组合微电极和印刷电极的制作及其在痕量金属检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文着重研究了组合微盘电极和印刷电极的制作、表征和应用。本论文共分四个部分,第一部分对组合微电极和印刷电极的性质和应用进行了概
     述,并对碳纳米管和普鲁士蓝的性质和应用进行了阐述。在论文的第二章,我们研究了一种铂盘组合微电极的制作方法,并研究了该电极的电化学性质。将该组合微电极用于茶叶中痕量铅的测定。测定方法使用同位镀汞沉积富集和方波阳极溶出伏安法。铅的线性范围为0.20μg/L~35.0μg/L,检测限为0.05μg/L。实验中所测市售三种茶叶中的铅的含量均符合国标茶叶卫生要求标准。丝网印刷电极因其低廉的成本和简易的制作方法和较好的近年来得到迅速发展,在化学传感器方面应用较广。批量制作的印刷电极其性能相同,重现性好。在论文的第三章,我们自制了即抛型印刷碳电极,对其进行活化和表征,并将无修饰印刷碳电极直接用于痕量汞的检测,得到了比较满意的结果。
     论文的第四章,在印刷电极表面修饰碳纳米管,得到碳纳米管修饰印刷电极(MWNTs-SPCE)。并对电极进行电化学性质表征,电极重现性好。在此基础上,用MWNT/SPCE循环伏安法电沉积普鲁士蓝制备了普鲁士蓝/碳纳米管修饰电极(MWNTs-PB/SPCE),用它来研究对H_2O_2的催化作用,并进行检测。结果表明该修饰电极对H_2O_2具有很好的催化作用,对H_2O_2的响应在较宽的范围内成良好线性关系。
A platinum disc microelectrode array and screen printed electrode (SPCE) were fabricated and it’s application was studied.
     In chapter 2, the platinum disc microelectrode array was fabricated. The microelectrode array’s electrochemical characters were study. It was used for the determination of trace levels of lead(Ⅱ) in synthetic and tea samples, by employing thin mercury film formed at the electrodes. Lead and mercury were deposited in-situ with chronoamperometry and stripped using square wave anodic stripping voltammetry. The stripping peak current is linearly with the concentration over the range of 0.2 ~ 35.0μg/L for lead ion. The detection limit (S / N = 3)is 0.05μg/L. The recovery is 86.0% ~ 95.2%. In chapter 3, we employed disposable SPCE for the determination of trace mercury. SPCE is easily fabricated with low costs. The electrode offered a greater simplicity, because modification is unnecessary. In the experimental conditions, no reduction of other heavy metals has been observed show a high selectivity. Finally, the SPCE was applied to the determination of tea samples.
     In chapter 4, a new type of multi-walled carbon nanotubes (MWNTs) and Prussian blue (PB) co-modified screen-printed electrode (SPCE) has been fabricated for the detection of hydrogen peroxide. PB was electrodeposited on the surface of MWNTs-modified SPCE and MWNTs showed an obvious promotion for the redox reaction rates of hydrogen peroxide. Cyclic voltammetry and amperometric measurements were employed to demonstrate the feasibility of Prussian blue as a catalyst to determine hydrogen peroxide. This resulting sensor showed a wide linear range of amperometric responses to H_2O_2. The presence of dopamine, ascorbate and urate hardly affected the sensitive determination of H_2O_2.
引文
[1] 古宁宇,董绍俊.超微电极新进展. 大学化学,2001,16(1):26-31
    [2] 张祖训. 超微电极电化学. 科学出版社,北京,1998.
    [3] 王来兴,周晓平,胡小吾,等.微电极导向立体定向毁损顽固性痉挛斜颈一例. 立体定向和功能性神经外科杂志,2001,14(2):88
    [4] 崔高宇,冯华,王宪荣,等. 微电极引导立体定向手术治疗帕金森病 71 报告.第三军医大学学报,2001,23(10):1209-1211.
    [5] 郑金,印仁和,钟庆东,等. 组合式微电极的研究进展.腐蚀与防护,2003,24(8):327-332
    [6] Baret M, Massart D L, Fabry P, et al. Halide ion-selective electrode array calibration. Talanta, 1999,50(3):541-548
    [7] Paeschke M, Wollenberger U, Kohler C, et al. Properties of interdigital electrode arrays with different geometries. Anal. Chim. Acta, 1995, 305(1-3):126-136
    [8] Ahibuya M, Nishina T, Matsur T, et al. In situ conductivity measurements of LiCoO2 film during litium insertion extraction by using interdigitated microarray electrodes. J electrochem Soc,1996,143(10):3157-3168
    [9] Tomcik P, Jursa S, Mesaros S, et al. Titration of (Ⅲ) with electrogenerated iodine in the diffusion layer of an interdigitated microelectrode array. J Electroanal Chem, 1997,423(1-3):115-118
    [10] 董泽华,郭兴蓬,刘宏芳,等.用丝束电极研究 SRB 微生物诱导腐蚀的电化学特征. 中国腐蚀与防护学报,2002,22(1):48-53
    [11] 刘靖,刘宏芳,许立铭,等.采用丝束电极研究硫酸盐还原菌生物膜的电化学不均匀性.腐蚀与防护,2001,22(8):325-327
    [12] Zhong Qingdong. A novel electrochemical testing method and its use in the investigation of underfilm corrosion of temporarily protective oil coating. Corrosion Science, 2000,56(7):722-726
    [13] 谭勇军. 用线束电极研究防锈油及防锈水的迭片腐蚀. 材料保护, 1993,26(8): 17-20.
    [14] 谭勇军,余思缇. Study and evaluation of organic coating by use of a wire beam electrode. 材料保护,1992,25(6):4-13
    [15] Kautek W, Reetz S, Pentzien S. Template electrode position of nanowire arrays on gold foils fabricated by pulsed laser deposition. Electrochimica Acta, 1995, 40(10): 1461-1468
    [16]Ohtani M, Sunagawa T, Kuwabata S, et al. Preparation of a microelectrode array by photo induced elimination of a self-assembled monolayer of hexadecylthiolate on a gold electrode. J Electroanal Chem, 1995,396(1-2):97-102
    [17] Ohtani M, Sunaga wa T, Kuwabata S, et al. Preparation of a microelectrode array using desorption of a self-assembled monolayer of hexadecylthiolate on a gold electrode in cyanide solution. J Electroanal Chem, 1995, 429,(1-2):75-80
    [18] Hagan C R S, Coury L A. Preparation of microarray electrodes by sonochemical ablation of polymer films. J Electrochem Soc, 1994, 141(3): 23
    [19] He L, Franzen H F, Vitt J E, et al. Synthesis and characterization of Ru-Ti4O7 microelectrode arrays. J Electrochem Soc, 1994, 141(4): 1014-1018
    [20] Wenrui J, Qianfeng W, Jianren W. Determination of bovine serum albumin by capillary zone electrophoresis with end-column amperometric detection at the carbon fiber microdisk array electrode. Anal. Chim. Acta, 1997,342(1):67-74
    [21] 赵凯元,王清. 碳基针孔微组合式电极的性能测试与理论验证. 物理化学学报,2002,18(2):183-187
    [22] Fungaro D A,Brett C M A.Microelectrode arrays: application inbatch injection analysis. Anal. Chim. Acta, 1999, 385(1 3): 257~264.
    [23] Kullick T,Bock U,Schubert J,et al. Applicationo enzyme field effect transistor sensor arrays as detector in a flow injection analysis system for simultaneous monitoring of medium components. Part II. Monitoring of cultivation processes. Anal. Chim. Acta, 1995, 300(1 3): 25~31.
    [24] Bechmann I E, Nrgaard L, Ridder C. Generalized standard additionin flow injection analysis with UV visibl photodiode array detection. Anal.Chim.Acta, 1995,304(2): 229~236.
    [25] Matysik F, Bjorefors F, Nyholm L. Application of microband array electrodes for end column electrochemical detection in capillary electrophoresis.Anal.Chim.Acta.,1999,385(1 3): 409~415.
    [26] Morita M, Niwa O, Horiuchi T. Electrodeposited silver arrays fabricated utilizing self assembled alkanethiolate Monolyer photoresist. Electrochim. Acta., 1997, 42(20 22): 3117~3123.
    [27] Niwa O, Horiuchi T, Morita M,et al. Determination of acetylcholine and choline with platinum black ultra microarray electrodes using liquid chromatography with a post column enzyme reactor. Anal. Chim. Acta, 1996, 318(2): 167~173.
    [28] Sanchez F C, Massar D L. Application of simplis ma for the assessment of peak purity in liquid chromatography with diode array detection. Anal. Chim. Acta, 1994, 298(3): 331~339.
    [29] Zhang H, Lin X. Insitu FTIR spectro electrochemistry of a microarray electrode. J Electroanal Chem., 1997, 434(1-2): 55~59.
    [30] Pinillos S C, Asensio J S, Bernal J G. Simultaneous determination of arsenic, antimony and selenium by gas phase diode array molecular absorption spectrometry, after preconcentration in a cryogenic trap. Anal. Chim. Acta.,1995,300(1 3): 321~327.
    [31] Wortberg M, Kreissig S B, Jones G,et al. An immunoarray for the simultaneous determination of multiple triazine herbicides. Anal. Chim. Acta., 1995, 304(3): 339~352.
    [32] Belmont C, Tercier M L, Buffle J, et al. Mercury plated iridium based microelectrode arrays for trace metals detection by voltammetry: optimum conditions and reliability. Anal. Chim. Acta., 1996, 329(3): 203~214.
    [33] Le Drogoff B, ElKhakani M A, Silva P R M, et al. Surface properties of pulsed laser deposited Ir, Rh, and Ir0.9 Rh0.1 thin films for use as microelectrode arrays in electroanalytical heavy metal trace sensors. Applied Surface Science, 1999, 152(1 2): 77~84.
    [34] Xu Chenyang, William Lemon, Liu Chang, et al. Design and fabrication of a high density metal microelectrode array for neural recording. Sensors and Actuators A, 2002, 96(1): 78~85.
    [35] Zhen Y, Sasaki S, Karube I, et al. Fabrication of oxygen electrode arrays and their incorporation into sensors for measuring biochemical oxygen demand. Anal. Chim. Acta., 1997, 357(1 2): 41~49.
    [36] Groves W A, Zellers E T, Frye G C. Analyzing organic vapors in exhaled breath using a surface acoustic wave sensor array with preconcentration: Selection and characterization of the preconcentrator adsorbent. Anal. Chim. Acta., 1998, 371(2 3): 131~143.
    [37] Liu Shaoqin, Wang Baoxing, Liu Baifeng, et al. Electrochemical behavior of redox species at carbon fibre mcrodisk array electrode modified with mixed valent molybdenum (VI,V) oxide[J].Electrochimica Acta, 2000, 45(10): 1683~1690.
    [38] M.A.T. Gilmartin, J.P. Hart, D.T. Patton. Prototype, Solid-phase, Glucose biosensor. Analyst, 1995, 120:1973
    [39] M. P. O’Hallcran, M. Pravda, G. G. Guilhault. Prussian blue bulk modified screen printed electrodes for H2O2 detection and for biosensors. Talanta, 2001, 55: 605-611
    [40] C. G. J. Koopal, A.A. Bos, R. J. M. Nolte. Third generation Glucose biosensor Incorporated in a Conducting Printing Ink, Sens.Actuators B, 1994,18~19:166~170
    [41] A. Silber, N. Hampp, W. Schuhmann. Poly(Mettylene Blue~Modfied Thick Film Gold Electrodes for the Electrocatalytic Oxidation NADH and Their Applicationin Glucose Biosensors, Biosens. Bioelectron. 1996, 11: 215~223
    [42] S. D. Sprules, J. P. Hart, S. A. Wing,et al. A Reagentless Disposable Biosensoe for Loctic Acid Based on a Screen printed Carbon Electrode Containing Meldolas Blue, Coated with Lactate Dehydrogenase, NAD+ and Cellulose Acetate, Anal. Chim. Acta, 1995, 304: 17~24
    [43] S. D. Sprules, J. P. Hart, S. A. Wing, et al. Development of a Disposable Amperometric Sensor for Reduced Nicotinamide Adenine Dinucleotide Base on Chemically Modified Screen printed Carbon Electrode. Analyst, 1994, 119: 253~257
    [44] A. Jager, U. Bilitewski . Screen printed Enzyme Electrode for the Determination of Lactose. Analyst, 1994, 119: 1251 ~ 1255.
    [45] M. A. T. Gilmartin, J. P. Hart, B. J. Birch. Development of Amperometric Sensors for Uric Acid Based on Chemically Modified Graphite-Epoxy Resinand Screen printed Electrodes Containing Cobalt Phthalocyanine. Analyst, 1994, 119: 243~252
    [46] M. A. T. Gilmartin, J. P. Hart. Fabrication and Characterization of Screen printed, Disposable, Amperometric Cholesterol Biosensor. Analyst, 1994, 119: 2331~2336
    [47] J. K. Park, H. J. Yee, S. T. Kim. Amperometric Biosensor for Determination of Ethanol Vapor. Biosens. Bioelectron., 1995, 10: 587~594
    [48] J. Wang, M. Padrero, P. V. A. Pamidi, et al. Metal-dispersed screen-printed carbon electrodes Electroanalysis, 1995, 7: 1032
    [49] J. Wang, X. Cai, B. Tian, et al. Microfabricated Thick film Electrochemical Sensor for Nucleic Acid Determination. Analyst, 1996, 121: 965~970
    [50] J.Wang, M. Pedrero, X. Cai. Analyst, Palladium-doped screen-printed electrodes for monitoring formaldehyde. 1995, 120: 1969
    [51] J. Zagal, C. Fierro, R. Rozas. Electrocatalytic effects of adsorbed cobalt phthalocyanine tetrasulfonate in the anodic oxidation of cysteine. J. Electroanal. Chem., 1981,119: 403-408
    [52] J. Wang, Z. Lu. Electroanalysis, Electrocatalysis and determination of hydrazine compounds at glassy carbon electrodes coated with mixed-valent ruthenium(III, II) cyanide films. 1989, 1: 517.
    [53] J. Wang, P.V.A. Pamidi. Disposable screen-printed electrodes for monitoring hydrazines. Talanta. 1995, 42: 463
    [54] C. G. Neuhold, J. Wang, X. Cai,et al. Screen printed Electrodes fo rNitrite Based on Anion exchanger Doped Carbon Inks. Analyst, 1995, 120: 2377~2380
    [55] J. Wang, Q. Chen. Macrofabricated Phenol Biosensors Based on Screen printing of Tyrosinase Containing Carbon Ink. Anal. Lett., 1995, 28: 1131~1142
    [56] M. A. T. Gilmartin, J. P. Hart. Rapid Detection of Paracetamol Using a Disposable, Surface modified Screen printed Carbon Electrode, Analyst, 1994, 119: 2431~2437
    [57] A. Cagnini, I. Palchetti, M. Mascini, A. P. F. Turner. Rutherized Screen printed Choline Oxidase based Biosensors for Measurement of Anticholinesterase Activity, Mikrochim. Acta, 1995, 121: 155~166
    [58] A. Cagnini, I. Palchetti, I. Lionti, et al. Disposable Ruthenized Screen printed Biosensors for Pesticides Monitoring, Sens. Actuators B, 1995, 24~25: 85~89
    [59] I. Palchetti, A. Cagnini, M. D. Carlo,et al. Determination of Anticholinesterase Pesticides in Real Samples Usinga Disposable Biosensor, Anal. Chim. Acta, 1997, 337: 315~321
    [60] Y.G. Li, Y. X. Zhou, J. L. Feng,et al. Immobilization of Enzyme on Screen printed Electrode by Exposure to Glutaraldehyde Vapour for the Construction of Amperometric Acetylcholinesterase Electrodes, Anal. Chim. Acta, 1999, 382: 277~282
    [61] P. Skladal, T. Kalab. A Disposable Amperometric Iimmuno sensor for 2,.4- Dichlorophenoxyacetic Acid, Anal. Chim. Acta, 1995, 304: 361~368
    [62] P. Skladal, T. Kalab. A Multichannel Immunochemical Sensor for Determination of 2,4-Dichlorophenoxyacetic Acid, Anal. Chim. Acta, 1995, 316: 73~78
    [63] B. J. Seddon, Y. Shao, H.H. Girault. Printed microelectrode array and amperometric sensor for environmental monitoring. Electrochim. Acta, 1994, 39: 2377
    [64] C.G. Neuhold, J. Wang, V.B. do Nascimento, et al. Thick film voltammetric sensors for trace copper based on a cation-exchanger-modified surface. Talanta, 1995, 42: 1791
    [65] J. M. Zen, H. H. Chung, A. S. Kumar. Determination of lead(II) on a copper / mercury- plated screen-printed electrode Anal. Chim Acta., 2000, 421: 189–197
    [66] 李元光,周永新,冯建宁,等. 丝网印刷胆碱酯酶电极测定神经性毒剂沙林、梭曼, 分析化学研究简报, 2000, 28: 95~98
    [67]Iijima.S.Helical microtubules of graphitic carbon.Nature.1991,354:56-58
    [68] Nathan S. Lawrence, Randhir P.Deo,Joseph Wang.Detection of homocysteine at carbon nanotube paste electrodes.Talanta,2004,63:443-449
    [69] Ago.H, Cacialli.F,Petritsch. K, Friend.R.H,et. Workfunction of purified and oxidised carbon nanotubes.Synthetic Metals,1999,103:2494-2495
    [70]Britto.P.J,Santhanam,K.S.V,Ajayan.P.M.Carbon nanotube electrode for oxidation of dopamine.Bioelectrochemistry and Bioenergetics.1996,41:121-125
    [71] S.C. Tsang,J.J. Davis,M.L.H Green,et al. J. Chem.Commun.1995,2579.
    [72] J.J.Davis,M.L.H. Green,H.A.O. Hill,et al. The immobilisation of proteins in carbon nanotubes. Inorg.Chim.Acta.199,272:261-266.
    [73] Wang Jianxiu,Li Meixian,Shi Zujin,Li Nanqiang,Gu Zhennan.Electrocatalytic oxidation of 3,4-dihydroxyphenylacetic acid at a glassy carbon electrode modified with single-wall carbon nanotubes.Electrochimica Acta,2000,45(17):2743 - 2751
    [74] Hongxia Luo, Zujin Shi, Nanqiang Li, Zhennan Gu, and Qiankun Zhuang. Investigation of the electrochemical and electrocatalytic behavior of single wall carbon nanotube film on a glassy carbon electrode Anal. Chem,2001,73:915-920
    [75] Jianxiu Wang,Meixian Li,Zujin Shi,Nanqiang Li,Zhennan Gu.Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode.Electroanalysis 2002,73:325-333
    [76] Maryann P. O’Halloran, Miloslav Pravda, George G. Guilbault.Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors.Talanta,2001,55 :605–611
    [77] Wang Peng,Yuan Yi,Wang Xiang ping,Zhu, Guoyi.Renewable three-dimensional Prussian blue modified carbon ceramic electrode.Electroanal Chem[J ],2000,493(1-2):130-134
    [78] Itaya K, Shoji N , Uchida I. Catalysis of the Reduction of Molecular Oxygen to Water at Prussian Blue Modefied Electrodes.J Am Chem Soc[J] ,1984 ,106 (12) :3423.
    [79] Lundgaren C A , Murray R W. Observations on the composition of Prussian blue films and their electrochemistry. Inorg Chem , 1988 ,27 (5) :933-939.
    [80] 彭图治,杨丽菊. 生物电化学分析[M] . 杭州:杭州大学出版社, 1997:101-103
    [81] Karyakin A A , Karyakina E E , Gorton L. On the mechanism of H2O2 reduction at prussian blue modified electrodes Electrochem Comm, 1999 ,1(2) :78.
    [82] Karyakin A A , Karyakina E E , Gorton L.The electrocatalytic activity of Prussian blue in hydrogen peroxide reduction studied using a wall-jet electrode continuous flow. J Electroanal Chem,1998,456(1-2):97-104
    [83]熊亚. 环境铅接触对健康的影响. 广东微量元素科学,2002,9(9):49
    [84]宫振沛. 微量元素与防病治病. 广东微量元素科学,2002,9(12):57
    [85] 金崇伟,郑邵建.茶叶的铅污染问题及铅污染的来源.广东微量元素科学,2004,11(3):12~16
    [86] 黄 燕 . 铂 丝 富 集 - 火 焰 原 子 吸 收 光 谱 法 检 测 皮 蛋 中 痕 量 铅 . 分 析 测 试 技 术 与 仪器,2002,8(3):174~177.
    [87]艾军,李德龙,汤志勇. 流动注射在线液-液萃取火焰原子吸收法测定水中痕量铅. 分析科学学报,2001,17(5):414~417
    [88]李华禄,刘汉东,刘延湘.流动注射在线萃取 FAAS 法测定天然水中铅.武汉教育学院学报,2000,19(3):15~18.
    [89]王爱霞,张宏,刘琳琳.流动注射在线分离富集火焰原子吸收法测定环境样品中的铅和镉.分析化学,2001,29(11):1284~1287.
    [90]张秀尧.在线流动注射螯合树脂预富集石英管增敏火焰原子吸收法测定水中痕量铅.分析化学,2000,28(12):1493~1496.
    [91]周方钦,龙斯华,杨学群,等.硫化棉富集 火焰原子吸收光谱法测定水中痕量铅镉铜的研究.湘潭大学自然科学学报,2001,23(4):81~83.
    [92]王光明,焦传英.共沉淀预富集 火焰原子吸收光谱法测定水中的铅和镉.光谱实验室,2002,19(5):680~683.
    [93]薛平,苑利.微波消解 火焰原子吸收法测定竹叶青酒中的重金属含量.食品与发酵工业,2001,27(5):54~56
    [94]陈兰菊,郑连义,赵地顺,等.流动注射-导数火焰原子吸收光谱测定植物油中的镍、锰、铬和铅.分析测试技术与仪器,2002,8(3):178~181.
    [95]马戈,谢文兵,于桂红,等. 石墨炉原子吸收光谱法测定蘑菇中的镉、铅. 分析化学,2003,31(9):1109~1111
    [96]开小明,张群,凌必文,等.基体改进剂和 L’vov 平台技术石墨炉原子吸收光谱法测定全血中铅.光谱学与光谱分析,2001,21(2):244~246.
    [97]蒙若兰,胡德斌.石墨炉台技术测定痕量铅-硝酸钯-硝酸镁混合基体改进剂.重庆建筑大学学报,1999,21(3):86~90.
    [16]陈恒初,刘汉东,汤志勇,等.悬浮液进样平台石墨炉原子吸收光谱法测定生物样品中痕量铅.光谱实验室,1998,15(1):44~46.
    [98]王利平,贡小清.石墨炉原子吸收法测定食品中痕量铅 用硝酸镍兼作助灰剂和基体改良剂.无锡轻工大学学报,2000,19(1):80~83.
    [99]刘汉东,陈恒初,吴旺喜,等.流动注射在线萃取石墨管原子吸收法测定芦荟中的铅.环境科学与技术,2002,25(5):22~23.
    [100]沈志武,董银根,沈惠君.VA 90 氢化物发生-原子吸收光谱法测定食品中痕量铅.光谱学与光谱分析,2000,20(3):390~392.
    [101]吴仪贞,边东风,郁保宁,等.DB HEA101 型氢化物电热原子化器及其应用.分析仪器,1998,(3):39~42.
    [102]仇佩虹,张华杰,林丽.流动注射氢化物发生-加热石英管-原子吸收法测定血清铅.分析化学,2000,28(9):1183.
    [103]张晓东,杨红兵,安晓东,等.高钙保健食品中铅含量分析方法研究.中国公共卫生,2002,18(7):773.
    [104]姚敏德,陈小芒,李绍南.氢化物发生-电加热石英管原子吸收法测定环境水样中痕量铅的研究.中国环境监测,2002,18(3):12~14.
    [105]傅昀,王文桂,谢克金,等.利用多功能 LB HG 型雾化氢化物发生器与电感耦合等离子体原子发射光谱联用测定人发中砷、锑、汞、铅.分析化学,1998,26(4):431~434.
    [106]谯斌宗,杨元,文君,等.连续氢化物发生端视 ICP AES 法直接测定纯净水中痕量铅.中国卫生检验杂志,2001,11(4):385~386.
    [107]范哲锋.化妆品中的 Hg、As 和 Pb 的微波消解-氢化物 ICP AES 发生法测定.分析测试学报,2001,20(1):56~57.
    [108]傅明,陈新焕,杨万彪,等.微波消解 ICP-AES 测定茶叶中铅、砷、铜、铁、锌、硒等 12 种元素的含量.食品科学,2001,22(11):76~78.
    [109]张小林,曹槐,杨丽霞,等.不同样液制备方法电感耦合等离子体原子发射光谱测定人血清中铁、锌、铜、镉、铅的比较.光谱学与光谱分析,1999,19(3):364~366.
    [110]郑瑾,边文耀,高美叶.氢化物发生 原子荧光光谱法测定尿中铅.内蒙古大学学报,2002,33(5):538~540.
    [111]杨宝玺.氢化物发生原子荧光光谱法测定水中铅.中国公共卫生,2001,17(10):926.
    [112]裴如俊,郭玉敏,张丽.氢化物发生-原子荧光光谱法测定废水中痕量铅.中国环境监测,2000,16(3):30~31.
    [113]蔡秋,莫凤.氢化物 原子荧光光谱法测定食品中的微量铅.贵州科学,2002,20(2):64~67.
    [114]刘培栋,李清昌.AFS 2202 原子荧光光度法测定血清中的铅.微量元素与健康研究,2002,19(3):56~57.
    [115]范晓燕,董杰.Pb(Ⅱ) 双硫腙 PAR 水相光度法测定样品中铅.理化检验化学分册,2001,37(6):258~260.
    [116]禹雷,刘琴.双波长分光光度法测定废水痕量铅.淮北煤矿师院学报,2000,21(4):30~33.
    [117]朱振中,李在均,虞学俊,等.二溴对甲基偶氮甲磺光度法测定食品中微量铅.无锡轻工大学学报,1997,17(3):82~85.
    [118] 庄 炳 游 .Pb( Ⅱ )-XO-CTMAB 光 度 法 测 定 树 叶 上 附 着 的 铅 含 量 . 理 化 检 验 化 学 分册,2001,37(9):419~420.
    [119]汤明河.双波长分光光度法测定人发中痕量铅.温州大学学报,2001,(3):88~90.
    [120]黎源倩,杨经国,郑欣,等.流动注射 二极管阵列检测分光光度法同时测定铅和镉.分析化学,1998,26(7):843~846.
    [121]杨经国,黎源倩,哈文清,等.用于多组分同时测定的流动注射-CCD 阵列探测分光光度装置研究.光谱学与光谱分析,1999,19(2):212~214.
    [122]李卫华,王占玲,李建中,等.以偶合反应流动注射化学发光法测定铅.分析化学,1998,26(2):219~221.
    [123]李绍卿.李阳.化学发光法测定铅的研究及其应用.中国非金属矿工业导刊,1999,(2):26~28.
    [124]杨超.束胶分光光度法测定双硫腙金属络合物.中国卫生检验杂志,2002,12(1):41.
    [125]张永航,赵中一,金继红,等.固相反射散射分光光度法测定化妆品中的铅.环境科学与技术,2001,(2):44~45.
    [126]吴伟明,杜海燕,戎关镛.离子交换树脂相分光光度法测定水中的铅.南方冶金学院学报,1998,19(2):142~145.
    [127] GB/T 5009 单扫描极谱法测定食品中铅
    [128]徐斌,张海丽,叶永康,等.铅-茜素紫-邻菲罗啉体系的极谱行为及应用.分析试验室,2001,20(2):67~70.
    [129]黎晨,侯玉华,赵通.离子选择性电极对饮料中铅的测定.食品科学,1998,19(3):59~61
    [130]秦汉明.全固态铅离子选择性电极测定人发中微量铅.理化检验—化学分册,2001,37(9):399~400
    [131]陈立钦,杨晓红.硫杂冠醚 PVC 膜铅(Ⅱ)离子选择电极的研制.武汉化工学院学报,1998,20(2):9~11.
    [132] 杨晓红. 饱和漆 酚冠醚 PVC 膜铅( Ⅱ) 离子选择 电极的研 究. 武汉化 工学院学报,1999,21(1):24~26.
    [133] 居 红 芳 , 陈 朗 星 , 何 锡 文 , 等 . 新 型 杯 芳 烃 为 载 体 的 铅 离 子 选 择 电 极 . 分 析 化学,2001,29(10):1121~1124.
    [134]吴四维,付敏,黄宗卿.椭圆法用于阴极溶出伏安法测定铅的研究.渝州大学学报(自然科学版),1999,16(2):66~68.
    [135]黎艳飞,张正奇.用色谱膜法富集阴极吸附溶出伏安法测定空气中的镍铜铅镉.分析测试学报,1999,118(1):72~74.
    [136]宋亮.微分脉冲伏安法测定降水中锌、镉、铅和铜.甘肃环境研究与监测,2001,14(4):217~218.
    [137]刘保启,袁胜利,丁良.微分脉冲溶出伏安法同时测定癌组织中的锌、镉、铅和铜.分析化学,2000,28(1):126.
    [138] 范 大 和 , 严 金 龙 , 孙 汝 东 . 阳 极 溶 出 方 波 伏 安 法 测 定 食 醋 的 痕 量 铅 . 山 东 化工,2000,29(6):40~41.
    [139]梁永,贺宝芝.溶出伏安法与计算机差谱技术联合测定尿中铅、锌、铜、镉.中国工业医学杂志,2000,13(5):310~312.
    [140]徐泽民,顾永诈,徐慧,等.示差脉冲阳极溶出伏安法测定中药川附子痕量铅镉.四川环境,2000,19(3):38~39.
    [141]张海丽,叶永康,徐斌.酸性铬蓝 K 固体石蜡碳糊修饰电极溶出伏安法测定痕量铅.分析化学,2000,28(2):194~196.
    [142]杨天鸣,邓敏,钟利.PVC 膜修饰粉末微电极溶出伏安法测定水中铅(Ⅱ).分析实验室,1999,18(5):27~30.
    [143]易洪潮,刘明芳,黄文胜,等.蒙脱石修饰电极伏安法同时测定人血中的铅、镉.湖北民族学院学报(自然科学版),2001,19(3):63~66.
    [144]费俊杰,黎拒难,易芬云.槲皮素化学修饰碳糊电极吸附溶出伏安法测定痕量铅.分析化学,2001,29(8):916~918.
    [145]傅晖蓉,黄盈煜,胡桂莲.同位镀汞微分电位溶出快速测定焦糖色素铅含量.中国卫生检验杂志,2001,11(4):442.
    [146] 李 建 平 , 彭 图 治 , 张 雪 君 . 铋 膜 电 极 电 位 溶 出 法 测 定 痕 量 铅 、 镉 、 锌 . 分 析 化学,2002,30(9):1092~1095.
    [147]邵梦欣,张法庆,张耀亭,等. 碳纤维束汞膜电极法测定汽车尾气中的铅.环境科学,1996,17(3):64~66
    [148] M. A. Baldo,C. Bragato, S. Daniele, et al. Lead and copper deposition from dilute solutions onto carbon disc microelectrodes. Assessment of quantification procedures by anodic stripping voltammetry. Electrochimica Acta,1998,43 ( 23):3413 ~ 3422
    [149] S. Daniele,C. Bragato,,M. A. Baldo. An approach to the calibrationless determination of copper and lead by anodic stripping voltammetry at thin mercury film microelectrodes. Application to well water and rain. Anal. Chem.,1997,346: 145~156
    [150]黄志勇,经媛元,王小如,等. ICP-MS 测定茶叶中微量元素含量及其溶出特性的研究. 厦门大学学报,2003,5:621~625
    [151] GB2762——2005 中华人民共和国国家标准 茶叶卫生标准
    [152] Scheuhammer A M. Acidification-related changes in the biogeochemistry and ecotoxicology of mercury, cadmium, lead and aluminum:overviews. Eviron Pollut, 1991,71: 87-90],
    [153] 李波,土壤—植物系统中汞生物活性的调控及其机理研究[博士学位论文],西南农业大学,2001
    [154] Wheatly B. Wheatley M A. Methymercury and the health of indigenous peoples: a risk management challenge for physical and social sciences and for public health policy. The science of the total environment,2000,259: 23-29
    [155] A. Manivannan, M.S. Seehra, A. Fujishima. Detection of mercury at the ppb level in solutionusing boron-doped diamond electrode. Fuel Processing Technology, 2004, 85: 513– 519
    [156] Zhang Deqiang, Yang Lili, Sun Hanwen。Determination of mercury by cold vapour atomic absorption spectrometry with derivative signal processing. Anal Chim Acta, 1999, 395: 173-178
    [157]U illus F, Alegria A, Barbern R. et al. Lagarda Methymercury and inorganic mercury determination in fish by cold vapour generation atomic absorption spectrometry. Food Chemistry, 2000, 71: 529-533
    [158]谢永臻,庄峙厦,张志刚.流动注射氢化物发生原子荧光法测定中药中的微量As、Hg[j].分析科学学报,1997,13(4):296-299.
    [159]程祥圣,秦晓光,陈东.海洋生物样品中痕量汞的悬浮液进样流动注射-原子荧光法测定[J].分析测试学报,2003,22(3):66-68.
    [160] Zhang De-qiang, Ni Zhe-ming, Sun Han-Wen. Stabilization of organic and inorganic mercury in the graphite furnace with (NH4)PdCl6 - (NH4)3RhCl6 as a missed chemical modifier. Spectrochimica Acta, Part B, 1998, 52: 1049-1055 ]。
    [161] Sanchezuria J E, Sanz Medel A. Inorganic and methyl mercury speciation in environmental samples. Talanta, 1998, 47: 509-524.
    [162]Razagui I B A, Haxwell S J. The determination of mercury and selenium in maternal and neonatal scalp hair by inductively coupled plasma mass spectrometry. J Anal Toxicol, 1997, 21(2): 149-153.
    [163] T.H. Lee, S. J. Jiang. Determination of mercury compounds by capillary electrophoresis inductively coupled plasma mass spectrometry with microconcentric nebulization. Anal. Chim. Acta., 2000,413: 197–205
    [164] R. M. Blanco, M. T. Villanueva, J. E. S. Uria, A. S. Medel. Field sampling, preconcentration and determination of mercury species in river waters. Anal. Chim. Acta., 2000, 419: 137–144
    [165] B. Bouyssiere, F. Baco, L. Savary, R. Lobinski. Speciation analysis for mercury in gas condensates by capillary gas chromatography with inductively coupled plasma mass spectrometric detection. Journal of Chromatography A, 2002, 976: 431-439
    [166]孔伟,李慧芝,赵宏宇.巯基葡聚糖凝胶分离富集分光光度法测定微量汞. 化学世界, 1998,39(7): 379-381.
    [167]魏复盛,江万权.汞-对偶氮苯重氮氨基偶氮苯磺酸光度体系测定微量汞. 环境科学研究, 1990, 3(4): 7-9.
    [168]赵广超,金家英,陈允军.汞(Ⅱ)-碘化钾-次甲基蓝分光光度法测定汞(Ⅱ)的研究与应用. 分析试验室, 1992, 11(5): 30-31.
    [169]冯胜,张治芬.硫氰酸盐-罗丹明B-聚乙烯醇分光光度法在水相中测定微量汞. 分析化学, 1991, 19(1): 86-88.
    [170]刘伟民,陈晓青,徐金华.催化动力学-流动注射停留分光光度法测定为量汞的研究. 分析实验室, 2001, 20(3): 73-75.
    [171]方国桢,唐宗培.痕量汞的动力学光度测定法. 分析化学, 1987, 15(1): 46-49.
    [172]柳畅先,吴美玉,吴士筠.酶催化动力学光度法测定汞. 分析化学, 2002, 30(3): 346-348.
    [173]S. Meyer, F. Scholz, R. Trittler. Determination of inorganic ionic mercury down to 5×10–14 mol l–1 by differential-pulse anodic stripping voltammetry. Fresenius J. Anal. Chem. 1996, 356: 247
    [174] I. Turyan, D. Mandler. Electrochemical determination of ultralow levels (<10-12 M) of mercury by anodic stripping voltammetry using a chemically modified electrode. Electroanalysis, 1994, 6:838
    [175] M.A. Nolan, S.P. Kounaves. Microfabricated Array of Iridium Microdisks as a Substrate for Direct Determination of Cu2+ or Hg2+ Using Square-Wave Anodic Stripping Voltammetry. Anal. Chem., 1999, 71:3567
    [176] N.Y. Stojko, K.Z. Brainina, C. Faller, G. Henze. Stripping voltammetric determination of mercury at modified solid electrodes: I. Development of the modified electrodes. Anal. Chim. Acta, 1998, 371:145-153
    [177] C. Faller, N.Y. Stojko, G. Henze, K.Z. Branina. Stripping voltammetric determination of mercury at modified solid electrodes: Determination of mercury traces using PDC/Au(III) modified electrodes. Anal. Chim. Acta, 1999, 396: 195-202
    [178] E. Pinilla Gil, P. Ostapczuk. Potentiometric stripping determination of mercury(II), selenium(IV), copper(II) and lead(II) at a gold film electrode in water samples. Anal. Chim. Acta, 1994, 293:55-65
    [179] I. Svancara, M. Matousek, E. Sikora, et al. Carbon paste electrodes plated with a gold film for the voltammetric determination of mercury(II). Electroanalysis, 1997, 9: 827
    [180] E.A. Viltchinskaya, L.L. Zeigman, D.M. Garcia, et al. Simultaneous determination of mercury and arsenic by anodic stripping voltammetry. Electroanalysis, 1997, 9: 633
    [181] Q. Wu, S.C. Apte, G.E. Batley, K. C. Bowles. Determination of the mercury complexation capacity of natural waters by anodic stripping voltammetry. Anal. Chim. Acta, 1997, 350: 129-134
    [182] R. D. Riso, M. Waeles, P. Monbet, C.J. Chaumery. Anal. Chim. Acta, 2000, 410: 97–105
    [183] M. Rievaj and D. Bustin. Voltammetry quantification anf speciation of mercury compounds Analyst. 1992, 17 :117
    [184] J. Wang, B. Tian, Voltammetry quantification and speciation of mercury compounds. Anal. Chim Acta., 1993, 274: 1
    [185] C. Faller, N.Y. Stojko, G. Henze, K. Z. Brainina. Stripping voltammetric determination of mercury at modified solid electrodes Determination of mercury traces using PDC/Au(III) modified electrodes. Anal Chim Acta, 1999, 396: 195-202
    [186]A. J. Bard, L. R. Faulkner. Electrochemical Methods(谷林锳,吕鸣祥等,译者).北京:化学工业出版社,1986年. 259~266
    [187] J. Wang, B. Tian. Screen-printed stripping voltammetric/potentiometric electrodes for decentralized testing of trace lead. Anal. Chem. 1992, 64: 1706-1709.
    [188]N G Patel, A Erlenkoner, K Cammann, et al. Fabrication and characterization of disposable type lactate oxidase sensors for dairy products and clinical analysis. Sens Actuators B,2000,67: 134~141
    [189] S. Daniele, C. Bragato, M. A. Baldo. An approach to the calibrationless determination of copper and lead by anodic stripping voltammetry at thin mercury film microelectrodes. Anal. Chim. Acta, 1997, 346: 145-156
    [190] C.Donald Evans,Igor Nicic, James Q.Chambers. An electrochemical quartz crystal microbalance study of the deposition of mercury on graphite film. Electrochimica Acta. 1995, 40: 2611-2615
    [191] J.M. Pinilla, L. Hernandez, A.J. Conesa. Determination of mercury by open circuit adsorption stripping voltammetry on a platinum disc electrode. Anal. Chim. Acta., 1996, 319 : 25-30.
    [192] T. Li, Z. Yao, L. Ding, Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol–gel film onto Prussian Blue modified electrode. Sensors and Actuators B. 2004, 101: 155-160
    [193] Karyakin, A.A., Karyakina, E.E., Gorton, L. Amperometric biosensor for glutamate using Prussian Blue-based "artificialperoxidase" as a transducer for hydrogen peroxide . Anal. Chem., 2000,72: 1720-1723
    [194] Karyakin, A. A., Gitelmacher, O. V., Karyakina, E. E., Anal. Chem., 1995, 67(14): 2419-2423
    [195] F. Ricci, A. Amine, G. Palleschi, D. Moscone, Prussian blue based screen printed biosensors with improved characteristics of long term lifetime and pH stability. Biosensors and Bioelectronics, 2003, 18: 165-174
    [196] I.L. Mattos, L. Gorton, T. Ruzgas. Biosens. Bioelectron 18 (2003) 193-200.
    [197] H.X. Luo, Z. J. Shi, N.Q. Li, et al, Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode, Anal. Chem.73 (2001) 915-925
    [198] A. Viehbeck, D.W. DeBerry, Electrochemistry of Prussian blue films on metal and semiconductor electrodes. J. Electrochem. Soc. 1985, 132: 1369-1374
    [199] J. F. Keggin, F. D. Miles, Structures and formule of the Prussion Blues and related compounds. Nature 1936, 137: 577-578
    [200] A. A. Karyakin, Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis. 2001, 13: 813-819
    [201] D. Zhang, K. Wang, D.C. Sun, X.H. Xia, H.Y. Chen, Ultrathin Layers of Densely Packed Prussian Blue Nanoclusters Prepared from a Ferricyanide Solution. Chem. Mater. 2003, 15: 4163-4165
    [202] D. Zhang, K. Wang, D.C. Sun, X.H. Xia, H.Y. Chen, Potentiodynamic deposition of Prussian blue from a solution containing single component of ferricyanide and its mechanism investigation. J. Solid. State ElectroChem. 2003, 7: 561-566
    [203] P.J. Kuulesza, M.A. Maik, A. Denca, J. Strojek, In Situ FT-IR/ATR Spectro- electrochemistry of Prussian Blue in the Solid State. Anal. Chem. 1996, 68: 2442-2446
    [204] R. F. Lane, A.T. Hubbard, Electrochemistry of Chemisorbed Molecules I Reactants Connected to Electrodes through Olefinic Substituents. J. Phys. Chem. 1973, 77: 1401
    [205] N.F. Zakharchuk, B. Meyer, H. Hennig, F. Scholz, A. Jaworsi, Z. Stojel, A comparative study of Prussian-Blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian Blue. J. Electroanal. Chem. 1995, 398: 23-35
    [206] M.R. Deakin, H. Byrd, Prussian blue coated quartz crystal microbalance as a detector for electroinactive cations in aqueous solution. Anal. Chem. 1989, 61: 290-295.
    [207] Laviron. E. Adsorption autocatalysis in polarography and in linear potential sweeping voltammetry. J. Electroanal. Chem. 1974, 52: 355-393.
    [208] Laviron. E. General expressionof the linear potentialsweep voltammogram in the case of diffusionlesselectrochemical systems. J. Electroanal. Chem. 1979, 101: 19-28.
    [209] Y. Zhang, Y. Wen, Y. Liu, D. LI, J. Li. Functionalization of single walled carbon nanotubes with Prussian blue. Electrochemistry Communications. 2004, 6: 1180-1184
    [210] S.A. Jaffar, A.P.F. Turner, Novel hexacyanoferrate(III) modified graphited disc electrodes and their application in enzyme electrodes-part1. Biosens. Bioelectron. 1997, 12: 1-9
    [211] D. Moscone, D. D'Ottavi, D. Compagnone, A. Amine, G. Palleschi, “Direct electro- chemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2. Anal. Chem. 73 (2001) 2529-2535.
    [212] K. Itaya, N.Shoji, I. Uchida, “Catalysis of the Reduction of Molecular Oxygen to Water at Prussian Blue Modified Electrodes “J. Am. Chem. Soc. 106 (1984) pp.3423-3429.
    [213] Q. Deng, B. Li, S. Dong, “Self-gelatinizable copolymer immobilized glucose biosensor based on Prussian Blue modified graphite electrod” Analyst 123 (1998) pp.1995-1999.
    [214] X. Zhang, J. Wang, B. Ogorevc, U. E.Spichiger, “Glucose Nanosensor Based on Prussian-Blue Modified Carbon-Fiber Cone Nanoelectrode and an Integrated Reference Electrode” Electroanalysis 11 (1999) pp. 945-949.
    [215] A. A. Karyakin , Karyakina, L Gorton, “On the mechanism of H2O2 reduction at Prussian Blue modified electrodes” Electrochem. Commun. 1 (1999) pp. 78- 82.
    [216] G. C. Zhao, Z. Z. Yin, L. Zhang, et al, Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2. Electrochemistry Communications. 2005, 7: 256-260
    [217] J. Z. Xu, J. J. Zhu, Q. Wu, Z. Hu, H. Y. Chen, An Amperometric Biosensor Based on the Coimmobilization of Horseradish Peroxidase and Methylene Blue on a Carbon Nanotubes Modified Electrode. Electroanalysis. 2003, 15: 219-224.
    [218] A. Salimi, A. Noorbakhsh, M. Ghadermarz, Direct electrochemistry and electrocatalyyic activity of caltalase incorpaotated onto multiwall carbon nanotubes-modified glassy carbon electrode. Anal Biochem. 2005, 344: 16.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.