复合绝缘子憎水性评估方法及憎水性对闪络特性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合绝缘子在运行过程中受到电场、紫外线、污秽等条件综合作用下而发生老化。这种老化导致复合绝缘子憎水性下降甚至丧失,降低了复合绝缘子污闪电压,增加了污闪发生的机率,影响了电力系统的可靠运行。为及时发现复合绝缘子的事故隐患、避免突发事故、提高输电线路运行的安全可靠性,亟需开展科学有效的复合绝缘子运行状态检测与性能评估方法研究。国内外现有复合绝缘子运行检测与性能评估方法还不够成熟,且目前尚未获得定量的复合绝缘子憎水性与绝缘性能之间的规律,这也是国内外亟需解决的难题。针对此,本论文围绕复合绝缘子憎水性评估方法与憎水性相关的绝缘状态评估开展了以下研究:
     ①对液体在固体表面动态接触角进行理论分析,提出采用动态接触角测试复合绝缘子憎水性的方法,利用该方法测量不同憎水性复合绝缘子样片,对比研究了静态接触角、动态接触角与喷水分级法之间的关系,结合不同憎水性复合绝缘子表面的微观形貌分析,分析了微米级突起对复合绝缘子表面水珠浸润和铺张等特性的影响,研究了动态接触角评估复合绝缘子憎水性的合理性和有效性。
     ②利用动态接触角对复合绝缘子憎水性进行评估,测试了不同环境温度、不同浸泡时间和不同pH值下复合绝缘子表面的动态接触角,研究了环境温度、浸泡时间、酸碱度对复合绝缘子表面憎水性的影响,讨论了复合绝缘子“不明闪络”发生的特点和原因,研究和分析了浸泡时间对复合绝缘子表面憎水性的影响,实验分析了浸泡溶液酸碱性对憎水性的影响,探索了酸碱性对复合绝缘子运行的影响。
     ③以硅橡胶复合绝缘子片为研究对象,采用浸污法对硅橡胶复合绝缘子片表面进行染污,利用升压降压法对硅橡胶复合绝缘子片进行了大量交流污秽闪络试验,根据卡方检验对交流污闪电压分布规律进行检验,采用数据拟合方法分析了污秽程度与憎水性程度对硅橡胶复合绝缘子片闪络电压与闪络概率的影响,依据国内关于污秽等级的标准中对单位爬电比距的要求,对运行于线路复合绝缘子的安全区域和危险区域进行了划分。
     上述研究结果表明,利用动态接触角方法能实现复合绝缘子憎水性的有效评判,利用该方法对复合绝缘子憎水性影响因素进行研究,并利用均匀升压降压法研究了染污后硅橡胶复合绝缘子片闪络特性,评估了硅橡胶复合绝缘子片的可靠性。
Composite insulators in power network operation were aged because of the combined effects of the electric field,ultraviolet,the contamination and so on. The aging of composite insulators led to decline of the hydrophobicity, which lowered the flashover voltages of the silicone rubber composite insulator, increased the flashover probability of the silicone rubber composite insulator and reduced the reliability of power system operation. To detect potential accident of the composite insulators in time, avoid incidents of emergency and improve the safety and reliability of transmission line, it is necessary to carry out scientific and effective studies on the detection and performance evaluation with the composite insulators in the power network operation. The methods of the detection and performance evaluation with the composite insulators in the power network operation are immature, and the quantitative relationships between the hydrophobicity and the insulation characteristics haven’t known for us. This paper carries out some studies on the new methods of hydrophobicity evaluation of composite insulators and the flashover characteristics of the composite insulators. The work focuses mainly on the following contents:
     ①Theory of dynamic contact angle was analyzed,combining with theoretical analysis of the different hydrophobicity classes of composite insulators, different hydrophobicity composite insulators using the method of dynamic contact angle were measured,and the scanning electron microscope analysis (SEM) of the surface morphology on different hydrophobic compsite insulators, by which the feasibility of hydrophobicity evaluation of composite insulators using the dynamic contact angle was verified, were carried out.
     ②Based on the methods of hydrophobicity evaluation using the dynamic contact angle, this paper studied the factors affected hydrophobicity of the composite insulators, measured the dynamic contact angle in different climate temperature, in different immersion times and in different pH values, analyzed the influences of climate temperature and humidity on levels hydrophobicity of composite insulators, discussed the characteristics and the reasons of“unidentified flashover”, which usally occurred on the composite insulators, studied the influences of the immersion times on the hydrophobicity, analyzed the effects of pH values on the hydrophobicity classes and explored the effects of pH values on the operation of the composite insulators.
     ③The simplified model of composite insulators in operation was proposed,and up-down method was employed in a large number of contamination flashover tests when the composite insulators had different hydrophobicity levels and contamination levels. Then theories of mathematical statistics were adopted to study the flashover probability on the silicone rubber composite insulators sheet the influences of the receding angle and the salt deposit density on the flashover voltages and the flashover probabilities. Based on the regulations of the specific creepage distances in the standards of different contamination classifaction, divisions of the safe area of the composite insulators on power plants and the substations were accomplished.
     The above results revealed that the method of dynamic contact angle could objectively evaluate the hydrophobicity. By this method this paper studied the factors affected hydrophobicity of the composite insulators, employed up-down methods to study the flashover charactirasitc on the composite insulator chip, evaluated the reliability of the composite insulators.
引文
[1]杨成.复杂环境下硅橡胶绝缘子老化与闪络现象研究[D].天津:天津大学, 2008.
    [2]顾乐观,孙才新.电力系统的污秽绝缘[M].重庆:重庆大学出版社, 1990.
    [3]张仁豫.绝缘污秽放电[M].北京:水利电力出版社, 1994.
    [4]孙才新,司马文霞,舒立春,等.大气环境与电气外绝缘[M].北京:中国电力出版社,2002.
    [5]关志成,刘瑛岩,贾志东,等.绝缘子及输变电设备外绝缘[M].北京:清华大学出版社,2006.
    [6]赵林杰.硅橡胶复合绝缘子憎水性与污闪特性研究[D].华北电力大学(北京), 2008.
    [7]关志成,王绍武,梁曦东,等.我国电力系统污闪事故及其对策[J].高电压技术. 2000, 26(6): 37-39.
    [8]宿志一.防止大面积污闪的根本出路是提高电网的基本外绝缘水平-对我国电网大面积污闪事故的反思[J].中国电力. 2003, 36(12).
    [9]张宇,肖嵘.华东电网2.20污闪事故的分析和思考[J].华东电力. 2004, 32(9): 17-22.
    [10]吴光亚,钱之银,肖勇,等.防污闪技术的现状与发展趋势[J].电气设备. 2006, 6(3): 5-9.
    [11]鲁志伟,杨秀媛.硅橡胶憎水迁移机理的研究[J].中国电机工程学报. 2001, 21(05): 51-55,73.
    [12] Liang X D, Wang S W, Fan J,et al. Development of composite insulators in China[J]. IEEE Trans.Dielectr.Electr.Insul. 1999, 6(5): 586-594.
    [13] Ishiwari M, Ito S, Arakawa K, et al. Various artificial contamination withstand voltage test methods and a comparison of their results on polymer and porcelain insulators.[C]. London: 1999.
    [14] Matsuoka R, shinokubo H, kondo, et al. Artificial contamination withstand voltage characteristics of polymer insulators[C]. Tokyo: 1995.
    [15] Naito K, nishiwaki S, matsuoka R, et al. Investigation results of silicone rubber insulators under wet and contaminated conditions[C]. Brisbane,Qld: 1994.
    [16] Gorur R S, S K. Use of surface resistance for assessing vulnerability of HV outdoor insulators to contamination flashover[C]. 2003.
    [17] Jiang X L, Yuan J H, Zhang Z J, et al. Study on pollution flashover performance of short samples of composite insulators intended for±800 kV UHV DC[J]. IEEE Trans.Dielectr.Electr.Insul. 2007, 14(5): 1192-1200.
    [18] Jiang X, Yuan J, Shu, L, et al. Comparison of DC pollution flashover performances of varioustypes of porcelain, glass, and composite insulators[J]. IEEE Transactions on Power Delivery. 2008, 23(2): 1183-1190.
    [19] Hirsch F, Rheinbaben H V, Sorms R, et al. Flashovers of insulators under natural pollution and HVDC[J]. IEEE Trans.PAS. 1975, 94(1-1): 45-50.
    [20] De la O A, Gorur R S. Flashover of contaminated nonceramic outdoor insulators in a wet atmosphere[J]. IEEE Trans.Dielectr.Electr.Insul. 1998, 5(6): 814-823.
    [21] Gorur R S, De La O A, El-Kishky H, et al. Sudden flashover of nonceramic insulators in artificial contamination tests.[J]. IEEE Trans.Dielectr.Electr.Insul. 1997, 4(1): 79-87.
    [22] Chang J W, Gorur R S. Surface recovery of silicone rubber used for HV outdoor insulation[J]. IEEE Trans.Dielectr.Electr.Insul. 1994, 1(6): 1039-1046.
    [23] Deng H H R. Low-molecular weight silicone fluid in RTV silicone rubber coatings[J]. IEEE Trans.Dielectr.Electr.Insul. 1999, 6(1): 84-94.
    [24] Chang J W, Gorur R S. Impact of weather conditions and formulations on LMW silicone fluid content in RTV silicone rubber coatings[C]. Millbrae,CA: 1996.
    [25] Zhang H, hackam R.. Identification of LMW fluid in HTV silicone rubber[C]. Austin,TX: 1999.
    [26] Kumagai S, Yoshimura N. Hydrophobic transfer of RTV silicone rubber aged in single and multiple environmental stresses and the behavior of LMW silicone fluid[J]. IEEE Trans.Power Delivery. 2003, 18(2): 506-516.
    [27] Hackam R. Low-molecular weight silicone fluid in RTV silicone rubber coatings[J]. IEEE Trans.Dielectr.Electr.Insul. 2000, 7(3): 461-462.
    [28] Homma H, Kuroyagi T, Izumi K, et al. Diffusion of low molecular weight siloxane from bulk to surface[J]. IEEE Trans.Dielectr.Electr.Insul. 1999, 6(3): 370-375.
    [29] Hillborg H, Gedde U W. Hydrophobicity changes in silicone rubbers[J]. IEEE Trans. Dielectr.Electr.Insul. 1999, 6(5): 703-717.
    [30] Jia Z D, Gao H F, Guan Z C, et al. Study on hydrophobicity transfer of RTV coatings based on a modification of absorption and cohesion theory[J]. IEEE Trans. Dielectr.Electr.Insul. 2006, 13(6): 1317-1324.
    [31]宿志一.全国电力系统复合绝缘子运行情况综述[J].电气世界. 2003, 6: 1-4.
    [32]戴建军.高电压复合绝缘子脆断的研究[D].北京:清华大学, 2006.
    [33]刘亚新,周国华.山西电网复合绝缘子运行情况及分析[J].电力设备. 2006, 8(8): 60-62.
    [34]刘泽洪.复合绝缘子使用现状及其在特高压输电线路中的应用前景[J].电网技术. 2006, 30(12): 1-7.
    [35]徐志钮,律方成,赵鹏,等.拟合方法用于硅橡胶静态接触角的测量[J].高电压技术. 2009,25(10): 2475-2480.
    [36]黄晓明.基于图像分析技术的复合绝缘子憎水性判断方法研究[D].北京:华北电力大学(北京), 2008.
    [37]张世文,廉育英.憎水性与接触角的测量[J].现代计量测试. 1994, 3: 36-41.
    [38] Tokoro T, Inoki T, Wada E E. Diagnosis of degradation condition of silicone rubber using hydrophobic surface analysis[C]. Yokkaichi, Mie, Japan: 2008.
    [39]王晓东,彭晓峰,陆建峰,等.动态湿润与动态接触角研究进展[J].应用基础与工程科学学报. 2003, 11(04): 396-404.
    [40]王晓东,彭晓峰,闵敬春.接触角滞后现象的理论分析[J].工程热物理学报. 2002, 23(01): 67-70.
    [41] Hillborgl H, Gedde UW. Hydrophobicity changes in silicone rubbers[J]. IEEE Transactions on Dielectrics and Electrical Insulation. 1999, 6(5): 703-717.
    [42]赵林杰,王浩锐,李成榕,等.复合绝缘子憎水性带电检测技术的发展与应用[J].南方电网技术研究. 2007, 3(2): 38-41.
    [43]田建华,袁建州.合成绝缘表面憎水性分级方法介绍[J].华北电力技术. 1998, 5: 35-37.
    [44]田建华.合成绝缘子憎水性分级试验方法[J].电力建设. 1998, 6: 56-57.
    [45] Homma H, Lee C R, Kuroyagi T. Evaluation of time variation of hydrophobicity of silicone rubber using dynamic contact angle measurement[C]. Xi'an, China: 2000.
    [46] Commission I E. Guidance on the measurement to wettability of insulator surfaces[S]. 2003.
    [47]邱志贤.高压复合绝缘子及其应用[M].北京:中国电力出版社, 2006.
    [48] Institute S T R. Hydrophobicity classification Guide[S]. 1992.
    [49]李震宇,崔吉峰,周远翔,等.现场运行复合绝缘子憎水性的研究[J].高电压技术. 2006, 32(01): 24-26.
    [50]李名加. 10kV合成绝缘子沿面电场分布计算及其憎水性变化因素分析[D].重庆:重庆大学, 2002.
    [51] Janssen H, Herden A, Kamer H C. LMW Components in silicone rubbers and epoxy resins[C]. London, UK: 1999.
    [52]鲁志伟.复合绝缘材料憎水性和憎水迁移性的度量[J].华北电力技术. 1999, 12: 50-51.
    [53]张福林,刘地.复合绝缘子伞套绝缘结构表面憎水性能特点分析[J].电瓷避雷器. 2002, 2: 2-39.
    [54]于永清.丧失憎水性的直流复合绝缘子耐污特性[J].电网技术. 2006, 30(12): 12-15.
    [55]程养春,刘斌,李成榕,等.基于带电检测的复合绝缘子憎水性评价[J].中国电机工程学报. 2008, 28(16): 135-142.
    [56]宋伟,赵林杰,李成榕,等.复合绝缘子在线检测技术的发展[J].高电压技术. 2005, 33(05):28-30.
    [57]唐良瑞,赵春辉,祁兵.基于蚁群算法的绝缘子憎水性等级判别方法[J].高电压技术. 2009, 35(06): 1322-1327.
    [58]祁兵,唐良瑞,赵春辉.绝缘子憎水性图像水珠/水迹形状提取算法[J].电工技术学报. 2008, 23(06): 19-24.
    [59] Peli T. A Study of Edge detection algorithm[J]. Compter Graphies and Image Proeessin. 1982, 20(01): 1-21.
    [60] Yang Q, Tang L, et al. Waterdrops shape extraction of hydrophobic image based on snake model[C]. Tianjin , China: 2009.
    [61] Marcus B, Rajeev T. A digital image processing method for estimating the level of hydrophobicity of high voltage polymeric insulating materials[C]. Austin, TX USA: 1999.
    [62] Berg M, Thottappillil R. Hydrophobicity estimation of HV polymeric insulating materials development of a digital image processing method[J]. IEEE Translations on Electrical Insulation. 2001, 08(06): 1098-1107.
    [63] Tokoro T, Omoto Y. Image analysis of hydrophobicity of polymer insulators using PVM[C]. Waterloo, Canada: 2001.
    [64] Tokoro T, Nagao M. Image analysis of hydrophobicity of silicone rubber insulator[C]. Austin, TX, USA: 1999.
    [65] Wang X, Liang X, Zhou Y, et al. Four-parameter method for hydrophobicity judgement and mechanism of hydrophobicity transfer property[C]. Nagoya , Japan: 2003.
    [66] Liang X, Cheng X. Effective contaminant deposit density a new concept of the pollution level of composite insulators[C]. Brisbane , Australia: 1994.
    [67] Gorur R, Chang J. surface hydrophobicity of polymers used for outdoor insulation[J]. IEEE Transactions on Power Delivery. 1990, 5(4): 1923-1933.
    [68] Chang J, G R. Surface recovery of silicone rubber used for HV outdoor insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation. 1994, 1(6): 1039-1046.
    [69]吴光亚,蔡炜,罗真海,等.有机复合绝缘子运行性能分析[J].高电压技术. 2000, 26(2): 59-61,63.
    [70]张福林.复合绝缘子外绝缘基材硅橡胶表面的憎水性和憎水迁移性机理分[J].华北电力技术. 1999, 1: 23.
    [71] Gorur R S,et al. Aging in silicone rubber used for outdoor Insulation[J]. IEEE Trans on Pow er Delivery. 1992, 7(2): 525-531.
    [72] Kim S H ,et al. Suppession mechanism of leakage current on RTV coat ed porcelain and silicone rubber insulat ors[J]. IEEE Trans on Pow er Delivery,. 1991, 6(4): 1549-1556.
    [73]关志成,陈原,梁曦东.合成绝缘子憎水性迁移机理的研究[J].高电压技术. 1998, 24(2): 13-15.
    [74]陈原.超高压直流合成绝缘子的研究[D].北京:清华大学, 1997.
    [75]张福林,魏江.复合绝缘子外绝缘材质憎水迁移性综述[J].华北电力技术. 1999, 2: 28-30.
    [76]郑书生.合成绝缘子在污湿环境中闪络机理的研究[D].华北电力大学, 2004.
    [77]张福林.复合绝缘子外绝缘材质憎水性迁移的稳定性[J].高压电器. 2002, 38(1): 35-37.
    [78]张福林.复合绝缘子外绝缘基材硅橡胶表面的憎水性和憎水迁移性机理分析[J].华北电力技术. 1999, 1: 19-21.
    [79]姚继莎.自然环境中复合绝缘子憎水性变化特性及机理的研究[D].北京:华北电力大学, 2006.
    [80]王绍武.污秽地区有机外绝缘特性的研究[D].北京:清华大学, 2001.
    [81]陈原,张开贤.盐密与憎水性相结合的防污监测[J].华北电力技术. 1998, 3: 1-4.
    [82]吴旭涛.运行中复合绝缘子憎水性能的影响因素[J].宁夏电力. 2003, 4: 45-47.
    [83]石帅军.合成绝缘子在运行中发生闪络的原因及对策分析[D].重庆:重庆大学, 2001.
    [84] Jahn H, Barsch R, Wendt E. The Influence of Temperature on the Recovery of the Hydrophobiciy on silicone Rubber surfaces[C]. 2000.
    [85] Berger T, Sundhararajan S, Nagaosa T. Influence on temperature on the hydrophobicity of polymers[C]. 1997.
    [86] Zhenyu L, Xidong L, Yuanxiang Z, et al. Influence of temerature on the hydrophobicity of silicone rubber surfaces[C]. 2004.
    [87]徐志钮,律方成,李嫚,等.温度对硅橡胶电晕时憎水性的影响[J].高电压技术. 2011, 37(1): 69-76.
    [88]蒋兴良,李名加,司马文霞.污湿环境中合成绝缘子憎水性影响因素分析[J].高电压技术. 2002, 28(9): 5-633.
    [89]谭捷华,吴光亚,何志强,等.复合绝缘子湿工频电气试验方法的试验研究[J].高电压技术. 2003, 29(8): 45-46.
    [90]赵翮选,赵书荣,王联章,等.高海拔地区紫外辐射对硅橡胶复合绝缘子老化的影响[J].华北电力技术. 2009, 3: 10-13.
    [91] Gorur R S, Thallam R S. Effect of ultraviolet radiation and high temperature on polymer insulating materials[C]. 1991.
    [92]刘洋,周志成,魏旭,等.不同环境因素对硅橡胶憎水性及憎水迁移性的影响[J].高电压技术. 2010, 36(10): 2454-2459.
    [93] Gubanski S M, Vlastos A E. Wettability of naturally aged silicon and EPDM composite insulators[J]. IEEE Trans Power Del. 1990, 5(3): 1527-1535.
    [94]肖代波.复合绝缘子人工污秽试验方法[D].重庆:重庆大学, 2009.
    [95] Xidong L, Shaowu W, Lengceng H. Artificial pollution test and pollution performance of composite insulatiors[C]. 1999.
    [96] Xidong L. The Special Problem of Composite Insulators in Pollution Test[J]. Proc.of ICPST. 1994, 2(10): 1263-1266.
    [97]张志劲,蒋兴良,孙才新,等.两种不同染污方式下绝缘子交流闪络特性的比较[J].中国电机工程学报. 2006, 26(8): 124-127.
    [98] Jiang X, Hu J, Liang Y. Pollution Flashover Performance of Short Sample for 750kV Composite Insulators[C]. Indianapolis,USA: 2004.
    [99]高压交流系统用复合绝缘子人工污秽试验[S].中国,中华人民共和国国家发展和改革委员会, 2004.
    [100]蒋兴良,张志劲,胡建林,等.高海拔下不同伞形结构750kV合成绝缘子短样交流污秽闪络特性及其比较[J].中国电机工程学报. 2005, 25(12): 159-164.
    [101] Chisholm W A, Ringler K G, Erven C D, et al. The cold-fog test[J]. IEEE Trans. Power Delivery. 1996, 11(1): 1874-1880.
    [102] Farzanch M, Baker T, Chisholm W A, et al. Insulator icing test methods and procedures-A position paper prepared by the IEEE task force on insulator icing test methods[J]. IEEE Trans.Power Delivery. 2003, 18(4): 1503-1515.
    [103]中华人民共和国标准.交流系统用高压绝缘子的人工污秽试验[S].中国国家标准化管理委员会, 2004.
    [104]蒋兴良,孙才新,舒立春,等.电力系统污秽绝缘与防污闪[Z].内部讲义: 2008.
    [105]苑吉河.输电线路绝缘子(串)交流污闪特性及放电过程的研究[D].重庆:重庆大学, 2008.
    [106]王晓东,彭晓峰,陆建峰,等.粗糙表面接触角滞后现象分析[J].热科学与技术, 2003, 2(03): 230-234.
    [107]陈爱军.不同盐密和灰密对110kV复合绝缘子污秽闪络特性的影响研究[D].重庆:重庆大学,2006.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.