin and doxycycline [J]. South Med J, 2005,98(1):118-21.
    [5]PIHL M, DAVIES J R, JOHANSSON A C, et al. Bacteria on catheters in patients undergoing peritoneal dialysis[J]. Perit Dial Int,2013,33(1):51-9.
    [6]MHAIDLI H H, DER-BOGHDSSIAN A H, HAIDAR R K. Propionibacterium acnes delayed infection following spinal surgery with instrumentation [J]. Musculoskelet Surg,2013,97(1): 85-7.
    [7]HAIDAR R, NAJJAR M, DER BOGHOSSIAN A, et al. Propionibacterium acnes causing delayed postoperative spine infection:review [J]. Scand J Infect Dis,2010,42(6-7):405-11.
    [8]EISHI Y. Etiologic aspect of sarcoidosis as an allergic endogenous infection caused by Propionibacterium acnes [J]. Biomed Res Int,2013,2013(935289.
    [9]LEVY O, IYER S, ATOUN E, et al. Propionibacterium acnes:an underestimated etiology in the pathogenesis of osteoarthritis? [J]. J Shoulder Elbow Surg,2013,22(4):505-11.
    [10]QI X, GAO J, SUN D, et al. Biofilm formation of the pathogens of fatal bacterial granuloma after trauma:potential mechanism underlying the failure of traditional antibiotic treatments [J]. Scand J Infect Dis,2008,40(3):221-8.
    [II]ROSS J I, SNELLING A M, EADY E A, et al. Phenotypic and genotypic characterization of antibiotic-resistant Propionibacterium acnes isolated from acne patients attending dermatology clinics in Europe, the U.S.A., Japan and Australia [J]. Br J Dermatol,2001,144(2):339-46.
    [12]ROSS J I, EADY E A, COVE J H, et al. Clinical resistance to erythromycin and clindamycin in cutaneous propionibacteria isolated from acne patients is associated with mutations in 23 S rRNA [Jj.Antimicrob Agents Chemother,1997,41(5):1162-5.
    [13]OH K B, OH M N, KIM J G, et al. Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors [J]. Appl Microbiol Biotechnol, 2006,70(1):102-6.
    [14]WANG X, YAO X, ZHU Z, et al. Effect of berberine on Staphylococcus epidermidis biofilm formation[J]. Int J Antimicrob Agents,2009,34(1):60-6.
    [15]WANG X, QIU S, YAO X, et al. Berberine inhibits Staphylococcus epidermidis adhesion and biofilm formation on the surface of titanium alloy [J]. J Orthop Res,2009,27(11):1487-92.
    [16]ZUO G Y, LI Y, HAN J, et al. Antibacterial and synergy of berberines with antibacterial agents against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA) [J]. Molecules,2012,17(9):10322-30.
    [17]LI G X, WANG X M. JIANG T, et al. Berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway [J]. Eur J Pharmacol,2014,
    [18]JUNIO H A, SY-CORDERO A A, ETTEFAGH K A, et al. Synergy-directed fractionation of botanical medicines:a case study with goldenseal (Hydrastis canadensis) [J]. J Nat Prod,2011, 74(7):1621-9.
    [19]ZENG X, KONG F, WANG H, et al. Simultaneous detection of nine antibiotic resistance-related genes in Streptococcus agalactiae using multiplex PCR and reverse line blot hybridization assay [J]. Antimicrob Agents Chemother,2006,50(1):204-9.
    [20]TAUCH A, KASSING F, KALINOWSKI J, et al. The Corynebacterium xerosis composite transposon Tn5432 consists of two identical insertion sequences, designated IS 1249, flanking the erythromycin resistance gene ermCX [J]. Plasmid,1995,34(2):119-31.
    [21]SHAMES R, SATTI F, VELLOZZI E M, et al. Susceptibilities of Propionibacterium acnes ophthalmic isolates to ertapenem, meropenem, and cefepime [J]. J Clin Microbiol,2006,44(11): 4227-8.
    [22]YAMADA T, EISHI Y, IKEDA S, et al. In situ localization of Propionibacterium acnes DNA in lymph nodes from sarcoidosis patients by signal amplification with catalysed reporter deposition [J]. J Pathol,2002,198(4):541-7.
    [23]JANVIER F, DELACOUR H, LARRECHE S, et al. Abdominal wall and intra-peritoneal abscess by Propionibacterium avidum as a complication of abdominal parietoplasty [J]. Pathol Biol (Paris), 2013,
    [24]JASSON F, NAGY I, KNOL A C, et al. Different strains of Propionibacterium acnes modulate differently the cutaneous innate immunity [J]. Exp Dermatol,2013,22(9):587-92.
    [25]MENDOZA N, HERNANDEZ P O, TYRING S K, et al. Antimicrobial susceptibility of Propionibacterium acnes isolates from acne patients in Colombia [J]. Int J Dermatol,2013,52(6): 688-92.
    [26]TOYNE H, WEBBER C, COLLIGNON P, et al. Propionibacterium acnes (P. acnes) resistance and antibiotic use in patients attending Australian general practice [J]. Australas J Dermatol,2012, 53(2):106-11.
    [27]ISHIDA N, NAKAMINAMI H, NOGUCHI N, et al. Antimicrobial susceptibilities of Propionibacterium acnes isolated from patients with, acne vulgaris [J]. Microbiol Immunol,2008, 52(12):621-4.
    [28]SONG M, SEO S H, KO H C, et al. Antibiotic susceptibility of Propionibacterium acnes isolated from acne vulgaris in Korea [J]. J Dermatol,2011,38(7):667-73.
    [29]SCHAFER F, FICH F, LAM M, et al. Antimicrobial susceptibility and genetic characteristics of Propionibacterium acnes isolated from patients with acne [J]. Int J Dermatol,2013,52(4):418-25.
    [30]TAUCH A, KASSING F, KALINOWSKI J, et al. The erythromycin resistance gene of the Corynebacterium xerosis R-plasmid pTPIO also carrying chloramphenicol, kanamycin, and tetracycline resistances is capable of transposition in Corynebacterium glutamicum [J]. Plasmid, 1995,33(3):168-79.
    [31]EL-MAHDY T S, ABDALLA S, EL-DOMANY R, et al. Detection of a new erm(X)-mediated antibiotic resistance in Egyptian cutaneous propionibacteria [J]. Anaerobe,2010,16(4):376-9.
    [32]NAKASE K, NAKAMINAMI H, NOGUCHI N, et al. First report of high levels of clindamycin-resistant Propionibacterium acnes carrying erm(X) in Japanese patients with acne vulgaris [J]. J Dermatol,2012,39(9):794-6.
    [33]DAS S, KUMAR G S, RAY A, et al. Spectroscopic and thermodynamic studies on the binding of sanguinarine and berberine to triple and double helical DNA and RNA structures [J]. J Biomol Struct Dyn,2003,20(5):703-14.
    [34]BHADRA K, MAITI M, KUMAR G S. Berberine-DNA complexation:new insights into the cooperative binding and energetic aspects [J]. Biochim Biophys Acta,2008,1780(9):1054-61.
    [35]YADAV R C, KUMAR G S, BHADRA K, et al. Berberine, a strong polyriboadenylic acid binding plant alkaloid:spectroscopic, viscometric, and thermodynamic study [J]. Bioorg Med Chem,2005, 13(1):165-74.
    [36]BHADRA K, KUMAR G S. Interaction of berberine, palmatine, coralyne, and sanguinarine to quadruplex DNA:a comparative spectroscopic and calorimetric study [J]. Biochim Biophys Acta, 2011,1810(4):485-96.
    [37]TEGOS G, STERMITZ F R, LOMOVSKAYA O, et al. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials [J]. Antimicrob Agents Chemother,2002,46(10): 3133-41.
    [38]BANDYOPADHYAY S, PATRA P H, MAHANTI A, et al. Potential antibacterial activity of berberine against multi drug resistant enterovirulent Escherichia coli isolated from yaks
    (Poephagus grunniens) with haemorrhagic diarrhoea [J]. Asian Pac J Trop Med,2013,6(4):315-9.'
    [39]CAO M, WANG P, SUN C, et al. Amelioration of IFN-gamma and TNF-alpha-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway [J]. PLoS One,2013,8(5):e61944.
    [40]XU Y, WANG Y, YAN L, et al. Proteomic analysis reveals a synergistic mechanism of fluconazole and berberine against fluconazole-resistant Candida albicans:endogenous ROS augmentation [J]. J Proteome Res,2009,8(11):5296-304.
    [41]XIE Q, JOHNSON B R, WENCKUS C S, et al. Efficacy of berberine, an antimicrobial plant alkaloid, as an endodontic irrigant against a mixed-culture biofilm in an in vitro tooth model [J]. J Endod,2012,38(8):1114-7.
    [42]GU J J, GAO F Y, ZHAO T Y. A preliminary investigation of the mechanisms underlying the effect of berberine in preventing high-fat diet-induced insulin resistance in rats [J]. J Physiol Pharmacol,2012,63(5):505-13.
    [43]GOTO H, KARIYA R, SHIMAMOTO M, et al. Antitumor effect of berberine against primary effusion lymphoma via inhibition of NF-kappaB pathway [J]. Cancer Sci,2012,103(4):775-81.
    [44]KARAOSMANOGLU K, SAYAR N A, KURNAZ I A, et al. Assessment of berberine as a multi-target antimicrobial:a multi-omics study for drug discovery and repositioning [J]. OMICS, 2014,18(1):42-53.
    [45]NOGALES E, DOWNING K H, AMOS L A, et al. Tubulin and FtsZ form a distinct family of GTPases [J]. Nat Struct Biol,1998,5(6):451-8.
    [46]ROMBERG L, SIMON M, ERICKSON H P. Polymerization of Ftsz, a bacterial homolog of tubulin. is assembly cooperative? [J]. J Biol Chem,2001,276(15):11743-53.
    [47]BI E F, LUTKENHAUS J. FtsZ ring structure associated with division in Escherichia coli [J]. Nature,1991,354(6349):161-4.
    [48]MARGOLIN W. FtsZ and the division of prokaryotic cells and organelles [J]. Nat Rev Mol Cell Biol,2005,6(11):862-71.
    [49]WEISS D S. Bacterial cell division and the septal ring [J]. Mol Microbiol,2004,54(3):588-97.
    [50]DOMADIA P N, BHUNIA A, SIVARAMAN J, et al. Berberine targets assembly of Escherichia coli cell division protein FtsZ [J]. Biochemistry,2008,47(10):3225-34.
    [51]BOBEREK J M, STACH J, GOOD L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine [J]. PLoS One,2010,5(10):e13745.
    [52]LU J J, PAN W, HU Y J, et al. Multi-target drugs:the trend of drug research and development [J]. PLoS One,2012,7(6):e40262.
    [53]李凌凌,张部昌,马清钧等.红霉素抗菌作用及细菌产生红霉素抗性的机制[J].国外医药抗生素分册,2004,25(1):12-16
    [1]张宝喜、彭福、罗维早等.不同产地黄连中6个生物碱含量测定[J].中国现代应用药学,2011,28(2):128-132
    [2]张喜平,周田美,董晓勤,等.黄芩苷注射液体外抗菌作用实验研究[J].医学研究杂志, 2006,35(8):39
    [3]BANDYOPADHYAY S, PATRA P H, MAHANTI A, et al. Potential antibacterial activity of berberine against multi drug resistant enterovirulent Escherichia coli isolated from yaks (Poephagus grunniens) with haemorrhagic diarrhoea [J]. Asian Pac JTrop Med,2013,6(4):315-9.
    [4]ZUO G Y, LI Y, HAN J, et al. Antibacterial and synergy of berberines with antibacterial agents against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA) [J]. Molecules,2012,17(9):10322-30.
    [5]LI G X, WANG X M, JIANG T, et al. Berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway [J]. Eur J Pharmacol,2014,
    [6]CAO M, WANG P, SUN C, et al. Amelioration of IFN-gamma and TNF-alpha-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway [J]. PLoS One,2013,8(5):e61944.
    [7]XIE Q, JOHNSON B R, WENCKUS C S, et al. Efficacy of berberine, an antimicrobial plant alkaloid, as an endodontic irrigant against a mixed-culture biofilm in an in vitro tooth model [J]. J Endod,2012,38(8):1114-7.
    [8]赵敏、谭钢文、唐小异等.十种中药提取物与抗生素合用对铜绿假单胞菌最小抑菌浓度影响的体外实验[J]..湖南师范大学学报(医学版)2011,8(4):80-83
    [9]史跃杰.黄芩黄连水煎剂对厌氧菌的体外抑菌活性[J].中国试验方剂学杂志.2011,17(17)226-227
    [10]GU J J, GAO F Y, ZHAO T Y. A preliminary investigation of the mechanisms underlying the effect of berberine in preventing high-fat diet-induced insulin resistance in rats [J]. J Physiol Pharmacol,2012,63(5):505-13.
    [11]GOTO H, KARIYA R, SHIMAMOTO M, et al. Antitumor effect of berberine against primary effusion lymphoma via inhibition of NF-kappaB pathway [J]. Cancer Sci,2012,103(4):775-81.
    [12]曹琰,游思湘,何湘蓉.β-内酰胺类药物及与复方黄连注射液联合使用对金、黄色葡萄球菌MSW的影响[J].中国抗生素杂志,2012,37(12):952-955
    [13]、陈美玲,王剑,周红霞等.中药饮片对多重抗生素耐药细菌的抑菌作用[J].中医药学报,2012,40(2):10-13
    [14]刘春平,赵淑肖,陈强.盐酸小檗碱抗2种皮肤癣菌实验观察[J].临床皮肤科杂志,2005,34(1):29
    [15]XU Y, WANG Y, YAN L, et al. Proteomic analysis reveals a synergistic mechanism of fluconazole and berberine against fluconazole-resistant Candida albicans:endogenous ROS augmentation [J]. J Proteome Res,2009,8(11):5296-304.
    [16]KARAOSMANOGLU K, SAYAR N A, KURNAZ I A, et al. Assessment of berberine as a multi-target antimicrobial:a multi-omics study for drug discovery and repositioning [J]. OMICS, 2014,18(1):42-53.
    [17]BOBEREK J M, STACH J, GOOD L. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine [J]. PLoS One,2010,5(10):el3745.
    [18]NOGALES E, DOWNING K H, AMOS L A, et al. Tubulin and FtsZ form a distinct family of GTPases [J]. Nat Struct Biol,1998,5(6):451-8.
    [19]ROMBERG L, SIMON M, ERICKSON H P. Polymerization of Ftsz, a bacterial homolog of tubulin. is assembly cooperative? [J]. J Biol Chem,2001,276(15):11743-53.
    [20]BI E F, LUTKENHAUS J. FtsZ ring structure associated with division in Escherichia coli [J]. Nature,1991,354(6349):161-4.
    [21]MARGOLIN W. FtsZ and the division of prokaryotic cells and organelles [J]. Nat Rev Mol Cell BioL 2005,6(11):862-71.
    [22]WEISS D S. Bacterial cell division and the septal ring [J]. Mol Microbiol,2004,54(3):588-97.
    [23]ANDREU J M, SCHAFFNER-BARBERO C, HUECAS S, et al. The antibacterial cell division inhibitor PC190723 is an FtsZ polymer-stabilizing agent that induces filament assembly and condensation [J]. J Biol Chem,2010,285(19):14239-46.
    [24]WANG J, GALGOCI A, KODALI S, et al. Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics [J]. J Biol Chem,2003,278(45): 44424-8.
    [25]KEFFER J L, HUECAS S, HAMMILL J T, et al. Chrysophaentins are competitive inhibitors of FtsZ and inhibit Z-ring formation in live bacteria [J]. Bioorg Med Chem,2013,21(18):5673-8.
    [26]DOMADIA P N, BHUNIA A, SIVARAMAN J, et al. Berberine targets assembly of Escherichia coli cell division protein FtsZ [J]. Biochemistry,2008,47(10):3225-34.
    [27]NEYFAKH A A, BORSCH C M, KAATZ G W. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter [J]. Antimicrob Agents Chemother,1993, 37(1):128-9.
    [28]ANDERSON K L, ROBERTS C, DISZ T, et al. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover [J]. J Bacteriol,2006,188(19):6739-56.
    [29]DING Y, ONODERA Y, LEE J C, et al. NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses [J]. J Bacteriol,2008,190(21):7123-9.
    [30]WEINRICK B, DUNMAN P M, MCALEESE F, et al. Effect of mild acid on gene expression in Staphylococcus aureus [J]. J Bacteriol,2004,186(24):8407-23.
    [31]ETTEFAGH K A, BURNS J T, JUNIO H A, et al. Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition [J]. Planta Med,2011,77(8):835-40.
    [32]LU J J, PAN W, HU Y J, et al. Multi-target drugs:the trend of drug research and development [J]. PLoS One,2012,7(6):e40262.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.