离子液体表面活性剂胶束的构造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体表面活性剂胶束不仅具有其自身固有的胶束性质又可赋予离子液体的部分独特性质。本文采用两种方式构建离子液体表面活性剂胶束:合成具表面活性的离子液体并且直接胶束化;表面活性剂与离子液体组合构建复合胶束。
     从羟基型离子液体1-(2-羟乙基)-3-甲基咪唑六氟磷酸盐([C2OHmim][PF6])出发,对其羟基进行环氧丙烷加成,生成[C2OHmim][PF6]环氧丙烷产物,以质谱对其进行定性表征,通过滴体积法测定[C2OHmim][PF6]环氧加成前后的表面张力,讨论环氧加成产物的表面活性。
     合成长链烷基咪唑类离子液体氯化1-(2-羟乙基)-3-十二烷基咪唑([C2OHC12im][Cl]),红外图谱进行定性表征,分别采用表面张力法、电导法和稳态荧光法测定其临界胶束浓度(critical micelle concentration, cmc),稳态荧光猝灭技术获得其胶束聚集数Nagg以及Nagg随浓度的变化规律。
     分别选择两类离子液体[C2OHmim][PF6]、氯化1-(2-羟乙基)-3-甲基咪唑([C2OHmim][Cl])与典型阴离子型表面活性剂LAS和SDS为工作对象,通过离子液体-表面活性剂二元复合构造复合胶束。在考察离子液体与表面活性剂形成复合胶束可能性的基础之上,研究离子液体-表面活性剂复合胶束的结构及其应用性能的可能改变。在本实验范围内,全文主要实验结果和结论总结如下:
     (1)对具表面活性离子液体的制备的可行性进行了成功的尝试:成功实现对羟基型离子液体[C2OHmim][PF6]及其中间体[C2OHmim][Cl]进行环氧丙烷衍生化反应;改变[C2OHmim][PF6]的疏水基团链长,合成了具有典型表面活性剂性质的长链烷基羟基型咪唑类离子液体[C2OHC12im][Cl]。
     (2) [C2OHC12im][Cl]水溶液的γ-lgc曲线具有与典型表面活性剂类似的拐点后平台现象,表明[C2OHC12im][Cl]具有明显的表面活性剂特质;分别利用表面张力法,电导法和荧光探针法测得[C2OHC12im][Cl]溶液的cmc和γcmc。
     (3)建立了以芘为荧光探针、二苯甲酮为猝灭剂采用稳态荧光猝灭法测定[C2OHC12im][Cl]平均胶束聚集数的实验方法,在9.55-13.20 mmol/L范围内,Nagg与溶液浓度c呈线性关系变化:Nagg = 1.67c + 20.25 (R2=0.9609);推算得到Ncmc为24.4。
     (4)构建1-甲基-3-丁基咪唑六氟磷酸盐([bmim][PF6])与SDS复合胶束,并通过UV吸收光谱和荧光光谱证明了复合胶束的存在;[bmim][PF6]-SDS复合胶束中[bmim][PF6]所处位置应该是SDS胶束的栅栏层;SDS-[bmim][PF6]复合胶束体系对正辛醇的增溶量有显著增加。
     (5)考察了[C2OHmim][Cl]-LAS、[C2OHmim][Cl]-SDS二元复合体系的cmc随着[C2OHmim][Cl]在LAS、SDS水溶液中比例变化而变化的规律,当[C2OHmim][Cl]在溶液中的比例达到50%时,cmc和γcmc的数值同时达到极值。
     (6)建立了以芘为荧光探针、二苯甲酮为猝灭剂采用稳态荧光猝灭法测定[C2OHmim][Cl]-传统阴离子表面活性剂二元复合体系平均胶束聚集数的实验方法。对[C2OHmim][Cl]-LAS(摩尔比为1:1)体系,在4.15×10-4~6.0×10-4mol/L范围内,胶束聚集数随浓度呈线性变化:Nagg = 2.1029c + 30.877(R2=0.9975);[C2OHmim][Cl]-LAS(摩尔比为1:1)复合体系的临界胶束聚集数为31,也比LAS的大,这与[C2OHmim]+降低LAS分子极性基头间静电排斥有关。
     (7)探讨了水溶性离子液体[C2OHmim][Cl]与典型阴离子表面活性剂LAS和SDS之间相互作用的可能内在方式为:
The ionic liquid surfactant micelles have not only inherent micelle properties itself but also some special unique properties of ionic liquid. The ionic liquid surfactant micelles were constructed through two methods: synthesis ionic liquid and micellizated it directly; complex micelle was constructed with surfactant and ionic liquids.
     From hydroxyl type ionic liquid [C2OHmim][PF6], adding propylene oxide to the hydroxyl to get [C2OHmim][PF6] propylene oxide product, and the characterization has been done by MS. Surface tensions of [C2OHmim][PF6] and [C2OHmim][PF6] propylene oxide product were determinated by drop volume method to assess the surface activity of alkoxylation products.
     Long-chain alkyl imidazole ionic liquid chloride 1-(2-hydroxyethyl)-3-dodecyl midazolam was synthesized and characterized by infrared Spectrum. Its critical micelle concentration was determinated by surface tension method, conductivity method and steady fluorescence method. The micellar aggregation number(Nagg) was and its change law with concentration change by The steady-state fluorescence quenching method.
     Two kinds of ionic liquids [C2OHmim][PF6]、[C2OHmim][Cl] and typical anionic surfactant LAS、SDS were chosen respectively as working object, the mixed micelle was constructed by ionic liquid-surfactant micelle binary complex. On the basis of investigation possibility of ionic liquid and surfactant micelle forming mixed micelle, the possible change of structure and application properties of ionic liquid-surfactant micelle mixed micelle was also studied.
     All the experiment results and conclusions of this paper were summarized as follow: (1) The possibility of preparing surfactant type ionic liquid was attempted successfully: the epoxy propane derivative reaction of hydroxyl type ionic liquid [C2OHmim][PF6] and its intermediate [C2OHmim][Cl] was realized successfully; the hydrophobic group chain length of [C2OHmim][PF6] was changed to synthesis long-chain alkyl hydroxyl type imidazole ionic liquid [C2OHC12im][Cl].
     (2) Theγ-lgc curve of [C2OHC12im][Cl] aqueous solution has similar phenomenon that platform after inflexion as typical surfactant micelles, indicating that [C2OHC12im][Cl] has significant surfactant micelles characteristics; the cmc andγcmc of [C2OHC12im][Cl] solution were determinate by surface tension method, conductivity method and steady fluorescence method.
     (3) A experimental method was constructed using steady-state fluorescence quenching to determinate the average micellar aggregation number of [C2OHC12im][Cl] by pyrene fluorescence probe and benzophenone as quencher. The aggregation number of micelle is linear with the concentration for [C2OHC12im][Cl] in the concentration range of 9.55-13.20 mmol/L: Nagg = 1.67c + 20.25 (R2=0.9609). Ncmc was calculated and was 24.4.
     (4) Construct the complex micelle for [bmim][PF6] and SDS ,and prove the existence of it through UV absorption spectroscopy and fluorescence spectroscopy;The the [bmim][PF6] in composite micelles of [bmim][PF6]–SDS should be located in the micelle fence layer of SDS; The solubilization amount of n-octanol for the SDS-[bmim][PF6] composite micelles increases obviousely.
     (5) The variation of cmc for the binary mixed systems of [C2OHmim][Cl]-LAS and [C2OHmim][Cl]-SDS versus the proportion of [C2OHmim][Cl] in LAS、SDS aqueous solutions have been investigated, and found that the cmc andγcmc values achieve maximum at the same time when the proportion of [C2OHmim][Cl] in aqueous solutions was 0.5.
     (6) A experimental method was constructed using steady-state fluorescence quenching to determinate the average micellar aggregation number of binary mixed systems of [C2OHmim][Cl]-traditional anionic surfactant by pyrene fluorescence probe, benzophenone as quencher. The aggregation number of micelle is linear with the concentration for the system of [C2OHmim][Cl]-LAS when the molar ratio was 1:1 in the concentration range of 4.15×10-4~6.0×10-4mol/L: Nagg = 2.1029c + 30.877(R2=0.9975);The aggregation number of micelle for the composite system of [C2OHmim][Cl]-LAS (the molar ratio was 1:1) was 31, and larger than LAS, this is correlative with that the [C2OHmim]+ reduce the electrostatic exclusion of LAS.
     (7) The possible ways of interaction for water soluble ion liquid of [C2OHmim][Cl] and typical anionic surfactants LAS and SDS have been investigated:
引文
[1]EarleM J, Seddon K R. Ionic liquid. Green solvents for the future[J]. Pure and Applied Chemistry, 2000, 72(7): 1391-1398.
    [2]Mehnert C P. Cook R A, Dispenziere N C. Afeworki M. Supported ionic liquid catalysis-A new cencept for homogeneous hydro formylation catalysis[J]. Journal of the American Chemical Society, 2002, 124(44): 12932-12933.
    [3]Huddleston J G, Willauer H D, Swatloski R P, et al. Roomtemperature ionic liquids as novelmedia for“clean”liquid-liquid extraction[J]. Chemical Communications, 1998, (16): 1765-1766.
    [4]杨雅立,王晓化,寇元,等.不断壮大的离子液体家族[J].化学进展, 2003, 15 (6): 471-476.
    [5]Fadeev A G, MeagherM M. Opportunities for ionic liquids inrecovery of biofuels[J]. Chemical Communications, 2001, (3): 295-296.
    [6]Dai S, Ju Y H, Barnes C E. Solvent extraction of strontium nitrateby a crown ether using room-temperature ionic liquids[J]. Journal of the Chemical Society, Dalton Transactions, 1999, (8): 1201-1202.
    [7]李长平,辛宝平,徐文国,等.疏水性离子液体为溶剂对Co2+和Cd2+废水的萃取性能[J].过程工程学报, 2007, 7(4): 674-678.
    [8]Lanchard L A, Hancu D, Beckman E J, et al. Green p rocessingusing ionic liquids and CO2[J]. Nature, 1999, 399: 28-29.
    [9]顾彦龙,石峰,邓友全.室温离子液体浸取分离牛磺酸与硫酸钠固体混合物[J].化学学报, 2004, 62(5): 532-536.
    [10]Fuller J, Carlin R T, Osteryoung R A. The room temperature ionic liquid 1-ethyl-3-methyl-imidazolium tetrafluoroborate: electrochemical coup les and physicalp roperties[J]. Journal of the Electrochemical Society, 1997, 144(11): 3881-3885.
    [11]Endres F, Schweizer A. The electrodeposition of copper on Au(111) and on HOPG from the 66/ 34 mol % aluminum chloride/1-butyl-3-methylimidazolium chloride room temperature molten salt: an EC-STM study[J]. Physical Chemistry Chemical Physics, 2000, 2: 5455-5462.
    [12]Yanna NuLi, Yang J, Wu R. Reversible deposition and dissolutionof magnesium from BMIMBF4 ionic liquid[J]. Electrochemistry Communications, 2005, 7: 1105-1110.
    [13]孙茜,刘元兰,陆嘉星.离子液体在电化学中的应用[J].化学通报, 2003, (2): 112-114.
    [14]Kim Y J, CheongM. Chemical fixation of carbon dioxide top ropylene carbonate in ionic liquids[J]. Bulletin of the Korean Chemical Society, 2002, 23(7): 1027-1028.
    [15]Yang H Z, Gu YL,Deng YQ, et al. Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions[J]. Chemical Communications, 2002, (3): 274-275.
    [16]Abbott A P, Capper G, DaviesD L, et al. Quaternary ammonium zinc-or tin-containing ionic liquids: water insensitive, recyclable catalysts for Diels-Alder reactions[J]. Greem Chemistry, 2002, 4(1): 24-26.
    [17]Howarth J, DallasA. Moisture stable ambient temperature ionic liquids: solvents for the newmillennium. 1. the Heck reaction[J]. Molecules, 2000, 5: 851-855.
    [18]Adams C J, EarleM J, Roberts G , et al. Friedel-Crafts reactions in room temperature ionic liquids[J]. Journal of the Chemical Society, Chemical Communications, 1998, 19: 2097-2098.
    [19]顾彦龙,彭家建,乔琨,等.室温离子液体及其在催化和有机合成中的应用[J].化学进展, 2003, (3) : 222-241.
    [20]张所波,丁孟贤,高连勋.离子液体在有机反应中的应用[J].有机化学, 2002, 22(3) : 159- 163.
    [21]孙学文,赵锁奇,王仁安.离子液体在石油化工中的应用[J].石油化工, 2002, 31(10) : 855-857.
    [22]Dupont J, Suarez P A Z, Ump ierre A P, et al. Pd (Ⅱ) 2dissolved in ionic liquids: a recyclable catalytic system for the selective biphasic hydrogenation of dienes to monoenes[J]. Journal of the Brazilian Chemical Society, 2000, 11(3) : 293-297.
    [23]Consorti C S, Ump ierre A P, Souza R F, et al. Selective hydrogenation of 1, 3-butadiene by transition metal compounds immobilized in 1-butyl-3-methyl imidazolium room temperature ionic liquids[J]. Journal of the Brazilian Chemical Society, 2003, 14(3) : 401-405.
    [24]阎立峰,朱清时.离子液体及其在有机合成中应用[J].化学通报, 2001, (11) : 673 - 679.
    [25]Shi F, Peng J J, Deng Y Q. Highly efficient ionic liquid-mediated palladium complex catalyst system for the oxidative carbonylation of amines[J]. Journal of Catalysis, 2003, 219(2) : 372-375.
    [26]MaM, Johnson K E. Carbocation formation by selected hydrocarbons in trimethylsulfonium bromide-AlCl3/AlBr3 -HBr ambient temperature molten salts[J]. Journal of the American Chemical Society, 1995, 117(5): 1508-1513.
    [27]Carlin R T, Robert A, Osteryoung R A, et al. Studies of titanium (Ⅳ) chloride in a strongly Lewis acidic molten salt: electrochemistry and titanium NMR and electronic spectroscopy[J]. Inorganic Chemistry, 1990, 29 (16) : 3003-3009.
    [28]Chauvin Y, GilbertB, Guibard I. Catalytic dimerization of alkenes by nickel comp lexes in organochloroaluminate molten salts[J]. Journal of the Chemical Society, Chemical Communications, 1990, 1715-1716.
    [29]Silva S M, Suarez P A Z, deSouza R F, et al. Selective linear dimerization of 1, 3-butadiene by palladium compounds immobilized into 1-n-butyl-3-methyl imidazolium ionic liquids[J]. Polymer Bulletin, 1998, 40: 401-405.
    [30]Perrier S, Davis T P, Carmichael A J, et al. Reversible addition-fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexfluorophosphate[J]. European Polymer Journal , 2003, 39: 417-422.
    [31]Perrier S, Davis T P, Carmichael A J, et al. First report of reversible addition-fragmentation chain transfer(RAFT) polymerisation in room temperature ionic liquids[J]. Chemical Communications, 2002, (19), 2226-2227.
    [32]Biedron T, Kubisa P. Ionic liquids as reaction media for polymerization p rocesses: atom transfer radical polymerization (ATRP) of acrylates in ionic liquids[J]. Polymer International, 2003, 52(10): 1584-1588.
    [33]Zhang S G, Zhang Z C. Novel p roperties of ionic liquids in selective sulfur removal from fuels at room temperature[J]. Greem Chemistry, 2002, 4: 376-379.
    [34]Shi F, Qiong H, Gu Y L, et al. The first non-acid catalytic synthesis of tert-butyl ether from tert-butyl alcohol using ionic liquid as dehydrator[J]. Chemical Communications, 2003, (9) : 1054 -1055.
    [35]寇元杨雅立.功能化的酸性离子液体[J].石油化工, 2004, 33(4): 297-302.
    [36]Ye C F, Liu W M, Chen Y X, et al. Room temperature ionic liquids: a kind of novel versatile lubricant[J]. Chemical Communications, 2001, 2244-2245.
    [37]顾彦龙,石峰,邓友全.室温离子液体:一类新型的软介质和功能材料[J].科学通报, 2004, 49 (6) : 515-521.
    [38]UzagareM C, Sanghvi Y S, SalunkheM M. App lication of ionic liquid 1-methoxyethyl-3-methyl imidazolium methanesulfonate in nucleoside chemistry[J]. Greem Chemistry, 2003, 5: 370-372.
    [39]李雪辉,赵东滨,费兆福.离子液体的功能化及其应用[J].中国科学B辑化学, 2006, 36(3): 181-196.
    [40]李长平,辛宝平,徐文国等.疏水性离子液体萃取脱色水溶性染料实验研究[J].北京理工大学学报, 2006, 26(7): 647-650.
    [41]沈兴海,徐超,刘新起等.离子液体在金属离子萃取分离中的应用[J].核化学与放射化学,2006, 26(3): 129-138.
    [42]张海波,周小海,董金凤.具有表面活性的新型绿色离子液体[J].中国科学B辑化学, 2006, 36(5): 367~371
    [43]Na Li, Jie Liu, Xueyan Zhao,Complex formation of ionic liquid surfactant andβ-cyclodextrin[J] Colloids and Surfaces A: Physicochem. Eng. Aspects 2007, (292) :196–201.
    [44]Branco C. ,RosaJ. N. ,Romos J. J. M.,et al. Preparation and Characterization of New Room Temperature Ionic Liquids[J]. Chemistry A European Journal.2002, 8(15): 3671-3671.
    [45]Zsombor M, Krisztina S N, LászlóB,et al. Aggregation andmicelle formation of ionic liquids in aqueous solution[J]. Chemical Physics Letters, 2004, 400(4): 296-300.
    [46]Bowers J, Butts C P, Martin P J, et al. Aggregation behavior of aqueous solutions of ionic liquids[J]. Langmuir, 2004, 20(6): 2191—2198.
    [47]Gao Y, Zhao X, Dong B, Zheng L, Li N, Zhang S. Inclusion complexesofβ-cyclodextrin with ionic liquid surfactants[J]. Journal of Physical Chemistry B, 2006, 110(17): 8576—8581.
    [48]Omar A. El Seoud, Paulo Augusto R. Pires, et al. Synthesi and micellar properties of surface-active ionic liquids:1-Alkyl-3-methylimidazolium chlorides[J]. Journal of Colloid and Interface Science, 2007 (313): 296–304.
    [49]J.L. Anderson, V. Pino, E.C. Hagberg, et al. Armstrong.Surfactant solvation effects and micelle formation in ionic liquids[J]. chemical communications. 2003, 2444–2445.
    [50]K. A. Fletcher, S. Pandey. Surfactant Aggregation within Room-Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide[J]. Langmuir, 2004, (20): 33-36.
    [51]A. Beyaz, W.S. Oh, V.P. Reddy. Ionic liquids as modulators of the critical micelle concentration of sodium dodecyl sulfate. [J]. Colloids and Surfaces B: Biointerfaces, 2004, (35): 119–124.
    [52]G. Law, P. R. Watson.Surface tension measurements of N-alkylimidazoliumionic liquids[J]. Langmuir, 2001, (17): 6138–6141.
    [53]A. E. Bradley, C. Hardacre, J.D. Holbrey, et al. Small-angle X-ray scattering studies of liquidcrystalline 1-alkyl-3-methylimidazolium salts[J]. Chemistry of Materials, 2002, (14): 629–635.
    [54]T. Nakashima, N. Kimizuka. Vesicles in salt: formation of bilayer membranes from dialkyldimethylammonium bromides in ether-containing ionic liquids[J]. Chemistry Letters, 2002, (31): 1018–1019.
    [55]J. L. Anderson, V. Pino, E. C. Hagberg, V. V. Sheares, et al. Surfactant solvation effects and micelle formation in ionic liquids[J]. Chemical Communications, 2003, (19): 2444–2445.
    [56]L. Y. Wang, X. Chen, Y. C. Chai, et al. Lyotropic liquid crystalline phases formed in an ionic liquid[J]. Chemical Communications, 2004, (24): 2840–2841.
    [57]Z.N. Wang, F. Liu, Y.A. Gao, et al. Hexagonal liquid crystalline phases formed in ternary systems of Brij97-water-ionic liquids[J]. Langmuir, 2005, (21): 4931–4937.
    [58]Y.A. Gao, S.B. Han, B.X. Han, et al. TX-100/water/1-butyl-3-methylimidazolium hexafluorophosphate microemulsions[J], Langmuir, 2005, (21): 5681–5684.
    [59]J. Eastoe, S. Gold, S.E. Rogers, et al. Ionic liquid-in-oil microemulsions[J]. Journal of the American Chemical Society, 2005, (127): 7302–7303.
    [60]N. Li, Y. A. Gao, L. Q. Zheng, et al. Studies on the micropolarities of BmimBF4/TX-100/toluene ionic liquid microemulsions and their behaviors characterized by UV–visible spectroscopy[J]. Langmuir, 2007, (23): 1091–1097.
    [61]D. Seth, A. Chakraborty, P. Setua, et al. Interaction of ionic liquid with water in ternary microemulsions (Triton X-100/water/1-butyl-3- methylimidazolium hexafluorophosphate) probed by solvent and rotational relaxation of Coumarin 153 and Coumarin 151[J]. Langmuir, 2006, (22): 7768–7775.
    [62]M.A. Firestone, J.A. Dzielawa, P. Zapol, et al. Lyotropic liquid-crystalline gel formation in a room-temperature ionic liquid[J]. Langmuir, 2002, (18): 7258–7260.
    [63]J. Sirieix-Pl′enet, L. Gaillon, P. Letellier. Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3- methylimidazolium bromide and water: potentiometric and conductimetric studies[J]. Talanta, 2004, (63): 979–986.
    [64]I. Goodchild, L. Collier, S.L. Millar, et al. Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide + water mixtures[J]. Journal of Colloid and Interface Science, 2007, (307): 455–468.
    [65]J. Bowers, C. P. Butts, P. J. Martin, et al. Aggregation behavior of aqueous solutions of ionic liquids[J]. Langmuir, 2004, (20): 2191–2198.
    [66]Z. Miskolczy, K. Seb?ok-Nagy, L. Bicz′ok et al. Aggregation and micelle formation of ionic liquids in aqueous solution[J]. Chemical Physics Letters, 2004, (400): 296–300.
    [67]G.A. Baker, S. Pandey, S. Pandey, et al. A new class of cationic surfactants inspired by N-alkyl-N-methyl pyrrolidinium ionic liquids[J]. The Analyst, 2004, (129): 890–892.
    [68]T. Singh, A. Kumar, Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions[J]. Journal of Physical Chemistry B, 2007, (111): 7843–7851.
    [69]Christian Jungnickel, Justyna ?uczak, Johannes Ranke, et al. Micelle formation of imidazolium ionic liquids in aqueous solution[J]. Colloids and Surfaces A, Physicochem. Eng. Aspects, 2008, (316): 278–284.
    [70]Bin Dong, Xueyan Zhao, Liqiang Zheng, et al. Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: Micellization and characterization of micelle microenvironment[J]. Colloids and Surfaces A, 2008, (317): 666–672.
    [71]Roz′alia Vany′ur, L′aszl′o Bicz′ok, Zsombor Miskolczy.Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution[J]. Colloids and Surfaces A, 2007, (299): 256–261.
    [72]Zhiming Qiu, John Texter. Ionic liquids in microemulsions [J]. Current Opinion in Colloid & Interface Science, 2008, (13): 252–262.
    [73]Beyaz A, Su Oh W, Reddy VP.Ionic liquids as modulators of the critical micelle concentration of sodium dodecyl sulfate [J]. Colloids and Surfaces B: Biointerfaces, 2004, 35(2): 119-124.
    [74]Beyaz A, Su Oh W, Reddy VP. Synthesis and CMC studies of 1-methyl-3-(pentafluorophenyl) imidazolium quaternary salts [J]. Colloids and Surfaces B: Biointerfaces, 2004, 36(2): 71-74.
    [75]雷声,张晶,黄建滨.离子液体[BMim]BF4对SDS水溶液表面活性和聚集能力的促进[J].物理化学学报, 2007, 23(11): 1657-1661.
    [76]Behera K, Dahiya P, Pandey S. Effect of added ionic liquid on aqueous Triton X-100 micelles [J]. Journal of Colloid and Interface Science, 2007, 307(1): 235-245.
    [77]Richard P. Swatloski, John D. Holbrey, Robin D. Rogers. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate[J]. Green Chemistry, 2003, 5, 361–363
    [78]王西新,赵建玲,杨浩,等. N-烷基(C4~C16)咪唑的合成[J].化学试剂, 2001, 23(5): 306-307.
    [79]Q. Q. Baltazar, J. Chandawalla, K.Sawyer, et al. Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects 2007, 302: 150-156.
    [80]林翠英,宋利赵,赵剑曦.分子内扭转电荷转移探针DMABN测定表面活性剂水溶液的临界胶团浓度[J].物理化学学报, 2007, 23(12): 1846- 1850.
    [81]Quinner Q. Baltazar, Janaki Chandawalla, Keahna Sawyer, et al. Anderson. Interfacialand micellar properties of imidazolium-basedmonocationic and dicationic ionic liquids[J].Colloids and surfaces, 2007, 23(7): 150-156.
    [82]李方,李干佐,郑立强,等.荧光探针研究阴离子表面活性剂胶束的物化性能[J].科学通报, 1994, 39(1): 39-42.
    [83]方云,刘雪锋,夏咏梅,等.稳态荧光探针法测定临界胶束聚集数[J].物理化学学报, 2001, 17(9): 828-831.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.