天基观测目标跟踪、定轨及网络路由算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天基光学监视系统利用天基平台搭载的光学传感器对空间目标进行探测、预警、跟踪、编目,具有探测范围广、作用距离远、不受地理位置限制等优点,成为各大国在空间领域的发展重点。天基观测条件下的空间目标跟踪定轨技术以及天基网络路由技术是天基光学监视系统信息处理和信息传输的关键技术。本文针对天基观测低轨多目标跟踪方法、高轨目标短弧定轨方法以及天基低轨通信网络的路由算法展开研究,主要工作包括:
     1.基于随机有限集理论的天基观测低轨多目标跟踪方法研究
     针对低轨多目标的天基像平面跟踪问题,给出了混合高斯势概率假设密度(Gaussian Mixture Cardinalized Probability Hypothesis Density, GM-CPHD)滤波方法。该方法利用GM-CPHD滤波估计像平面上的目标数量和目标状态,采用最小权匹配方法生成目标在像平面上的运动轨迹。仿真结果表明,GM-CPHD滤波方法相对GM-PHD滤波对目标数量的估计精度有显著提高,能够较为准确的生成目标的轨迹。
     提出了基于多伯努利平滑的低轨多目标天基像平面跟踪方法,用来提高基于滤波的跟踪方法的性能。多伯努利平滑采用多伯努利近似方法实现多目标平滑状态概率密度的反向递推计算,利用序贯蒙特卡洛方法解决多重积分的计算问题。仿真结果表明,与滤波相比,多伯努利平滑对目标数量和目标状态的估计精度都有显著提高。
     针对天基观测低轨多目标的三维跟踪问题,提出了多模型CPHD滤波。该滤波建立了低轨目标的多个运动模型,将目标的运动状态与运动模式组合成增广状态,利用CPHD滤波递推目标数量的后验分布和增广状态的后验PHD,同时得到目标数量和目标三维状态的估计。仿真结果表明,多模型CPHD滤波的跟踪性能优于单模型CPHD滤波和多模型PHD滤波。
     针对天基观测低轨多目标跟踪的传感器系统误差自校准问题,提出了扩展CPHD滤波。该滤波将传感器系统误差添加到目标运动状态中构成扩展状态,利用CPHD滤波递推目标数量的后验分布和扩展状态的后验PHD,同时得到目标数量、目标状态和传感器系统误差的估计。仿真结果表明,扩展CPHD滤波能够实时估计校正系统误差,跟踪性能相对标准CPHD滤波有显著提高。
     2.低轨单星观测条件下的高轨目标短弧定轨方法研究
     给出了利用两个相邻短弧段的测角数据确定目标轨道的两种方法。第一种方法利用二体轨道能量约束构造容许域,对第一个短弧段的容许域进行三角剖分采样,通过分析这些采样点与第二个短弧段的差异,优先选取多个采样点轨道作为初轨,分别对各初轨进行轨道改进。仿真结果表明,该方法能成功解算最小二乘轨道。第二种方法由两个短弧段的测角数据建立二体轨道能量角动量守恒方程,采用变量替换法求解守恒方程获得空间目标的多个轨道,通过方差分析从中选择最合适的轨道作为初轨,对该初轨进行轨道改进。仿真结果表明,此方法在无空间目标轨道任何先验信息的条件下能够实现初轨计算,轨道改进的收敛性较好,能够成功收敛于最小二乘解。
     3.天基低轨通信网络的路由算法研究
     提出了多约束最优路由算法。该算法建立了以传输时延、跳数和可用带宽为约束条件以优化链路切换率、时延、带宽利用率为目标的多约束最优路由模型,采用缩小可行解搜索空间的方法减少求解多约束最优路径的计算量。仿真结果表明,路由算法的复杂度和切换性能优于同类算法,适合于星上在线路由计算。
By using optical sensors on orbiting platforms, the space-based optical surveillancesystem has the capabilities of detecting, warning, tracking and cataloging space targets.The world’ powerful nations focus on developing space-based optical surveillancesystem in the field of aerospace, since this system has some attractive advantages suchas wide detection area, far surveillance distance, not suffering from geographicconstraints, and so on. The tracking and orbit determination technologies for spacetarget, and the routing technology for space-based network conditioned on space-basedobservation play key roles in the information processing and transmission of thespace-based optical surveillance system. This paper investigates the low-Earth-orbit(LEO) multi-target tracking and the short-arc orbit determination of high-Earth-orbit(HEO) target using space-based observations, and the routing algorithm of space-basedLEO network. The main contributions of this paper are as follows:
     1. Random finite set theory based LEO multi-target tracking using space-basedobservations
     For tracking of LEO multi-target on space-based focal plane, a method of Gaussianmixture cardinalized probability hypothesis density (GM-CPHD) filter is given. Thismethod estimates the number and the target states on the focal plane by usingGM-CPHD filter, and then generates target tracks on the focal plane by using themethod of minimum weighted matching. Simulation results show that the GM-CPHDfilter method outperforms the GM-PHD filter for the estimation accuracy of targetnumber, and that the target tracks can be generated almost exactly.
     A multi-Bernoulli smoother for tracking of LEO multi-target on space-based focalplane is proposed. The smoother is desired to improve the performance of trackingmethod based on the filter. For the multi-Bernoulli smoother, the backward recursion ofthe smoothed multi-target probability density is derived by using the method ofmulti-Bernoulli approximation, and the computational problem of multiple integrals issolved by using sequential Monte Carlo method. Simulation results show that thesmoother can dramatically improve the estimation accuracy of target number and targetstates over the filter.
     For3D tracking of LEO multi-target using space-based observations, a multiplemodel CPHD filter is proposed. This filter constructs multiple motion models for LEOtarget. The augmented state is established by combining the target state with the targetmotion mode. Both the posterior cardinality distribution of targets and the posteriorPHD of the augmented state are propagated by using CPHD filter. The target numberand the target3D states are jointly estimated. Simulation results show that the multiplemodel CPHD filter outperforms the single model CPHD filter and the multiple model PHD filter.
     For the self-calibration of systematical error of sensors in space-based LEOmulti-target tracking problem, an extended CPHD filter is proposed. This filterestablishes extended state by appending the sensor biases to the target state. Both theposterior cardinality distribution of targets and the posterior PHD of the extended stateare propagated by using CPHD filter. The number and the states of the targets and thesensor biases are jointly estimated. Simulation results show that the extended CPHDfilter successfully achieves real-time estimation and alignment of the systematical error,and outperforms the standard CPHD filter.
     2. Short-arc orbit determination method for HEO target conditioned on LEO singlesatellite observation
     We give two methods of orbit determination using two adjacent short-arcs ofangular measurements. The first method constructs admissible region by using theenergy constraint of two-body orbit. The admissible region of the first arc is sampled bytriangulation. Comparing these samples with the second arc, several proper orbits ofthese samples are determined as initial orbits. These initial orbits are all used for orbitimprovement. Simulation results show that this method can successfully achieve theleast square solution. The second method establishes energy and angular-momentumconservation equations of two-body orbit using two short arcs of angular measurements.Multiple solutions of these equations are obtained via variable transformation. Theoptimal solution is selected by covariance analysis, and is used for computing the initialorbit. This initial orbit is used for orbit improvement. Simulation results show that thismethod can derive initial orbit without any prior information about the orbit of spacetarget. The orbit improvement can successfully achieve the least square solution,indicating the excellent convergence behavior.
     3. Routing algorithm of space-based LEO network
     A multi-constrained optimal routing algorithm is proposed. This algorithmestablishes the multi-constrained optimal path (MCOP) model, whose constraints aredelay, hop-count and available bandwidth and objective is to optimize the performanceof handover, delay and bandwidth utilization. The computational amount of findingMCOP is reduced by decreasing the searching field of feasible solutions. Simulationresults show that the routing algorithm is superior to other current algorithms in theaspects of computing complexity and handover performance, indicating the adaptabilityfor on-line routing.
引文
[1]邴启军,冯书兴.高轨预警卫星在导弹防御系统中的作用及脆弱性研究[J].飞航导弹,2010,(11):23-27.
    [2] Clemons T M, Chang K-C. Sensor Calibration Using In-Situ CelestialObservations to Estimate Bias in Space-Based Missile Tracking[J]. IEEETransactions on Aerospace and Electronic Systems,2012,48(2):1403-1427.
    [3] Clemons T M. Improved Space Target Tracking through Bias Estimation fromIn-Situ Celestial Observations[D]. PhD Thesis, George Mason University,2010.
    [4]总装备部.卫星应用现状与发展[M].北京:中国科学技术出版社,2001.
    [5] Lin L, Xu H, Xu D, et al. QPSO-Based Algorithm of CSO Joint InfraredSuper-Resolution and Trajectory Estimation[J]. Journal of Systems Engineeringand Electronics,2011,22(3):405-411.
    [6] Watson J, Zondervan K. The Missile Defense Agency’s Space Tracking andSurveillance System[C]. Proceedings of SPIE,2008.
    [7] Korn J, Holtz H, Farber M S. Trajectory Estimation of Closely Spaced Objects(CSO) Using Infrared Focal Plane Data of an STSS (Space Tracking andSurveillance System) Platform[C]. Proceedings of SPIE,2004.
    [8]冯芒.美国的新一代导弹预警卫星系统——天基红外系统[J].飞航导弹,2001,(10):32-34.
    [9] Budianto I A, Olds J R. A Collaborative Optimization Approach to Design andDeployment of a Space Based Infrared System Constellation[C]. IEEE AerospaceConference, Montana, USA,2000:385-393.
    [10] Slattery J E, Cooley P R. Space-Based Infrared Satellite System (SBIRS)Requirements Management[C]. IEEE Aerospace Applications Conference, LosAngeles, USA,1998:223-232.
    [11] Andreas N S. Space-Based Infrared System (SBIRS) System of Systems[C].IEEE Aerospace Applications Conference, Los Angeles, USA,1997:429-437.
    [12]余建慧,苏增立,谭谦.空间目标天基光学观测模式分析[J].量子电子学报,2006,23(6):772-776.
    [13] Orbital Deep Space Imager (ODSI)[EB/OL].http://www.globalsecurity.org/space/systems/odsi.htm,2011-07-21.
    [14]崔潇潇.美国天基空间目标监视系统概况[J].国际太空,2011,(7):37-43.
    [15]周一宇,李骏,安玮.天基光学空间目标监视信息处理技术分析[J].光电工程,2008,35(4):43-48.
    [16]周海银,潘晓刚,李董辉.基于天基空间目标监视系统的定轨技术研究[J].系统仿真学报,2008,20(13):3538-3541,3547.
    [17] Sharma J, Stokes G H, von Braun C, et al. Toward Operational Space-BasedSpace Surveillance[J]. Lincoln Laboratory Journal,2002,13(2):309-332.
    [18] Sharma J. Space-Based Visible Space Surveillance Performance[J]. Journal ofGuidance, Control, and Dynamics,2000,23(1):153-158.
    [19] Burnham W F, Morton F E, Sridharan R, et al. Mission Planning for Space-BasedSurveillance with the Space-Based Visible Sensor[J]. Journal of Guidance,Control, and Dynamics,2000,23(1):165-169.
    [20] Gaposchkin E M, von Braun C, Sharma J. Space-Based Space Surveillance withSpace-Based Visible[J]. Journal of Guidance, Control, and Dynamics,2000,23(1):148-152.
    [21] Stokes G H, von Braun C, Sridharan R, et al. The Space-Based VisibleProgram[J]. Lincoln Laboratory Journal,1998,11(2):205-238.
    [22]刘永征,刘学斌.美国空间态势感知能力研究[J].航天电子对抗,2009,25(3):1-3.
    [23]王杰娟,于小红.国外天基空间目标监视研究现状与特点分析[J].装备指挥技术学院学报,2006,17(4):33-37.
    [24] Scott R L, Wallace B, Bedard D. Space-Based Observations of Satellites from theMOST Microsatellite[R]. Canada: Defence Research and Development CanadaOttawa,2006.
    [25] Rucinski S, Carroll K, Kuschnig R, et al. MOST (Microvariability&Oscillationsof Stars) Canadian Astronomical Micro-Satellite[J]. Advances in Space Research,2003,31(2):371-373.
    [26] Walker G, Matthews J, Kuschnig R, et al. The MOST Asteroseismology Mission:Ultraprecise Photometry from Space[J]. Publications of the Astronomical Societyof the Pacific.2003,115(811):1023-1035.
    [27] Singer R A, Sea R G. A New Filter for Optimal Tracking in Dense MultitargetEnvironment[C]. Proceedings of the Ninth Allerton Conference Circuit andSystem Theory, Urbana, USA,1973:571-582.
    [28]韩崇昭,朱洪艳,段战胜等.多源信息融合(第二版)[M].北京:清华大学出版社,2010.
    [29]权太范.目标跟踪新理论与技术[M].北京:国防工业出版社,2009.
    [30]何友,修建娟,张晶炜等.雷达数据处理及应用[M].北京:电子工业出版社,2009.
    [31] Bar-Shalom Y, Fortmann T E. Tracking and Data Association[M]. San Diego:Academic,1988.
    [32] Reid D B. An Algorithm for Tracking Multiple Targets[J]. IEEE Transactions onAutomatic Control,1979, AC-24(6):843-854.
    [33] Blackman S S. Multiple Hypothesis Tracking for Multiple Target Tracking[J].IEEE Aerospace and Electronic Systems Magazine,2004,19(1):5-18.
    [34] Mahler R. Statistical Multisource-Multitarget Information Fusion[M]. Norwood,MA: Artech House,2007.
    [35] Mahler R. Multitarget Bayes Filtering via First-Order Multitarget Moments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1152-1178.
    [36] Vo B-N, Singh S, Doucet A. Sequential Monte Carlo Implementation of the PHDFilter for Multi-Target Tracking[C]. International Conference on InformationFusion, Cairns, Australia,2003:792-799.
    [37] Vo B-N, Singh S, Doucet A. Sequential Monte Carlo Methods for Multi-TargetFiltering with Random Finite Sets[J]. IEEE Transactions on Aerospace andElectronic Systems,2005,41(4):1224-1245.
    [38] Vo B-N, Ma W-K. A Closed-Form Solution for the Probability HypothesisDensity Filter[C].7th International Conference on Information Fusion,2005:856-863.
    [39] Vo B-N, Ma W-K. The Gaussian Mixture Probability Hypothesis DensityFilter[J]. IEEE Transactions on Signal Processing,2006,54(11):4091-4104.
    [40] Johansen A M, Singh S S, Doucet A, et al. Convergence of the SMCImplementation of the PHD Filter[J]. Methodology and Computing in AppliedProbability,2006,8(2):265-291.
    [41] Clark D E, Bell J. Convergence Results for the Particle PHD Filter[J]. IEEETransactions on Signal Processing,2006,54(7):2652-2661.
    [42] Clark D E, Vo B-N. Convergence Analysis of the Gaussian Mixture PHDFilter[J]. IEEE Transactions on Signal Processing,2007,55(4):1204-1212.
    [43] Panta K, Vo B-N, Singh S, et al. Probability Hypothesis Density Filter versusMultiple Hypothesis Tracking[C]. Proceedings of SPIE,2004.
    [44] Clark D E, Panta K. The GM-PHD Filter Multiple Target Tracker[C].9thInternational Conference on Information Fusion, Florence, Italy,2006.
    [45] Clark D E. Multiple Target Tracking with the Probability Hypothesis DensityFilter[D]. PhD Thesis, Heriot-Watt University, Edinburgh,2006.
    [46] Clark D E, Bell J. Multi-Target State Estimation and Track Continuity for theParticle PHD Filter[J]. IEEE Transactions on Aerospace and Electronic Systems,2007,43(4):1441-1453.
    [47] Trung P N. Tracking of Multiple Objects Using the PHD Filter[D]. PhD Thesis,National University of Singapore,2007.
    [48] Panta K. Multi-Target Tracking Using1st Moment of Random Finite Sets[D].PhD Thesis, The University of Melbourne,2007.
    [49] Panta K, Clark D E, Vo B-N. Data Association and Track Management for theGaussian Mixture Probability Hypothesis Density Filter[J]. IEEE Transactions onAerospace and Electronic Systems,2009,45(3):1003-1016.
    [50] Yin J, Zhang J, Zhuang Z. Gaussian Sum PHD Filtering Algorithm for NonlinearNon-Gaussian Models[J]. Chinese Journal of Aeronautics,2008,21(4):341-351.
    [51] Liu W, Han C, Lian F, et al. Multitarget State Extraction for the PHD FilterUsing MCMC Approach[J]. IEEE Transactions on Aerospace and ElectronicSystems,2010,46(2):864-883.
    [52] Tang X, Wei P. Multi-Target State Extraction for the Particle ProbabilityHypothesis Density Filter[J]. IET Radar Sonar and Navigation,2011,5(8):877-883.
    [53] Whiteley N, Singh S, Godsill S. Auxiliary Particle Implementation of ProbabilityHypothesis Density Filter[J]. IEEE Transactions on Aerospace and ElectronicSystems,2010,46(3):1437-1454.
    [54]孟凡彬.基于随机集理论的多目标跟踪技术研究[D].哈尔滨:哈尔滨工程大学,2010:61-69.
    [55]孟凡彬,郝燕玲,张崇猛等.基于无迹粒子PHD滤波的序贯融合算法[J].系统工程与电子技术,2011,33(1):30-34.
    [56] Yoon J H, Kim D Y, Yoon K-J. Efficient Importance Sampling Function Designfor Sequential Monte Carlo PHD Filter[J]. Signal Processing,2012,92(9):2315-2321.
    [57] Lian F, Han C, Liu W, et al. Joint Spatial Registration and Multi-Target TrackingUsing an Extended Probability Hypothesis Density Filter[J]. IET Radar Sonarand Navigation,2011,5(4):441-448.
    [58] Erdinc O, Willett P, Bar-Shalom Y. Probability Hypothesis Density Filter forMultitarget Multisensor Tracking[C].8th International Conference onInformation Fusion, Philadelphia, USA,2005.
    [59] Mahler R. A Theory of PHD Filters of Higher Order in Target Number[C].Proceedings of SPIE,2006.
    [60] Mahler R. PHD Filters of Higher Order in Target Number[J]. IEEE Transactionson Aerospace and Electronic Systems,2007,43(4):1523-1543.
    [61] Vo B-T, Vo B-N, Cantoni A. The Cardinalized Probability Hypothesis DensityFilter for Linear Gaussian Multi-Target Models[C].40th Annual Conference onInformation Sciences and Systems,2006:681-686.
    [62] Vo B-T, Vo B-N, Cantoni A. Performance of PHD Based Multi-Target Filters[C].9th International Conference on Information Fusion,2006:1-8.
    [63] Vo B-T, Vo B-N, Cantoni A. Analytic Implementations of the CardinalizedProbability Hypothesis Density Filter[J]. IEEE Transactions on Signal Processing,2007,55(7):3553-3567.
    [64] Vo B-T. Random Finite Sets in Multi-Object Filtering[D]. PhD Thesis, TheUniversity of Western Australia,2008.
    [65] Svensson D, Wintenby J, Svensson L. Performance Evaluation of MHT andGM-CPHD in a Ground Target Tracking Scenario[C].12th InternationalConference on Information Fusion, Seattle, USA,2009:300-307.
    [66] Erdinc O, Willett P, Bar-Shalom Y. A Physical-Space Approach for theProbability Hypothesis Density and Cardinalized Probability Hypothesis DensityFilters[C]. Proceedings of SPIE,2006.
    [67] Erdinc O, Willett P, Bar-Shalom Y. The Bin-Occupancy Filter and Its Connectionto the PHD Filters[J]. IEEE Transactions on Signal Processing,2009,57(11):4232-4246.
    [68] Zhang H, Jing Z, Hu S. Gaussian Mixture CPHD filter with Gating Technique[J].Signal Processing,2009,89(8):1521-1530.
    [69]张洪建.基于有限集统计学的多目标跟踪算法研究[D].上海:上海交通大学,2009.
    [70] Macagnano D, de Abreu G T F. Adaptive Gating for Multitarget Tracking withGaussian Mixture Filters[J]. IEEE Transactions on Signal Processing,2012,60(3):1533-1538.
    [71] Ulmke M, Erdinc O, Willett P. GMTI Tracking via the Gaussian MixtureCardinalized Probability Hypothesis Density Filter[J]. IEEE Transactions onAerospace and Electronic Systems,2010,46(4):1821-1833.
    [72] Pollard E, Pannetier B, Rombaut M. Hybrid Algorithms for Multitarget TrackingUsing MHT and GM-CPHD[J]. IEEE Transactions on Aerospace and ElectronicSystems,2011,47(2):832-847.
    [73] Mahler R, Vo B-T, Vo, B-N. CPHD Filtering with Unknown Clutter Rate andDetection Profile[J]. IEEE Transactions on Signal Processing,2011,57(8):3497-3513.
    [74] Vo B-T, Vo B-N, Cantoni A. The Cardinality Balanced Multi-TargetMulti-Bernoulli Filter and Its Implementations[J]. IEEE Transactions on SignalProcessing,2009,57(2):409-423.
    [75] Vo B-T, Vo B-N, Hoseinnezhad R, et al. Multi-Bernoulli Filtering with UnknownClutter Intensity and Sensor Field-Of-View[C]. IEEE Proceedings of InformationSciences and Systems,2011:1-6.
    [76] Hoseinnezhad R, Vo B-N, Vo B-T, et al. Bayesian Integration of Audio andVisual Information for Multi-Target Tracking Using a CB-MeMBer Filter[C].IEEE International Conference on Acoustics, Speech and Signal Processing,Prague, Czech Republic,2011:2300-2303.
    [77] Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Trackingand Navigation[M]. New York: John Wiley,2001.
    [78] Rauch H E. Solutions to the Linear Smoothing Problem[J]. IEEE Transactions onAutomatic Control,1963,8(4):371-372.
    [79] Haykin S. Kalman Filtering and Neural Networks[M]. New York: John Wiley,2001.
    [80] Kitagawa G. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear StateSpace Models[J]. Journal of Computational and Graphical Statistics,1996,5(1):1-25.
    [81] Fong W, Godsill S J, Doucet A, et al. Monte Carlo Smoothing with Applicationto Audio Signal Enhancement[J]. IEEE Transactions on Signal Processing,2002,50(2):438-449.
    [82] Hürzeler M, Künsch H R. Monte Carlo Approximations for General State-SpaceModels[J]. Journal of Computational and Graphical Statistics,1998,7(2):175-193.
    [83] Doucet A, Godsill S, Andrieu C. On Sequential Monte Carlo Sampling Methodsfor Bayesian Filtering[J]. Statistics and Computing,2000,10(3):197-208.
    [84] Godsill S J, Doucet A, West M. Monte Carlo Smoothing for Nonlinear TimeSeries[J]. Journal of the American Statistical Association,2004,99(465):156-168.
    [85] Clark D E, Vo B-T, Vo B-N. Forward-Backward Sequential Monte CarloSmoothing for Joint Target Detection and Tracking[C].12th InternationalConference on Information Fusion, Seattle, USA,2009:899-906.
    [86] Vo B-T, Clark D, Vo B-N, et al. Bernoulli Forward-Backward Smoothing forJoint Target Detection and Tracking[J]. IEEE Transactions on Signal Processing,2011,59(9):4473-4477.
    [87] Vo B-T, See C M, Ma N, et al. Multi-Sensor Joint Detection and Tracking withthe Bernoulli Filter[J]. IEEE Transactions on Aerospace and Electronic Systems,2012,48(2):1385-1402.
    [88] Blom H A P, Bar-Shalom Y. The Interacting Multiple Model Algorithm forSystems with Markovian Switching Coefficients[J]. IEEE Transactions onAutomatic Control,1988,33(8):780-783.
    [89] Li X R, Jilkov V P. Survey of Maneuvering Target Tracking. Part V:Multiple-Model Methods[J]. IEEE Transactions on Aerospace and ElectronicSystems,2005,41(4):1255-1321.
    [90] Tugnait J K. Tracking of Multiple Maneuvering Targets in Clutter Using MultipleSensors, IMM, and JPDA Coupled Filtering[J]. IEEE Transactions on Aerospaceand Electronic Systems,2004,40(1):320-330.
    [91] Puranik S, Tugnait J K. Tracking of Multiple Maneuvering Targets UsingMultiscan JPDA and IMM Filtering[J]. IEEE Transactions on Aerospace andElectronic Systems,2007,43(1):23-35.
    [92] Punithakumar K, Kirubarajan T, Sinha A. A Multiple Model ProbabilityHypothesis Density Filter for Tracking Maneuvering Targets[C]. Proceedings ofSPIE,2004.
    [93] Punithakumar K, Kirubarajan T, Sinha A. Multiple-Model Probability HypothesisDensity Filter for Tracking Maneuvering Targets[J]. IEEE Transactions onAerospace and Electronic Systems,2008,44(1):87-98.
    [94] Pasha S A, Vo B-N, Tuan H D, et al. A Gaussian Mixture PHD Filter for JumpMarkov System Models[J]. IEEE Transactions on Aerospace and ElectronicSystems,2009,45(3):919-936.
    [95] Wood T M. Interacting Methods for Manoeuvre Handling in the GM-PHDFilter[J]. IEEE Transactions on Aerospace and Electronic Systems,2011,47(4):3021-3025.
    [96] Vo B-T, Pasha A, Tuan H D. A Gaussian Mixture PHD Filter for Nonlinear JumpMarkov Models[C]. Proceedings of the45th IEEE Conference on Decision andControl, San Diego, USA,2006:3162-3167.
    [97] Li W, Jia Y. Gaussian Mixture PHD Filter for Jump Markov Models Based onBest-Fitting Gaussian Approximation[J]. Signal Processing,2011,91(4):1036-1042.
    [98] Ouyang C, Ji H-B, Guo Z-Q. Extensions of the SMC-PHD Filters for JumpMarkov Systems[J]. Signal Processing,2012,92(6):1422-1430.
    [99] Tobias M, Lanterman A D. Probability Hypothesis Density-Based MultitargetTracking with Bistatic Range and Doppler Observations[J]. IEE ProceedingsRadar Sonar Navigation,2005,152(3):195-205.
    [100] Tobias M, Lanterman A D. Techniques for Birth-Particle Placement in theProbability Hypothesis Density Particle Filter Applied to Passive Radar[J]. IETRadar Sonar and Navigation,2008,5(2):351-365.
    [101]时银水,姬红兵,杨柏胜.组网无源雷达变数目多目标跟踪算法[J].西安电子科技大学学报,2010,37(2):218-223.
    [102]童慧思,张颢,孟华东等. PHD滤波器在多目标检测前跟踪中的应用[J].电子学报,2011,39(9):2046-2051.
    [103] Habtemariam B K, Tharmarasa R, Kirubarajan T. PHD Filter BasedTrack-Before-Detect for MIMO Radars[J]. Signal Processing,2012,92(3):667-678.
    [104] Wang Y-D, Wu J-K, Kassim A A, et al. Data-Driven Probability HypothesisDensity Filter for Visual Tracking[J]. IEEE Transactions on Circuits and Systemsfor Video Technology,2008,18(8):1085-1095.
    [105] Maggio E, Taj M, Cavallaro A. Efficient Multitarget Visual Tracking UsingRandom Finite Sets[J]. IEEE Transactions on Circuits and Systems for VideoTechnology,2008,18(8):1016-1027.
    [106] Maggio E, Cavallaro A. Learning Scene Context for Multiple Object Tracking[J].IEEE Transactions on Image Processing,2009,18(8):1873-1884.
    [107] Wu J, Hu S. Probability-Hypothesis-Density Filter for Multitarget VisualTracking with Trajectory Recognition[J]. Optical Engineering,2010,49(12):129701.
    [108] Hoseinnezhad R, Vo B-N, Vo B-T, et al. Visual Tracking of Numerous Targetvia Multi-Bernoulli Filtering of Image Data[J]. Pattern Recognition,2012,45(10):3625-3635.
    [109] Wood T M, Yates C A, Wilkinson D A. Simplified Multitarget Tracking Usingthe PHD Filter for Microscopic Video Data[J]. IEEE Transactions on Circuits andSystems for Video Technology,2012,22(5):702-713.
    [110] Clark D E, Bell J. Bayesian Multiple Target Tracking in Forward Scan SonarImages Using the PHD Filter[J]. IEE Proceedings Radar Sonar Navigation,2005,152(5):327-334.
    [111] Clark D, Ruiz I T, Petillot Y, et al. Particle PHD Filter Multiple Target Trackingin Sonar Image[J]. IEEE Transactions on Aerospace and Electronic Systems,2007,43(1):409-416.
    [112] Georgescu R, Willett P. The GM-CPHD Tracker Applied to Real and RealisticMultistatic Sonar Data Sets[J]. IEEE Journal of Oceanic Engineering,2012,37(2):220-235.
    [113] Haworth C D, de Saint-Pern Y, Clark D, et al. Detection and Tracking ofMultiple Metallic Objects in Millimetre-Wave Images[J]. International Journal ofComputer Vision,2007,71(2):183-196.
    [114]盛卫东,许丹,周一宇等.基于高斯混合概率假设密度滤波的扫描型光学传感器像平面多目标跟踪算法[J].航空学报,2011,32(3):497-506.
    [115]林两魁,许丹,盛卫东等.基于随机有限集的中段弹道目标群星载红外像平面跟踪方法[J].红外与毫米波学报,2010,29(6):465-470.
    [116] Lin L, Xu H, An W. Tracking a Large Number of Closely Spaced Objects Basedon the Particle Probability Hypothesis Density Filter via Optical Sensor[J].Optical Engineering,2011,50(11):116401.
    [117]林两魁,徐晖,龙云利等.基于概率假设密度滤波的中段弹道目标群红外多传感器组跟踪方法[J].光学学报,2011,31(2):0228002.
    [118]刘林.航天器轨道理论[M].北京:国防工业出版社,2000.
    [119] Richard L, Branham J. Laplacian Orbit Determination and DifferentialCorrections[J]. Celestial Mechanics and Dynamical Astronomy,2005,93(1-4):53-68.
    [120]王威,于志坚.航天器轨道确定——模型与算法[M].北京:国防工业出版社,2007.
    [121]茅永兴.航天器轨道确定的单位矢量法[M].北京:国防工业出版社,2009.
    [122]陆本魁,戎鹏志,吴建民等.人造地球卫星初轨计算的单位矢量法[J].宇航学报,1997,18(2):1-7.
    [123]陆本魁,李剑峰,马静远.一种有摄初轨计算的单位矢量法[J].宇航学报,1999,20(1):14-20.
    [124] Lu B, Ma J, Xia Yi, et al. A Method of Initial Orbit Determination for Long ArcData[J]. Chinese Astronomy and Astrophysics,2004,28(1):88-93.
    [125]陈务深,掌静,马静远等.总体最小二乘法在初轨计算中的应用[J].天文学报,2006,47(2):186-191.
    [126] Zhang J, Lu B, Ma J, et al. A New Method for Orbit Determination: Unit VectorMethod[J]. Science in China Series G: Physics, Mechanics&Astronomy,2009,52(7):1115-1119.
    [127]何晶,马静远,陆本魁等.初轨计算方法中的常系数差修正[J].天文学报,2006,47(3):284-290.
    [128]吴连大,贾沛璋.初轨计算中的病态分析[J].天文学报,1997,38(3):288-296.
    [129]甘庆波,马静远,陆本魁等.一种基于星间方向观测的初轨计算方法[J].宇航学报,2007,28(3):619-622.
    [130] Chen W-S, Gan Q-B, Zhang J, et al. Preliminary Exploration of OrbitDetermination Method by Means of Space-Based Angle Measurement Data[J].Chinese Astronomy and Astrophysics,2008,32(2):197-208.
    [131]潘晓刚,李济生,段晓君等.天基空间目标监视与跟踪系统轨道确定技术研究[J].自然科学进展,2008,18(11):1226-1239.
    [132]刘磊,郗晓宁,戎鹏志等.一种稀疏测向数据下的天基初轨确定模型及其算法[J].宇航学报,2009,30(3):870-876.
    [133]刘磊,郗晓宁,戎鹏志.一种改进的天基测向初定轨初值和模型求解方法[J].上海航天,2009,26(1):1-25,23.
    [134]刘磊,郗晓宁,陈海萍.一种天基测向初轨确定方法[J].国防科技大学学报,2009,31(1):11-15.
    [135]刘光明,廖瑛,陈忠贵.基于广义正则化最小二乘的天基测向初定轨[J].中国空间科学技术,2010,30(4):1-8.
    [136] Milani A, Gronchi G F, Farnocchia D, et al. Topocentric Orbit Determination:Algorithms for the Next Generation Surveys[J]. Icarus,2008,195(1):474-492.
    [137] Milani A, Gronchi G F, Vitturi M D, et al. Orbit Determination with Very ShortArcs I. Admissible Regions[J]. Celestial Mechanics and Dynamical Astronomy,2004,90(1-2):59–87.
    [138] Milani A, Gronchi G F, Kne evi Z, et al. Orbit Determination with Very ShortArcs II. Identifications[J]. Icarus,2005,179(2):350–374.
    [139] Milani A, Kne evi Z. From Astrometry to Celestial Mechanics: OrbitDetermination with Very Short Arcs[J]. Celestial Mechanics and DynamicalAstronomy,2005,92(1-3):1–18.
    [140] Farnocchia D, Tommei G, Milani A, et al. Innovative Methods of Correlation andOrbit Determination for Space Debris[J]. Celestial Mechanics and DynamicalAstronomy,2010,107(1-2):169-185.
    [141]李俊,安玮,周一宇.天基光学短弧初轨的约束微分修正方法[J].宇航学报,2009,30(2):769-774.
    [142]李俊.空间目标天基光学监视跟踪关键技术研究[D].长沙:国防科学技术大学,2009.
    [143] Gronchi G F, Dimare L, Milani A. Orbit Determination with the Two-BodyIntegrals[J]. Celestial Mechanics and Dynamical Astronomy,2010,107(3):299-318.
    [144]李济生.航天器轨道确定[M].北京:国防工业出版社,2003:255-258.
    [145]李骏,吴京,安玮等.面向天基光学监视的空间目标TLE拟合与跟踪方法[J].电子学报,2009,37(11):2463-2469.
    [146]潘晓刚,周海银,王炯琦.基于天基测控的同步轨道卫星联合定轨方法研究[J].宇航学报,2009,30(5):1854-1860.
    [147]文援兰,何星星,李志等.天基照相跟踪空间碎片批处理轨道确定研究[J].宇航学报,2010,31(3):888-894.
    [148] Leopold R J, Miller A. The Iridium Communications System[J]. IEEE Potentials,1993,12(2):6-9.
    [149] Wiedeman R A, Viterbi A J. The Global Mobile Satellite System for WorldwidePersonal Communications[C]. Proceedings of the Third International MobileSatellite Conference,1993:291-296.
    [150] Uzunalio lu H. Probabilistic Routing Protocol for Low Earth Orbit SatelliteNetworks[C]. IEEE International Conference on Communications, Atlanta, USA,1998:89-93.
    [151] Uzunalio lu H, Akyildiz I F, Bender M D. A Routing Algorithm forConnection-Oriented Low Earth Orbit (LEO) Satellite Networks with DynamicConnectivity[J]. Wireless Networks,2000,6(3):181-190.
    [152] Mcmahon G, Sugden S, Septiawan R. Class Dependent Traffic Allocation in aLEO Satellite Network[J]. Telecommunication Systems,2003,22(1-4):241-266.
    [153] Mcmahon G, Septiawan R, Sugden S. A Multiservice Traffic Allocation Modelfor LEO Satellite Communication Networks[J]. IEEE Journal on Selected Areasin Communications,2004,22(3):501-507.
    [154]王亮,张乃通. LEO网络中卫星切换的动态概率路由优化策略[J].通信学报,2002,23(9):8-15.
    [155]卢锡城,白建军,彭伟等.一种基于分时的LEO卫星网络无环路由算法[J].通信学报,2005,26(5):9-16.
    [156]李晖,顾学迈. LEO/MEO卫星通信系统ISL路由及切换性能研究[J].系统工程与电子技术,2005,27(7):1145-1153.
    [157]李晖,顾学迈,刘晓锋.非静止轨道卫星网络中Hopfield神经网络路由算法[J].南京航空航天大学学报,2006,38(2):227-233.
    [158]张涛,张军,柳重堪.基于卫星时变网络的时延受限最小费用路由算法[J].电子学报,2006,34(9):1584-1589.
    [159]张涛,柳重堪,张军.卫星网络中基于最小中断概率的时延受限路由算法[J].通信学报,2006,27(8):18-24.
    [160]蒋太杰,高丽娟,赵洪利.卫星网络的数学模型和路由算法研究[J].系统工程与电子技术,2008,30(8):1574-1578.
    [161] Yiltas D. An Effective Routing Algorithm for Low-Earth Orbit SatelliteNetworks[J]. Journal of Electrical&Electronics Engineering,2008,8(1):491-502.
    [162] Kucukates R, Ersoy C. Minimum Flow Maximum Residual Routing in LEOSatellite Networks Using Routing Set[J]. Wireless Networks,2008,14(4):501-517.
    [163] Schuhmacher D, Vo B-T, Vo B-N. A Consistent Metric for PerformanceEvaluation of Multi-Object Filters[J]. IEEE Transactions on Signal Processing,2008,56(8):3447-3457.
    [164] Rago C, Landau H. Stereo Spatial Super-Resolution Technique for MultipleReentry Vehicles[C]. IEEE Aerospace Conference Proceedings,2004:1834-1841.
    [165] Kuhn H W. The Hungarian Method for the Assignment Problem[J]. NavalResearch Logistics Quarterly,1955,2(1-2):83-97.
    [166] Liu J S, Chen R. Sequential Monte Carlo Methods for Dynamic Systems[J].Journal of the American Statistical Association,1998,93(443):1032-1044.
    [167] Johnson N L, Kotz S, Balakrishnan N. Continuous Univariate Distributions[M].New York: John Wiley,1995.
    [168] Cooperman R L. Tactical Ballistic Missile Tracking Using the InteractingMultiple Model Algorithm[C]. Proceedings of the Fifth International Conferenceon Information Fusion,2002:824-831.
    [169] Hough M E. Nonlinear Recursive Estimation of Boost Trajectories, IncludingBatch Initialization and Burnout Estimation[J]. Journal of Guidance Control, andDynamics,2006,29(1):72-81.
    [170] Farrell W. Interacting Multiple Model Filter for Tactical Ballistic MissileTracking[J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(2):418-426.
    [171] Li X R, Jilkov V P. Survey of Maneuvering Target Tracking. Part II: MotionModels of Ballistic and Space Targets[J]. IEEE Transactions on Aerospace andElectronic Systems,2010,46(1):96-119.
    [172] Julier S, Uhlmann J, Durrant-Whyte H F. A New Method for the NonlinearTransformation of Means and Covariances in Filters and Estimators[J]. IEEETransactions on Automatic Control,2000,45(3):477-482.
    [173] Friedland B. Treatment of Bias in Recursive Filtering[J]. IEEE Transactions onAutomatic Control,1969, AC-14(4):359-367.
    [174] Haessig D, Friedland B. Separate-Bias Estimation with Reduced-Order KalmanFilters[J]. IEEE Transactions on Automatic Control,1998,34(7):983-987.
    [175] Persson P. Mesh Generation for Implicit Geometries[D]. PhD Thesis,Massachusetts Institute of Technology,2005.
    [176] Goodyear W H. Completely General Closed-Form Solution for Coordinates andPartial Derivatives of the Two-Body Problem[J]. The Astronomical Journal,1965,70(3):189-192.
    [177] Bini D A. Numerical Computation of Polynomial Zeros by Means of Aberth’sMethod[J]. Numerical Algorithms,1996,13(2):179-200.
    [178] Yeddanapudi M, Bar-Shalom Y, Pattipati K R, et al. Ballistic Missile TrackInitiation from Satellite Observations[J]. IEEE Transactions on Aerospace andElectronic Systems,1995,31(3):1054-1071.
    [179] Alfano S, Negron D, and Moore J L. Rapid Determination of Satellite VisibilityPeriods[J]. Journal of the Astronautical Sciences,1992,40(2):281-296.
    [180]李冬,易东云,罗强等.基于J2项摄动的星地链路时间窗口快速算法.航天控制,2010,28(1):27-31.
    [181]王树禾.图论及其算法[M].合肥:中国科学技术大学出版社,1990.
    [182] Korkmaz T, Krunz M. Multi-Constrained Optimal Path Selection[C]. TwentiethAnnual Joint Conference of the IEEE Computer and Communications Societies,Anchorage, USA,2001:834-843.
    [183] Korkmaz T, Krunz M. Routing Multimedia Traffic with QoS Guarantees[J].IEEE Transactions on Multimedia,2003,5(3):429-443.
    [184] Kuipers F, Korkmaz T, Krunz M, et al. Performance Evaluation ofConstraint-Based Path Selection Algorithms[J]. IEEE Journal on Network,2004,18(5):16-23.
    [185]张宝贤,刘越,陈常嘉.基于信源路由的时延受限点到点路由算法[J].电子学报,2001,29(4):1-5.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.