近红外长余辉发光材料的设计、合成、性能与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近几十年光学成像由于其独特的高灵敏度、可移植性、非侵害性和时间有效性等优点,已经在癌症研究、临床手术、医疗研究等领域引起了极大关注,并逐渐发展成为一种独立的检测技术。伴随着高精度、高质量光学成像要求的提出,很多新的成像设备、成像方法和荧光探针也不断涌现,但是现在光学成像的发展处于一个瓶颈期,原因在于荧光探针的发展跟不上成像设备和成像技术的发展需求。现代医学光学检测要求(1)荧光探针的工作区域为生物透过窗口(700-1000nm和1100-1350nm)的近红外光区工作以便增加检测光的深组织透过率;(2)荧光探针的激发光不宜采用紫外光和可见光,以避免组织的自体荧光;(3)荧光探针的激发光强度不宜太强,以便降低背景信号,增大成像的信噪比;(4)能够提供实时、整体、分布式的观测结果。纵观所有潜在的荧光探针,只有近红外长余辉发光材料能够很好的满足上述要求。长余辉材料由于其独特的结构特点,使得这类材料能够在体内存储大量电子和能量,从而在激发停止后依然能获得较长时间的光发射。这种现象已经被广泛应用在了安全指示、仪器仪表显示、装饰装潢等领域。但是早先的长余辉发光材料是集中在可见区域的,近红外发光的长余辉材料的种类十分稀有。
     本文首先系统的阐述了长余辉发光材料的历史、种类、理论模型、测试方法、应用领域以及相关的研究进展。然后我们通过对已经报道的长余辉发光材料的探索和剖析,进一步解释了其余辉发光机理;在此基础上发现了这种材料体系中存在的新光学现象;在此基础上我们开发了一种新的近红外长余辉发光材料;并且提出了一种新的具有近红外长余辉发光的激活离子;提出了一种缺陷作为复合发光中心的长余辉发光材料。具体的研究内容和结果包括以下几个方面:
     (1)通过固相反应法制备了Zn3Ga2Ge2O10:Cr发光材料,并且观察到了近红外荧光和长余辉发射。确认了在荧光发射光谱中发现了两个发射峰位于近红外区域的覆盖698尖峰的宽带发射峰650-900nm,和位于可见区域的400-600nm的宽带发射峰:分别与Cr离子跃迁和缺陷复合跃迁有关。通过荧光光谱、长余辉光谱、热释光光谱、光激励发光光谱、光电流曲线等测试,确认了在荧光激发光谱中存在5个激发峰的归属:可见区域的两个激发峰归属为Cr离子4A2→4T2和4A2→4T1跃迁,紫外区域的三个激发峰中260nm属于带间跃迁,290nm属于4A2→CB激活离子到导带的跃迁,320nm属于Cr离子4A2→4T2(4P)的跃迁,并基于上述观察的现象提出了一个不同于以往的余辉发射模型。并通过工艺探索,发现样品制备时间越长、制备温度越高、制备气氛为空气或者氩气时,制备的样品余辉初始强度越大,余辉时间越长。
     (2)针对现在使用的近红外光学成像方式依然是基于相干光激发的问题,本研究通过固相反应法制备了Zn3Ga2Ge2O10:Cr发光材料,并且首次发现了该体系中存在的近红外的光激励荧光和长余辉发光,并且这种光激励发光可以在近红外相干光和非相干光激发下获得。这种光激励发光具有波长选择性、光发射稳定性、可重复激发性、激发功率可调谐性、激发时间可调谐性、通过紫外光和X光再次充电等优点。生物成像演示了完美的可循环利用的成像模式:先用紫外光对缺陷充电,获得的近红外长余辉发光能够很好的用于纳米探针的前期观测(包括分布式检测、靶向检测);经过一段时间后长余辉衰减至某一强度时,检测效果较差或需要定量观测时,用近红外LED灯作为辐照源可以重新获得发光强度较强的近红外荧光和余辉发光;最后当存储的电子耗尽后,通过X射线的辐照重新填满陷阱,又可以获得新一轮的成像观测。
     (3)针对近红外长余辉发光材料基质种类少、在应用、制备、机理模型上还存在缺陷等问题,在对已有长余辉性能评价方式、设计方式掌握的基础上,本研究通过固相反应法首次发现并制备了一种新的长余辉发光材料,Cr掺杂的Zn3Ga2Sn1O8粉末发光材料,余辉时间长于300小时,并且通过荧光光谱、长余辉光谱、长余辉衰减曲线、ESR谱、正电子湮没谱、热释光光谱、光激励发光光谱等测试手段综合证明其余辉时间、缺陷浓度、缺陷深度等各个缺陷参数均优于Cr掺杂的Zn3Ga2Ge1O8粉末发光材料。此发光材料也可以在近红外非相干光激发下获得长期、可重复的近红外光光激励荧光和长余辉,深组织成像显示长余辉成像和光激励发光成像的有效结合可以发展一种长期的、实时的、可靠的、稳定的、多路复用的探测方式,从而丰富了生物光学成像的模式。
     (4)针对近红外长余辉发光激活离子少的问题,本研究提出了一个合理的设计近红外长余辉发光材料的思路,并且通过固相反应法首次发现并制备了一系列的Mn4+掺杂的LaAlO3和GdAlO3发光材料,这些发光材料的发射峰位于730nm、719nm附近。通过ESR和热释光等研究了Mn4+掺杂发光材料的缺陷性质,指出带正电荷的缺陷[MnAl]和负电荷缺陷铝空位[VAl]在余辉发射中起主要作用。通过共掺Ge4+最终获得一个余辉发光长达20小时的LaAlO3:0.1%Mn4+,0.9%Ge4+长余辉发光材料和GdAlO3:0.1%Mn4+,0.9%Ge4+长余辉发光材料。这些材料注射进猪肉组织中获得的深组织成像图片,证明这种离子能够作为一种优良的深组织成像荧光探针来实现细胞、组织、活体系统的成像。
     (5)针对现在的研究主要关注分立发光中心的长余辉发光,而忽视了复合发光中心长余辉发光特性的问题,本研究通过高温固相法制备了6ZnO:3GeO2: Al2O3发光材料,首次观察到了Zn缺陷作为复合中心的长余辉发光现象。在254nm激发下观察到了350nm到800nm超宽带发光,峰值位于480nm,这个发射带源于缺陷跃迁,即Ge填隙缺陷(Gei)、Zn填隙缺陷(Zni)、氧空位(VO)到锌空位(VZn)的跃迁。余辉发光为青白色,余辉时间长达2小时,但是发光峰随着时间的延长从480nm红移到550nm处。将Cr掺杂进入6ZnO:3GeO2: Al2O3发光材料中可以获得暖白光长余辉发光。
     最后对本文的重点进行了讨论和总结,并对近红外长余辉发光材料的性能和应用前景进行了展望。
Optical imaging has become an indispensable tool in cancer research, clinical translation,and medical practice over the last few decades, owing to its distinct merits of high sensitivity,portability, non-invasiveness, and time effectiveness. There has been a huge increase in thenumber of imaging technologies and their expression vectors. However, there is a noteworthymismatch between the vectors and the technologies. The requirements of most advancedprobes are not meet satisfactorily, as follows:(1) the probes in the region of biologicallytransparent window region (700-1000nm and1100-1350nm) meet the requirement of deeptissue penetration;(2) the excitation wavelength in near-infrared region rather than in Uv-vismeet the requirement of low autofluorescence;(3) lower excitation power is benefit to collectthe imaging with high resolution, weak light disturbance and high signal-to-noise ratio;(4)proving the real-time, holistic, distributed optical imaging. Among all the suggested probes,long persistent phosphors are unique and have already proven their superiority over otherlabels, since their emission lifetime is sufficiently long to permit late time-gated imaging.Persistent phosphorescence is an optical phenomenon, whereby a material is excited with highenergy radiation and the resulting luminescent emission remains visible for an appreciabletime, due to the featured stored ability of electrons. This phenomenon is used in safetysignage, dials and displays and decoration. Yet the previous work about the long persistentphosphors mainly force on the phosphors in visible region, only fewer persistent phosphors innear-infrared region are involved.
     In this dissertation, we introduce the research developments on long persistent phosphorsin near-infrared region, their luminescent properties, defect properties, special performanceand applications at first. Then we propose a new afterglow model by further exploring anddiscussing the luminescence properties and defects, discover the novel photo-stimulatedluminescence for the first time, experimentally demonstrate a long persistent phosphor innear-infrared and at last observe the persistent phosphorescence with the Zn imperfection asthe recombination luminescence center. The research results in the dissertation can besummarized as follows:
     (1) A long persistent phosphor, Zn3Ga2Ge2O10:0.5%Cr, with remarkable photoluminescence and long persistent phosphorescence is prepared via the solid statereaction. Two emission bands are observed in emission spectra, assigned to the inter-transitionof Cr3+and defects. We also confirm that five excitation bands were observed in the excitationspectra by taking the measurements of afterglow spectra and decay curves, photocurrentcurves and thermo-luminescence spectra; two of them in the visible region were assigned tothe transitions of Cr3+[4A2→4T2] and [4A2→4T1]; the excitation peak at260nm should beattributed to the band transition; the excitation peak at290nm should be attributed to thetransition of Cr3+[4A2→CB]; And the excitation peak at320nm should be assigned to thetransition of Cr3+[4A2→4T2(4P)]. We also discuss the preparation condition and point out thatthe phosphors prepared with longer sintering time, higher sintering temperature and theatmosphere in air or argon have the advanced afterglow properties.
     (2) Although inorganic anti-Stokes fluorescent probes have long been developed, theoperational mode of today’s most advanced examples still involves the harsh requirement ofcoherent laser excitation, which often yields unexpected light disturbance or evenphoton-induced deterioration during optical imaging. Here, we demonstrate an efficientanti-Stokes fluorescent probe with incoherent excitation. Charging of the probe can beachieved by either X-rays or ultraviolet-visible light irradiation, which enables multiplexeddetection and function integration with standard X-ray medical imaging devices. We discussincoherent anti-Stokes luminescent probing of biological tissue with Zn3Ga2Ge2O10:0.5Cr3+.We show that the high defect capacity of this material enables effective optical charging,before (ex situ) or after (in situ) injection into the analyte. We demonstrate incoherentactivation for large-area (~6cm2) as well as large-depth (~1cm) detection capability. Byregulating the energy level position of the electron reservoir and excitation parameters such asenergy, intensity and duration, it provides tunable decay kinetics. Charging of the probe canbe done by either X-rays or UV-vis light, what enables multiplexed detection and functionintegration with standard X-ray medical imaging devices.
     (3) There are still many limitations and adventures in the applications, preparations, andafterglow models of near-infrared long persistent phosphors. We designed and successfullyfabricated a NIR powder-form long persistent phosphor, Zn3Ga2Sn1O8:0.5%Cr3+withoutstanding persistence time over300h. To describe the nature of traps in-depth, systematic and multifarious investigations about trap types, concentrations and depths are conductedsuccessively by the measurements of electron spin resonance spectra, positron annihilationlifetime spectroscopy, and thermo-luminescence curves. Moreover, we demonstrated therevived luminescence and persistent phosphorescence under the excitation of near-infraredincoherent light. This optional multiplexed bio-detection mode can enable long-term, repeated,real-time and reliable structural imaging of deep tissues, thereby furthering the prospect ofoptical probes in clinic. Further research about nanocrystallization, functionalization, target ofLPPs, which are expected to open a possibility in the visualization of the structural andfunctional processes in cells, tissues and other complex systems, is still in progress.
     (4) Long persistent phosphors are unique and have already proven their superiority overother labels in in vivo bio-imaging, since their emission lifetime is sufficiently long to permitlate time-gated imaging. However, the alternative near-infrared long persistent phosphors arein the limitation. A wide variety of activation ions are used as NIR luminescent centres, butwhen it comes to persistent phosphorescence, the numbers of known activators are relativelylow. To address these issues, based on the thorough analysis for the pre-existing persistentphosphors, we propose a holistic design idea for the NIR long persistent phosphors, andsuccessfully fabricate a series of Mn4+-doped MAlO3(M=La. Gd) persistent phosphors withthe emission maximum around730nm. Further verifications and improvements for this ideaare shown by checking the emission waveband, persistent duration, defect types, and defectdepths, based on the measurements of PL spectra, PLE spectra, decay curves, TL curves, andESR spectra. At last, an improvement of persistent time over20h is demonstrated byco-doping Ge4+/Mn4+. The obtained imaging of deep tissues assures that the new luminescentindicators will open the possibility of advanced optical imaging with high resolution andweak light disturbance for understanding the structural and functional processes in cells,tissues and other complex systems.
     (5) Current discussions about emitting centers in long persistent phosphors are seen tofocus on the discrete luminescent centers, for instance, rare earth ions are a kind of discreteluminescent centers exactly. Except the discrete luminescent centers, it is well known thatrecombination centers are also a kind of important emitting centers, and usually defects actnot only as the traps centers, but also as the emitting centers. Yet there are few reports on the long persistent phosphorescence of defects as emitting centers. Though recombinationphoto-luminescence of Zn imperfections has been extensively investigated [4,5], persistentphosphorescence of Zn imperfections as emitting centers in long persistent phosphors wasrarely obtained. Herein, we observed a long persistent phosphorescence in blue-white visibleregion from6ZnO:3GeO2: Al2O3phosphor with Zn imperfections as emitting centers.Persistent phosphorescence could be observed beyond2h with naked eyes. Traps propertieswere also elaborated by the measurements of thermo-luminescence (TL) spectra andphoto-stimulated luminescence (PSL) decay curves. In addition, a long persistent phosphorwith warm white color could be obtained by doping Cr3+ion into6ZnO:3GeO2: Al2O3phosphor.
     Finally, we provide a discussion and summary of the main points of the dissertation anddescribe the application prospect of near-infrared long persistent phosphors in various fields.
引文
[1] Zhou X. L., Xing M. M., Jiang T., et al. Afterglow performance enhancement andmechanism studies on Y2O2S: Eu, Mg, Ti prepared via cold isostatic pressing [J]. J. Alloys.Compd.,2014,585:376-383.
    [2] Kandpal S. K., Goundie B., Wright J., et al. Investigation of the emission mechanism inmilled SrAl2O4: Eu, Dy using optical and synchrotron X-ray spectroscopy [J]. Acs Appl.Mater. Inter.,2011,3:3482-3486.
    [3] Maldiney T., Richard C., Seguin J., et al. Effect of core diameter, surface coating, andPEG chain length on the biodistribution of persistent luminescence nanoparticles in mice [J].Acs. Nano,2011,5:854-862.
    [4] Korosin N. C., Meden A., Bukovec N., Structural and luminescent properties ofEu2+-doped aluminates prepared by the Sol-gel method [J]. Acta. Chim. Slov.,2012,59:912-919.
    [5] Bessiere A., Benhamou R. A., Wallez G., et al. Site occupancy and mechanisms ofthermally stimulated luminescence in Ca9Ln(PO4)7(Ln=lanthanide)[J]. Acta. Mater.,2012,60:6641-6649.
    [6] Botterman J., Van den Eeckhout K., De Baere I., et al. Mechanoluminescence inBaSi2O2N2: Eu [J]. Acta. Mater.,2012,60:5494-5500.
    [7] Qiu Z. F., Zhou Y. Y., Lu M. K., et al. Combustion synthesis of long-persistentluminescent MAl2O4: Eu2+, R3+(M=Sr, Ba, Ca, R=Dy, Nd and La) nanoparticles andluminescence mechanism research [J]. Acta. Mater.,2007,55:2615-2620.
    [8] Cui C. E., Wang S., Huang P., Effect of Dy on properties of red long-afterglow phosphorSr3Al2O6: Eu2+,Dy3+[J]. Acta. Phys. Sin-Ch Ed.,2009,58:3565-3571.
    [9] Cheng B. C., Wang Z. G., Synthesis and optical properties of europium-doped ZnS:Long-lasting phosphorescence from aligned nanowires [J]. Adv. Funct. Mater.,2005,15:1883-1890.
    [10] Hirata S., Totani K., Zhang J. X., et al. Efficient persistent room temperaturephosphorescence in organic amorphous materials under ambient conditions [J]. Adv. Funct.Mater.,2013,23:3386-3397.
    [11] Hirata S., Totani K., Kaji H., et al. Reversible thermal recording media usingtime-dependent persistent room temperature phosphorescence [J]. Adv. Opt. Mater.,2013,1:438-442.
    [12] Ju G. F., Hu Y. H., Chen L., et al. Persistent luminescence properties of SrMg2(PO4)2:Eu2+, Tb3+[J]. Appl. Phys A-Mater,2014,114:867-874.
    [13] Ueda J., Aishima K., Nishiura S., et al. Afterglow luminescence in Ce3+-dopedY3Sc2Ga3O12ceramics [J]. Appl. Phys. Express,2011,4:512-519.
    [14] Zhuang Y. X., Ueda J., Tanabe S., Enhancement of red persistent luminescence inCr3+-doped ZnGa2O4phosphors by Bi2O3codoping [J]. Appl. Phys. Express.,2013,6:311-319.
    [15] Haranath D., Khan A. F., Chander H., Luminescence enhancement of (Ca,Zn)TiO3: Pr3+phosphor using nanosized silica powder [J]. Appl. Phys. Lett.,2006,89:2315-2319.
    [16] Hasan Z., Solonenko M., Macfarlane P. I., et al. Persistent high density spectralholeburning in CaS: Eu and CaS: Eu,Sm phosphors [J]. Appl. Phys. Lett.,1998,72:2373-2375.
    [17] Ju Z. H., Wei R. P., Zheng J. R., et al. Synthesis and phosphorescence mechanism of areddish orange emissive long afterglow phosphor Sm3+-doped Ca2SnO4[J]. Appl. Phys. Lett.,2011,98:121906(1)-121906(5).
    [18] Schweizer S., Henke B., Rogulis U., et al. Recombination processes in undoped andrare-earth doped MAl2O4(M=Ca,Sr) persistent phosphors investigated by optically detectedmagnetic resonance [J]. Appl. Phys. Lett.,2007,90:051902(1)-051902(7).
    [19] Ueda J., Kuroishi K., Tanabe S., Bright persistent ceramic phosphors ofCe3+-Cr3+-codoped garnet able to store by blue light [J]. Appl. Phys. Lett.,2014,104:101904(1)-101904(5).
    [20] Yu N. Y., Liu F., Li X. F., et al. Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+, Dy3+, Er3+phosphors based on persistent energy transfer [J]. Appl. Phys. Lett.,2009,95:231110(1)-231110(3).
    [21] Ji P. T., Chen X. Y., Wu Y. Q., Encapsulating MAl2O4: Eu2+, Dy3+(M=Sr, Ca, Ba)phosphors with triethanolamine to enhance water resistance [J]. Appl. Surf. Sci.,2011,258:1888-1893.
    [22] Luitel H. N., Watari T., Torikai T., et al. Highly water resistant surface coating by fluorideon long persistent Sr4Al14O25: Eu2+/Dy3+phosphor [J]. Appl. Surf. Sci.,2010,256:2347-2352.
    [23] Dacyl D., Uhlich D., Justel T., The effect of calcium substitution on the afterglow ofEu2+/Dy3+doped Sr4Al14O25[J]. Cent. Eur. J. Chem.,2009,7:164-167.
    [24] Chang C. K., Jiang L., Mao D. L., et al. Photoluminescence of4SrO center dot7Al2O3ceramics sintered with the aid of B2O3[J]. Ceram. Int.,2004,30:285-290.
    [25] Kaya S. Y., Karacaoglu E., Karasu B., Effect of Al/Sr ratio on the luminescenceproperties of SrAl2O4: Eu2+, Dy3+phosphors [J]. Ceram. Int.,2012,38:3701-3706.
    [26] Misevicius M., Scit O., Grigoraviciute-Puroniene I., et al. Sol-gel synthesis andinvestigation of un-doped and Ce-doped strontium aluminates [J]. Ceram. Int.,2012,38:5915-5924.
    [27] Shafia E., Bodaghi M., Esposito S., et al. A critical role of pH in the combustionsynthesis of nano-sized SrAl2O4: Eu2+, Dy3+phosphor [J]. Ceram. Int.,2014,40:4697-4706.
    [28] Wang Y. H., Wang L., Zhang S. H., Preparation of blue long afterglow phosphorsCaAl2O4: Eu2+, Nd3+and its luminescent properties [J]. Chem. J. Chinese. U.,2005,26:1990-1993.
    [29] Kuang J. Y., Liu Y. L., White-emitting long-lasting phosphor Sr2SiO4: Dy3+[J]. Chem.Lett.,2005,34:598-599.
    [30] Bessiere A., Sharma S. K., Basavaraju N., et al. Storage of visible light for long-lastingphosphorescence in chromium-doped zinc gallate [J]. Chem. Mater.,2014,26:1365-1373.
    [31] Clabau F., Rocquefelte X., Jobic S., et al. Mechanism of phosphorescence appropriate forthe long-lasting phosphors Eu2+-doped SrAl2O4with codopants Dy3+and B3+[J]. Chem.Mater.,2005,17:3904-3912.
    [32] Trojan-Piegza J., Niittykoski J., Holsa J., et al. Thermoluminescence and kinetics ofpersistent luminescence of vacuum-sintered Tb3+-doped and Tb3+, Ca2+-codoped Lu2O3materials [J]. Chem. Mater.,2008,20:2252-2261.
    [33] Li Y., Li B. H., Ni C. C., et al. Synthesis, Persistent luminescence, andthermoluminescence properties of yellow Sr3SiO5: Eu2+, RE3+(RE=Ce, Nd, Dy, Ho, Er, Tm,Yb) and orange-red Sr3-xBaxSiO5: Eu2+, Dy3+phosphor [J]. Chem-Asian. J.,2014,9:494-499.
    [34] Lei B. F., Man S. Q., Liu Y. L., et al. Luminescence properties of Ca2SnO4: Eu3+red-lightemitting afterglow phosphor [J]. Chinese. J. Inorg. Chem.,2010,26:1259-1263.
    [35] Liu Y. L., Lei B. F., Kuang J. Y., et al. Advances in long lasting phosphorencent materials[J]. Chinese. J. Inorg. Chem.,2009,25:1323-1329.
    [36] Lu X. D., Shu W. G., Formation and roles of point defects in SrAl2O4: Eu2+, Dy3+phosphors [J]. Chinese. J. Inorg. Chem.,2006,22:808-812.
    [37] Qi Y., Lian S. X., Yu L. P., et al. Synthesis and red persistent properties of phosphorCa2Zn4Ti16O38: Pr3+, Na+[J]. Chinese. J. Inorg. Chem.,2009,25:218-222.
    [38] Zhang X. Y., Jiang W. W., Lu L. P., et al. Preparation and charaterization of long-lastingphosphorescence SrAl2O4: Eu2+Dy3+nanoparticles [J]. Chinese. J. Inorg. Chem.,2004,20:1397-1401.
    [39] Aitasalo T., Hietikko A., Hreniak D., et al. Luminescence properties of BaMg2Si2O7: Eu2+,Mn2+[J]. J. Alloys. Compd.,2008,451:229-231.
    [40] Holsa J., Jungner H., Lastusaari M., et al. Persistent luminescence of Eu2+doped alkalineearth aluminates, MAl2O4: Eu2+[J]. J. Alloys. Compd.,2001,323:326-330.
    [41] Ito Y., Komeno A., Uematsu K., et al. Luminescence properties of long-persistencesilicate phosphors [J]. J. Alloys. Compd.,2006,408:907-910.
    [42] Jiang L., Chang C., Mao D., et al. Luminescent properties of CaMgSi2O6-basedphosphors co-doped with different rare earth ions [J]. J. Alloys. Compd.,2004,377:211-215.
    [43] Kshatri D. S., Khare A., Characterization and optical properties of Dy3+dopednanocrystalline SrAl2O4: Eu2+phosphor [J]. J. Alloys. Compd.,2014,588:488-495.
    [44] Liu C., Wang Y. H., Hu Y. H., et al. Adjusting luminescence properties of SrxCa1-xAl2O4:Eu2+, Dy3+phosphors by Sr/Ca ratio [J]. J. Alloys. Compd.,2009,470:473-476.
    [45] Manohara B. M., Nagabhushana H., Sunitha D. V., et al. Synthesis and luminescentproperties of Tb3+activated cadmium silicate nanophosphor [J]. J. Alloys. Compd.,2014,592:319-327.
    [46] Mao S. P., Liu Q., Gu M., et al. Long lasting phosphorescence of Gd2O2S: Eu, Ti, Mgnanorods via a hydrothermal routine [J]. J. Alloys. Compd.,2008,465:367-374.
    [47] Ryu H., Bartwal K. S., Cr3+doping optimization in CaAl2O4: Eu2+blue phosphor [J]. J.Alloys. Compd.,2008,464:317-321.
    [48] Wu H. Y., Hu Y. H., Wang Y. H., et al. Influence on the luminescence properties of thelattice defects in Sr2MgSi2O7: Eu2+, M (M=Dy3+, La3+or Na+)[J]. J. Alloys. Compd.,2010,497:330-335.
    [49] Xu X. H., He Q. L., Yan L. T., White-light long persistent and photo-stimulatedluminescence in CaSnSiO5: Dy3+[J]. J. Alloys. Compd.,2013,574:22-26.
    [50] Yao S. S., Li Y. Y., Xue L. H., et al. Photoluminescence properties of Ba2ZnSi2O7: Eu2+,Re3+(Re=Dy, Nd) long lasting phosphors prepared by the combustion-assisted synthesismethod [J]. J. Alloys. Compd.,2010,490:200-203.
    [51] Jia D. D., Jia W. Y., Evans D. R., et al. Trapping processes in CaS: Eu2+, Tm3+[J]. J. Appl.Phys.,2000,88:3402-3407.
    [52] Jia D. D., Jia W. Y., Jia Y., Long persistent alkali-earth silicate phosphors doped withEu2+, Nd3+[J]. J. Appl. Phys.,2007,101:110504(1)-110504(5).
    [53] Ju G. F., Hu Y. H., Chen L., et al. Persistent luminescence and its mechanism ofBa-5(PO4)(3)Cl: Ce3+,Eu2+[J]. J. Appl. Phys.,2012,111:113508(1)-113508(5).
    [54] Li C. Y., Wang J., Liang H. B., et al. Near infrared long lasting emission of Yb3+and itsinfluence on the optical storage ability of Mn2+-activated zinc borosilicate glasses [J]. J. Appl.Phys.,2007,101:113304(1)113304(6).
    [55] Nakazawa E., Murazaki Y., Saito S., Mechanism of the persistent phosphorescence inSr4Al14O25: Eu and SrAl2O4: Eu codoped with rare earth ions [J]. J. Appl. Phys.,2006,100:113113(1)-113113(4).
    [56] Setlur A. A., Srivastava A. M., Pham H. L., et al. Charge creation, trapping, and longphosphorescence in Sr2MgSi2O7: Eu2+, RE3+[J]. J. Appl. Phys.,2008,103:053513(1)-053513(6).
    [57] Wang L., Wang Y. H., Xu X. H., Effects of Sr2+doping on the persistent luminescenceproperties of CaAl2O4: Eu2+, Nd3+[J]. J. Appl. Phys.,2008,104.
    [58] Wang Y. H., Wang L., Defect states in Nd3+-doped CaAl2O4: Eu2+[J]. J. Appl. Phys.,2007,101:013519(1)-013519(4).
    [59] Ye S., Zhang J. H., Zhang X., et al. Mn2+activated red phosphorescence in BaMg2Si2O7:Mn2+, Eu2+, Dy3+through persistent energy transfer [J]. J. Appl. Phys.,2007,101:063545(1)-063545(7).
    [60] Aitasalo T., Holsa J., Jungner H., et al. Mechanisms of persistent luminescence in Eu2+,RE3+doped alkaline earth aluminates [J]. J. Lumin.,2001,94:59-63.
    [61] Aitasalo T., Hreniak D., Holsa J., et al. Persistent luminescence of Ba2MgSi2O7: Eu2+[J].J. Lumin.,2007,122:110-112.
    [62] Ju G. F., Hu Y. H., Chen L., et al. Persistent luminescence in CaAl2Si2O8: Eu2+, R3+(R=Pr, Nd, Dy, Ho and Er)[J]. J. Lumin.,2014,146:102-108.
    [63] Lu Y. Y., Liu F., Gu Z. J., et al. Long-lasting near-infrared persistent luminescence frombeta-Ga2O3: Cr3+nanowire assemblies [J]. J. Lumin.,2011,131:2784-2787.
    [64] Melendrez R., Arellano-Tanori O., Pedroza-Montero M., et al. Temperature dependenceof persistent luminescence in beta-irradiated SrAl2O4: Eu2+, Dy3+phosphor [J]. J. Lumin.,2009,129:679-685.
    [65] Nie Z., Lim K.-S., Zhang J., et al. Pr3+1S0→Cr3+energy transfer and ESR investigationin Pr3+and Cr3+activated SrAl12O19quantum cutting phosphor [J]. J. Lumin.,2009,129:844-849.
    [66] Sadegh M., Badiei A., Abbasi A., et al. Preparation of CaWO4: Ln3+@SiO2(Ln=Tb, Dyand Ho) nanoparticles by a combustion reaction and their optical properties [J]. J. Lumin.,2010,130:2072-2075.
    [67] Smet P. F., Van den Eeckhout K., Bos A. J. J., et al. Temperature and wavelengthdependent trap filling in M2Si5N8: Eu (M=Ca, Sr, Ba) persistent phosphors [J]. J. Lumin.,2012,132:682-689.
    [68] Van den Eeckhout K., Smet P. F., Poelman D., Persistent luminescence in rare-earthcodoped Ca2Si5N8: Eu2+[J]. J. Lumin.,2009,129:1140-1143.
    [69] Wu H. Y., Hu Y. H., Ju G. F., et al. Photoluminescence and thermoluminescence of Ce3+and Eu2+in Ca2Al2SiO7matrix [J]. J. Lumin.,2011,131:2441-2445.
    [70] Yadav P. J., Joshi C. P., Moharil S. V., Persistent luminescence in Ca8Zn(SiO4)4Cl2: Eu2+[J]. J. Lumin.,2012,132:2799-2801.
    [71] Zhang X. M., Zhang J. H., Wang M. Y., et al. Investigation on the improvement of redphosphorescence in CaTiO3: Pr3+nanoparticles [J]. J. Lumin.,2008,128:818-820.
    [72] Zhang X. M., Zhang J. H., Zhang X., et al. Enhancement of red fluorescence andafterglow in CaTiO3: Pr3+by addition of Lu2O3[J]. J. Lumin.,2007,122:958-960.
    [73] Bessiere A., Lecointre A., Priolkar K. R., et al. Role of crystal defects in red long-lastingphosphorescence of CaMgSi2O6: Mn diopsides [J]. J. Mater. Chem.,2012,22:19039-19046.
    [74] Chan T. S., Dong C. L., Chen Y. H., et al. Mechanism of light emission and electronicproperties of a Eu3+-doped Bi2SrTa2O9system determined by coupled X-ray absorption andemission spectroscopy [J]. J. Mater. Chem.,2011,21:17119-17127.
    [75] Dong G. P., Xiao X. D., Zhang L. L., et al. Preparation and optical properties of red,green and blue afterglow electrospun nanofibers [J]. J. Mater. Chem.,2011,21:2194-2203.
    [76] Liu X. L., Liu Y. X., Yan D. T., et al. Single-phased white-emitting12CaO center dot7Al2O3: Ce3+, Dy3+phosphors with suitable electrical conductivity for field emission displays[J]. J. Mater. Chem.,2012,22:16839-16843.
    [77] Bessiere A., Lecointre A., Benhamou R. A., et al. How to induce red persistentluminescence in biocompatible Ca3(PO4)2[J]. J. Mater. Chem C.,2013,1:1252-1259.
    [78] Burbano D. C. R., Rodriguez E. M., Dorenbos P., et al. The near-IR photo-stimulatedluminescence of CaS: Eu2+/Dy3+nanophosphors [J]. J. Mater. Chem C.,2014,2:228-231.
    [79] Li Y., Li Y. Y., Sharafudeen K., et al. A strategy for developing near infraredlong-persistent phosphors: taking MAlO3: Mn4+, Ge4+(M=La, Gd) as an example [J]. J. Mater.Chem C.,2014,2:2019-2027.
    [80] Li Y., Zhou S., Li Y., et al. Long persistent and photo-stimulated luminescence inCr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging [J]. J. Mater.Chem C.,2014,2:2657.
    [81] Rodrigues L. C. V., Holsa J., Lastusaari M., et al. Defect to R3+energy transfer: colourtuning of persistent luminescence in CdSiO3[J]. J. Mater. Chem C.,2014,2:1612-1618.
    [82] Zeng W., Wang Y., Han S., et al. Design, synthesis and characterization of a novel yellowlong-persistent phosphor: Ca2BO3Cl: Eu2+,Dy3+[J]. J. Mater. Chem C.,2013,1:3004.
    [83] Zhuang Y. X., Ueda J., Tanabe S., Tunable trap depth in Zn(Ga1-xAlx)2O4: Cr,Bi redpersistent phosphors: considerations of high-temperature persistent luminescence andphotostimulated persistent luminescence [J]. J. Mater. Chem C.,2013,1:7849-7855.
    [84] Zhang M., Li B. H., Wang J., et al. The temperature-dependent luminescence propertiesof BaAl2-xSixO4-xNx: Eu2+and its application in yellowish-green light emitting diode [J]. J.Mater. Res.,2009,24:2589-2595.
    [85] Lecointre A., Bessiere A., Bos A. J. J., et al. Designing a red persistent luminescencephosphor: The example of YPO4: Pr3+, Ln(3+)(Ln=Nd, Er, Ho, Dy)[J]. J. Phys. Chem C.,2011,115:4217-4227.
    [86] Rodrigues L. C. V., Brito H. F., Holsa J., et al. Discovery of the persistent luminescencemechanism of CdSiO3: Tb3+[J]. J. Phys. Chem C.,2012,116:11232-11240.
    [87] Trojan-Piegza J., Zych E., Holsa J., et al. Spectroscopic properties of persistentluminescence phosphors: Lu2O3: Tb3+, M2+(M=Ca, Sr, Ba)[J]. J. Phys. Chem C.,2009,113:20493-20498.
    [88] Wiatrowska A., Zych E., Traps formation and characterization in long-term energystoring Lu2O3: Pr, Hf luminescent ceramics [J]. J. Phys. Chem C.,2013,117:11449-11458.
    [89] Basavaraju N., Sharma S., Bessiere A., et al. Red persistent luminescence in MgGa2O4:Cr3+; a new phosphor for in vivo imaging [J]. J. Phys. D: Appl Phys.,2013,46.
    [90] Haranath D., Khan A. F., Chander H., Bright red luminescence and energy transfer ofPr3+-doped (Ca,Zn)TiO3phosphor for long decay applications [J]. J. Phys. D: Appl Phys.,2006,39:4956-4960.
    [91] Wu H. Y., Wang Y. H., Hu Y. H., et al. Controllable optical properties by ratio of Sr/Ca inSr1.97-xCaxMgSi2O7: Eu0.012+, Dy0.023+phosphors [J]. J. Phys. D: Appl Phys.,2009,42:053148(1)-053148(5).
    [92] Zhang J. S., Chen B. J., Sun J. S., et al. White long-lasting phosphorescence generationin a CaAl2Si2O8: Eu2+, Mn2+, Dy3+system through persistent energy transfer [J]. J. Phys. D:Appl Phys.,2012,45:325105(1)-325105(4).
    [93] Boutinaud P., Sarakha L., Mahiou R., NaNbO3: Pr3+: a new red phosphor showingpersistent luminescence [J]. J. Phys: Condens Mat.,2009,21:025901(1)-025901(5).
    [94] Li J. F., Lei B. F., Qin J. L., et al. Temperature-dependent emission spectra of Ca2Si5N8:Eu2+, Tm3+phosphor and its afterglow properties [J]. J. Am. Ceram. Soc.,2013,96:873-878.
    [95] Qin J. L., Zhang H. R., Lei B. F., et al. Thermoluminescence and temperature-dependentafterglow properties in BaSi2O2N2: Eu2+[J]. J. Am. Ceram. Soc.,2013,96:3149-3154.
    [96] Xu X., Wang Y., Yu X., et al. Investigation of Ce-Mn energy transfer in SrAl2O4: Ce3+,Mn2+[J]. J. Am. Ceram. Soc.,2011,94:160-163.
    [97] Xu X. H., Wang Y. H., Yu X., et al. Investigation of Ce-Mn energy transfer in SrAl2O4:Ce3+, Mn2+[J]. J. Am. Ceram. Soc.,2011,94:24-27.
    [98] Yao S. S., Li Y. Y., Xue L. H., et al. Luminescent properties of Ba2(Mg, Zn)Si2O7: Eu2+particles as potential blue-green phosphors for ultraviolet light-emitting diodes [J]. J. Am.Ceram. Soc.,2010,93:3793-3797.
    [99] Abdukayum A., Chen J. T., Zhao Q., et al. Functional Near Infrared-Emitting Cr3+/Pr3+Co-Doped Zinc Gallogermanate Persistent Luminescent Nanoparticles with SuperlongAfterglow for in Vivo Targeted Bioimaging [J]. J. Am. Chem. Soc.,2013,135:14125-14133.
    [100] Maldiney T., Lecointre A., Viana B., et al. Controlling Electron trap depth to enhanceoptical properties of persistent luminescence nanoparticles for in vivo imaging [J]. J. Am.Chem. Soc.,2011,133:11810-11815.
    [101] Herz K., Bacher G., Forchel A., et al. Recombination dynamics in dry-etched(Cd,Zn)Se/ZnSe nanostructures: Influence of exciton localization [J]. Phys. Rev B.,1999,59:2888-2893.
    [102] Dorenbos P., Mechanism of persistent luminescence in Eu2+and Dy3+codopedaluminate and silicate compounds [J]. J. Electrochem. Soc.,2005,152: H107-H110.
    [103] Gao X. P., Zhang Z. Y., Wang C., et al. The Persistent energy transfer and effect ofoxygen vacancies on red long-persistent phosphorescence phosphors Ca2SnO4: Gd3+, Eu3+[J].J. Electrochem. Soc.,2011,158: J405-J408.
    [104] Gong Y., Wang Y., Li Y., et al. Ce3+, Dy3+Co-doped white-light long-lasting phosphor:Sr2Al2SiO7through energy transfer [J]. J. Electrochem. Soc.,2010,157: J208-J211.
    [105] Merdes S., Saez-Araoz R., Ennaoui A., et al. Recombination mechanisms in highlyefficient thin film Zn(S,O)/Cu(In,Ga)S2based solar cells [J]. Appl. Phys. Lett.,2009,95.
    [106] He H., Fu R. L., Song X. F., et al. Observation of fluorescence and phosphorescence inCa2MgSi2O7: Eu2+,Dy3+phosphors [J]. J. Electrochem. Soc.,2010,157: J69-J73.
    [107] Jia D., Yen W. M., Trapping mechanism associated with electron delocalization andtunneling of CaAl2O4: Ce3+, a persistent phosphor [J]. J. Electrochem. Soc.,2003,150:H61-H65.
    [108] Liu X. F., Qiao Y. B., Dong G. P., et al. BCNO-based long-persistent phosphor [J]. J.Electrochem. Soc.,2009,156: P81-P84.
    [109] Smet P. F., Avci N., Poelman D., Red Persistent Luminescence in Ca2SiS4: Eu, Nd [J]. J.Electrochem. Soc.,2009,156: H243-H248.
    [110] Brito H. F., Hassinen J., Holsa J., et al. Optical energy storage properties of Sr2MgSi2O7:Eu2+, R3+persistent luminescence materials [J]. J. Therm. Anal. Calorim.,2011,105:657-662.
    [111] Pang R., Li C. Y., Zhang S., et al. Luminescent properties of a new blue long-lastingphosphor Ca2P2O7: Eu2+, Y3+[J]. Mater. Chem. Phys.,2009,113:215-218.
    [112] Van den Eeckhout K., Smet P. F., Poelman D., Persistent luminescence in Eu2+-dopedcompounds: A review [J]. Materials,2010,3:2536-2566.
    [113] Van den Eeckhout K., Smet P. F., Poelman D., Luminescent afterglow behavior in theM2Si5N8: Eu family (M=Ca, Sr, Ba)[J]. Materials,2011,4:980-990.
    [114] Feng P. F., Zhang J. C., Wu C. Q., et al. Self-activated afterglow luminescence ofun-doped Ca2ZrSi4O12material and explorations of new afterglow phosphors in a rare earthelement-doped Ca2ZrSi4O12system [J]. Mater. Chem. Phys.,2013,141:495-501.
    [115] Guo C. F., Luan L., Huang D. X., et al. Study on the stability of phosphor SrAL(2)O(4):Eu2+, Dy3+in water and method to improve its moisture resistance [J]. Mater. Chem. Phys.,2007,106:268-272.
    [116] Lei B. F., Man S. Q., Du Y. L., et al. Luminescence properties of Sm3+-doped Sr3Sn2O7phosphor [J]. Mater. Chem. Phys.,2010,124:912-915.
    [117] Pan Z., Lu Y. Y., Liu F., Sunlight-activated long-persistent luminescence in thenear-infrared from Cr3+-doped zinc gallogermanates [J]. Nat Mat.,2012,11:58-63.
    [118] Cloutier S. G., Kossyrev P. A., Xu J., Optical gain and stimulated emission in periodicnanopatterned crystalline silicon [J]. Nat Mat.,2005,4:887-891.
    [119] Maldiney T., Bessiere A., Seguin J., et al. The in vivo activation of persistentnanophosphors for optical imaging of vascularization, tumours and grafted cells [J]. Nat Mat.,2014,13:418-426.
    [120] Bartwal K. S., Ryu H., Brik M. G., et al. Preparation and spectroscopic studies of theMgxSr1-xAl2O4: Eu, Dy (x=0.05-0.25) persistent phosphors [J]. Opt. Mater.,2010,32:1329-1332.
    [121] Carlson S., Holsa J., Laamanen T., et al. X-ray absorption study of rare earth ions inSr2MgSi2O7: Eu2+, R3+persistent luminescence materials [J]. Opt. Mater.,2009,31:1877-1879.
    [122] Lei B. F., Li B., Zhang H. R., et al. Preparation and luminescence properties of CaSnO3:Sm3+phosphor emitting in the reddish orange region [J]. Opt. Mater.,2007,29:1491-1494.
    [123] Stefani R., Rodrigues L. C. V., Carvalho C. A. A., et al. Persistent luminescence of Eu2+and Dy3+doped barium aluminate (BaAl2O4: Eu2+, Dy3+) materials [J]. Opt. Mater.,2009,31:1815-1818.
    [124] Thanh N. T., Quang V. X., Tuyen V. P., et al. Role of charge transfer state and hostmatrix in Eu3+-doped alkali and earth alkali fluoro-aluminoborate glasses [J]. Opt. Mater.,2012,34:1477-1481.
    [125] Wan M. H., Wang Y. H., Wang X. S., et al. The properties of a novel green longafterglow phosphor Zn2GeO4: Mn2+, Pr3+[J]. Opt. Mater.,2014,36:650-654.
    [126] Woo B. K., Luo Z. P., Li Y., et al. Luminescence enhancement of CaZnGe2O6: Tb3+afterglow phosphors synthesized using ZnO nanopowders [J]. Opt. Mater.,2011,33:1283-1290.
    [127] Ye F., Dong S. J., Tian Z., et al. Fabrication of the PLA/Sr2MgSi2O7: Eu2+, Dy3+long-persistent luminescence composite fibers by electrospinning [J]. Opt. Mater.,2013,36:463-466.
    [128] Avci N., Korthout K., Newton M. A., et al. Valence states of europium in CaAl2O4: Euphosphors [J]. Opt. Mater. Express.,2012,2:321-330.
    [129] Botterman J., Van den Eeckhout K., Bos A. J. J., et al. Persistent luminescence inMSi2O2N2: Eu phosphors [J]. Opt. Mater. Express.,2012,2:341-349.
    [130] Brito H. F., Holsa J., Jungner H., et al. Persistent luminescence fading in Sr2MgSi2O7:Eu2+, R3+materials: a thermoluminescence study [J]. Opt. Mater. Express.,2012,2:287-293.
    [131] Maldiney T., Sraiki G., Viana B., et al. In vivo optical imaging with rare earth dopedCa2Si5N8persistent luminescence nanoparticles [J]. Opt. Mater. Express.,2012,2:261-268.
    [132] Smet P. F., Avci N., Van den Eeckhout K., et al. Extending the afterglow in CaAl2O4:Eu,Nd persistent phosphors by electron beam annealing [J]. Opt. Mater. Express.,2012,2:1306-1313.
    [133] Smet P. F., Poelman D., Hehlen M. P., Focus issue introduction: persistent phosphors [J].Opt. Mater. Express.,2012,2:452-454.
    [134] Ueda J., Shinoda T., Tanabe S., Photochromism and near-infrared persistentluminescence in Eu2+-Nd3+-co-doped CaAl2O4ceramics [J]. Opt. Mater. Express.,2013,3:787-793.
    [135] Xu X. Q., Ren J., Chen G. R., et al. Bright green emission from the Mn2+-doped zincgallogermanate phosphors [J]. Opt. Mater. Express.,2013,3:1727-1732.
    [136] Zhuang Y. X., Ueda J., Tanabe S., Photochromism and white long-lasting persistentluminescence in Bi3+-doped ZnGa2O4ceramics [J]. Opt. Mater. Express.,2012,2:1378-1383.
    [137] Yan W. Z., Liu F., Lu Y. Y., et al. Near infrared long-persistent phosphorescence inLa3Ga5GeO14: Cr3+phosphor [J]. Opt. Express,2010,18:20215-20221.
    [138] Rahimi M. R., Yun G. J., Doll G. L., et al. Effects of persistent luminescence decay onmechanoluminescence phenomena of SrAl2O4: Eu2+, Dy3+materials [J]. Opt. Lett.,2013,38:4134-4137.
    [139] Zhang J. W. W., Li K. W. K., Zhao H., et al. Wavelength translation based onphotoinduced broadband absorption in Nd3+-doped lanthanum lead zirconate titanate ceramics[J]. Opt. Lett.,2009,34:1570-1572.
    [140] Yerpude A. N., Dhoble S. J., Enhancement of phosphorescence of BaAl12O19: Euphosphor due to Dy, Nd co-activators [J]. Optoelectron. Adv. Mat.,2011,5:1118-1122.
    [141] Wang L., Xu Y., Wang D., et al. Deep red phosphors SrAl12O19: Mn4+, M (M=Li+, Na+,K+, Mg2+) for high colour rendering white LEDs [J]. Phys. Status. Solidi A.,2013,210:1433-1437.
    [142] Yao S. S., Li Y. Y., Xue L. H., et al. Photoluminescent properties of the monoclinicBa2MgSi2O7: Eu2+phosphor prepared by the combustion-assisted synthesis method [J]. Phys.Status. Solidi A.,2010,207:2164-2169.
    [143] Henning J., den Boef J., van Gorkom G., Electron-spin-resonance spectra ofnearest-neighbor Cr3+pairs in the spinel ZnGa2O4[J]. Phys. Rev. B.,1973,7:1825-1833.
    [144] Krebs J., Stauss G., Milstein J., EPR of Fe3+and Mn2+in single-crystal ZnGa2O4spinel[J]. Phys. Rev. B.,1979,20:2586-2587.
    [145] Li Y., Zhou S., Dong G., et al. Anti-stokes fluorescent probe with incoherent excitation[J]. Sci. Rep.,2014,4:4059(1)-4059(6).
    [146] Liu F., Yan W., Chuang Y. J., et al. Photostimulated near-infrared persistentluminescence as a new optical read-out from Cr3+-doped LiGa5O8[J]. Sci. Rep.,2013,3:1554(1)-1554(5).
    [147] Nogami M., Hayakawa T., Persistent spectral hole burning of sol-gel-derivedEu3+-doped SiO2glass [J]. Phys. Rev. B.,1997,56:14235-14238.
    [148] Okamoto S., Masumoto Y., Correlation between Cu+-ion instability and persistentspectral hole-burning phenomena of CuCl nanocrystals [J]. Phys. Rev. B.,1997,56:15729-15733.
    [149] Schirmer O., Blazey K., Berlinger W., et al. ESR and optical absorption of bound-smallpolarons in YAlO3[J]. Phys. Rev. B.,1975,11:4201-4211.
    [150] Jia D. D., Wang X. J., Yen W. M., Ground-state measurement of Pr3+in Y2O3byphotoconductivity [J]. Phys. Solid. State.,2008,50:1674-1676.
    [151] Wang X. G., Du F. P., Wei D. L., et al. A new long-lasting phosphor Zr4+and Eu3+co-doped SrMg2(PO4)2[J]. Sensor. Actuat. B-Chem.,2011,158:171-175.
    [152] Li Y., Du X., Sharafudeen K., et al. A long persistent phosphor based on recombinationcenters originating from Zn imperfections [J]. Spectrochim. Acta A.,2014,123:7-11.
    [153] Li Y., Sharafudeen K., Dong G., et al. Investigation of energy transfer mechanismsbetween Bi2+and Tm3+by time-resolved spectrum [J]. Spectrochim. Acta A.,2013,115:305-308.
    [154] Sambasivam S., Sathyaseelan B., Raja Reddy D., et al. ESR and photoluminescenceproperties of Cu doped ZnS nanoparticles [J]. Spectrochim. Acta A.,2008,71:1503-1506.
    [155] Holsa J., Laamanen T., Lastusaari M., et al. Valence and environment of rare earth ionsin CaAl2O4: Eu2+, R3+persistent luminescence materials [J]. Spectrochim. Acta B.,2010,65:301-305.
    [156] Cuppoletti C. M., Rothberg L. J., Persistent photoluminescence in conjugated polymers[J]. Synth. Met.,2003,139:867-871.
    [157] Clabau F., Rocquefelte X., Le Mercier T., et al. Formulation of phosphorescencemechanisms in inorganic solids based on a new model of defect conglomeration [J]. Chem.Mater.,2006,18:3212-3220.
    [158] Zhang J. Y., Zhang Z. T., Wang T. M., A new luminescent phenomenon of ZnO due tothe precipitate trapping effect of MgO [J]. Chem. Mater.,2004,16:768-770.
    [159] Cheng B. C., Zhang Z. D., Han Z. H., et al. SrAlxOy: Eu2+, Dy3+(x=4) nanostructures:Structure and morphology transformations and long-lasting phosphorescence properties [J].Crystengcomm,2011,13:3545-3550.
    [160] Li G., Wang Y. H., Han S. C., et al. A red long-lasting phosphorescence materialGd9.33(SiO4)6O2: Sm3+and effect of oxygen vacancies on its performance [J]. Ecs. J. Solid.State. Sc.,2013,2: R161-R164.
    [161] Xu J., Ju Z. H., Gao X. P., et al. Na2CaSN2Ge3O12: A novel host lattice for Sm3+-dopedlong-persistent phosphorescence materials emitting reddish orange light [J]. Inorg. Chem.,2013,52:13875-13881.
    [162] Nag A., Kutty T. R. N., Role of B2O3on the phase stability and long phosphorescenceof SrAl2O4: Eu, Dy [J]. J. Alloys. Compd.,2003,354:221-231.
    [163] Wang J., Wang S. B., Su Q., Synthesis, photoluminescence andthermostimulated-luminescence properties of novel red long-lasting phosphorescent materialsbeta-Zn3(PO4)2: Mn2+, M3+(M=Al and Ga)[J]. J. Mater. Chem.,2004,14:2569-2574.
    [164] Xu X. H., Wang Y. H., Gong Y., et al. Effect of oxygen vacancies on the redphosphorescence of Sr2SnO4: Sm3+phosphor [J]. Opt. Express,2010,18:16989-16994.
    [165] Reddy A. J., Kokila M. K., Nagabhushana H., et al. EPR, thermo andphotoluminescence properties of ZnO nanopowders [J]. Spectrochim. Acta A.,2011,81:59-63.
    [166] Ciric L., Sienkiewicz A., Gaal R., et al. Defects and localization in chemically-derivedgraphene [J]. Phy. Rev B.,2012,86:55-59.
    [167] Rao S. S., Jammalamadaka S. N., Stesmans A., et al. Ferromagnetism in graphenenanoribbons: Split versus oxidative unzipped ribbons [J]. Nano. Lett.,2012,12:1210-1217.
    [168] Liu M., Qiu X. Q., Miyauchi M., et al. Cu(II) oxide amorphous nanoclusters graftedTi3+self-Doped TiO2: An efficient visible light photocatalyst [J]. Chem. Mater.,2011,23:5282-5286.
    [169] Rice W. D., Weber R. T., Leonard A. D., et al. Enhancement of the electron spinresonance of single-walled carbon nanotubes by oxygen removal [J]. Acs. Nano.,2012,6:2165-2173.
    [170] Chai Z. L., Wang C., Zhang H. J., et al. Nafion-carbon nanocomposite membranesprepared using hydrothermal carbonization for proton-exchange-membrane fuel eells [J]. Adv.Funct. Mater.,2010,20:4394-4399.
    [171] Valkama S., Nykanen A., Kosonen H., et al. Hierarchical porosity in self-assemhledpolymers: Post-modification of block copolymer-phenolic resin complexes hy pyrolysisallows the control of micro-and mesoporosity [J]. Adv. Funct. Mater.,2007,17:183-190.
    [172] Duke M. C., Pas S. J., Hill A. J., et al. Exposing the molecular sieving architecture ofamorphous silica using positron annihilation spectroscopy [J]. Adv. Funct. Mater.,2008,18:3818-3826.
    [173] Djurisic A. B., Choy W. C. H., Roy V. A. L., et al. Photoluminescence and electronparamagnetic resonance of ZnO tetrapod structure [J]. Adv. Funct. Mater.,2004,14:856-864.
    [174] Patil S. A., Scherf U., Kadashchuk A., New conjugated ladder polymer containingcarbazole moieties [J]. Adv. Funct. Mater.,2003,13:609-614.
    [175] Wang C., Cheng L., Liu Y. M., et al. Imaging-guided pH-sensitive photodynamictherapy using charge reversible upconversion nanoparticles under near-infrared light [J]. Adv.Funct. Mater.,2013,23:3077-3086.
    [176] Velusamy M., Shen J. Y., Lin J. T., et al. A New series of quadrupolar type two-photonabsorption chromophores bearing11,12-dibutoxydibenzo-phenazine bridged amines; Theirapplications in two-photon fluorescence imaging and two-photon photodynamic therapy [J].Adv. Funct. Mater.,2009,19:2388-2397.
    [177] Song X. J., Gong H., Yin S. N., et al. Ultra-small iron oxide doped polypyrrolenanoparticles for in vivo multimodal imaging guided photothermal therapy [J]. Adv. Funct.Mater.,2014,24:1194-1201.
    [178] Petrakova V., Taylor A., Kratochvilova I., et al. Luminescence of nanodiamond drivenby atomic functionalization: towards novel detection principles [J]. Adv. Funct. Mater.,2012,22:812-819.
    [179] Li C., Xia J. A., Wei X. B., et al. pH-Activated Near-Infrared fluorescence nanoprobeimaging tumors by sensing the acidic microenvironment [J]. Adv. Funct. Mater.,2010,20:2222-2230.
    [180] Lee C. H., Cheng S. H., Wang Y. J., et al. Near-Infrared mesoporous silica nanoparticlesfor optical imaging: Characterization and in vivo biodistribution [J]. Adv. Funct. Mater.,2009,19:215-222.
    [181] Kondrashina A. V., Dmitriev R. I., Borisov S. M., et al. A Phosphorescentnanoparticle-based probe for sensing and imaging of (intra) cellular oxygen in multipledetection modalities [J]. Adv. Funct. Mater.,2012,22:4931-4939.
    [182] Guo Y., Shi D. L., Cho H. S., et al. In vivo imaging and drug storage byquantum-dot-conjugated carbon nanotubes [J]. Adv. Funct. Mater.,2008,18:2489-2497.
    [183] Choi J., Yang J., Park J., et al. Specific Near-IR absorption imaging of glioblastomasusing integrin-targeting gold nanorods [J]. Adv. Funct. Mater.,2011,21:1082-1088.
    [184] Cheng L., Wang C., Ma X. X., et al. Multifunctional upconversion nanoparticles fordual-modal imaging-guided stem cell therapy under remote magnetic control [J]. Adv. Funct.Mater.,2013,23:272-280.
    [185] Mueller S., Mueller J., Singh A., et al. Incipient ferroelectricity in Al-doped HfO2thinfilms [J]. Adv. Funct. Mater.,2012,22:2412-2417.
    [186] Mather G. C., Islam M. S., Figueiredo F. M., Atomistic study of a CaTiO3-based mixedconductor: Defects, nanoscale clusters, and oxide-ion migration [J]. Adv. Funct. Mater.,2007,17:905-912.
    [187] Rohrbach A., Ballhaus C., Golla-Schindler U., et al. Metal saturation in the uppermantle [J]. Nature,2007,449:456-458.
    [188] Lee H. N., Christen H. M., Chisholm M. F., et al. Strong polarization enhancement inasymmetric three-component ferroelectric superlattices [J]. Nature,2005,433:395-399.
    [189] Chen J. H., Weidner D. J., Vaughan M. T., The strength of Mg0.9Fe0.1SiO3perovskite athigh pressure and temperature [J]. Nature,2002,419:824-826.
    [190] Richter C., Boschker H., Dietsche W., et al. Interface superconductor with gapbehaviour like a high-temperature superconductor [J]. Nature,2013,502:528-531.
    [191] Ohtomo A., Hwang H. Y., A high-mobility electron gas at the LaAlO3/SrTiO3heterointerface [J]. Nature,2006,441:120-120.
    [192] Ohtomo A., Hwang H. Y., A high-mobility electron gas at the LaAlO3/SrTiO3heterointerface [J]. Nature,2004,427:423-426.
    [193] Ramirez A. P., Cava R. J., Krajewski J., Colossal magnetoresistance in Cr-basedchalcogenide spinels [J]. Nature,1997,386:156-159.
    [194] Li P. F., Peng M. Y., Yin X. W., et al. Temperature dependent red luminescence from adistorted Mn4+site in CaAl4O7: Mn4+[J]. Opt. Express,2013,21:18943-18948.
    [195] Kang H. G., Park J. K., Kim C. H., et al. Luminescence properties of MAl12O19: Mn4+(M=Ca, Sr, Ba) for UV LEDs [J]. J. Ceram. Soc. Jpn.,2009,117:647-649.
    [196] Ye T. N., Li S., Wu X. Y., et al. Sol-gel preparation of efficient red phosphor Mg2TiO4:Mn4+and XAFS investigation on the substitution of Mn4+for Ti4+[J]. J. Mater. Chem C.,2013,1:4327-4333.
    [197] Jiang X. Y., Pan Y. X., Huang S. M., et al. Hydrothermal synthesis andphotoluminescence properties of red phosphor BaSiF6: Mn4+for LED applications [J]. J.Mater. Chem C.,2014,2:2301-2306.
    [198] Du M. H., Chemical trends of Mn4+emission in solids [J]. J. Mater. Chem C.,2014,2:2475-2481.
    [199] Cheng J. H., Pan C. J., Lee J. F., et al. Simultaneous reduction of CO and Mn4+inP2Na2/3CO2/3Mn1/3O2As evidenced by X-ray absorption spectroscopy during electrochemicalsodium intercalation [J]. Chem. Mater.,2014,26:1219-1225.
    [200] Michail C., Kalyvas N., Valais I., et al. On the response of GdAlO3: Ce powderscintillators [J]. J. Lumin.,2013,144:45-52.
    [201] Rezlescu N., Rezlescu E., Popa P. D., et al. Nanostructured GdAlO3perovskite, a newpossible catalyst for combustion of volatile organic compounds [J]. J. Mat. Sci.,2013,48:4297-4304.
    [202] Bothe K., Schmidt J., Fast-forming boron-oxygen-related recombination center incrystalline silicon [J]. Appl. Phys. Lett.,2005,87:262108(1)-262108(5).
    [203] Fujimoto E., Watanabe K., Matsumoto Y., et al. Reduction of nonradiativerecombination center for ZnO films grown under Zn-rich conditions by metal organicchemical vapor deposition [J]. Appl. Phys. Lett.,2010,97:027564(1)-027564(4).
    [204] Zieba A. A., Richardson C., Lucero C., et al. Evidence for concerted electron protonrransfer in charge recombination between FADH(-) and (306)Trp(center dot) in escherichiacoli photolyase [J]. J. Am. Chem. Soc.,2011,133:7824-7836.
    [205] Storchak V. G., Eshchenko D. G., Brewer J. H., et al. Muonium in InSb: Shallowacceptor versus deep trap or recombination center [J]. Phys. Rev. B.,2006,73:64-69.
    [206] Vedda A., Fasoli M., Nikl M., et al. Trap-center recombination processes by rare earthactivators in YAlO3single crystal host [J]. Phys. Rev. B.,2009,80:124-129.
    [207] Martinez A. J. G., Lopez-Urrutia J. R. C., Braun J., et al. State-selective quantuminterference observed in the recombination of highly charged Hg75+center dot78+mercuryions in an electron beam ion trap [J]. Phys. Rev. Lett.,2005,94:045114(1)-045114(5).
    [208] Muller C., Voitkiv A. B., Lopez-Urrutia J. R. C., et al. Strongly EnhancedRecombination via Two-Center Electronic Correlations [J]. Phys. Rev. Lett.,2010,104:02364(1)-02364(6).
    [209] Li Y., Du X., Sharafudeen K., et al. A long persistent phosphor based on recombinationcenters originating from Zn imperfections [J]. Spectrochim. Acta A.,2014,123:7-11.
    [210] Ashokkumar R., Kathiravan A., Ramamurthy P., Aggregation behaviour and electroninjection/recombination dynamics of symmetrical and unsymmetrical Zn-phthalocyanines onTiO2film [J]. Phys. Chem. Chem. Phys.,2014,16:1015-1021.
    [211] Senthilkumar K., Subramanian M., Ebisu H., et al. Trapping and recombinationproperties of the acceptor-like V-zn-H complex defect in ZnO [J]. J. Phys. Chem C.,2013,117:4299-4303.
    [212] Zhou P. H., Shaffer D. R., Arias D. A. A., et al., In vivo discovery of immunotherapytargets in the tumour microenvironment [J]. Nature,2014,506:52-56.
    [213] Rouskin S., Zubradt M., Washietl S., et al., Genome-wide probing of RNA structurereveals active unfolding of mRNA structures in vivo [J]. Nature,2014,505:701-708.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.