猪Musclin基因cDNA的克隆、序列分析及表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量的研究表明,骨骼肌同其它分泌型器官一样也能产生具有生物学活性的蛋白因子,调节机体的脂代谢和糖代谢。如当机体运动时,骨骼肌收缩能够产生白细胞介素6以调节肝糖元合成,促进脂肪组织脂解。最近人们利用信号捕获(singal sequence trap)技术从1812个克隆中筛选出一种几乎仅在小鼠骨骼肌中表达的具有单一信号序列未知蛋白,被命名为“Musclin”。胰岛素可诱导Musclin mRNA表达而转染Musclin的腺病毒可引起小鼠脂肪组织体积明显下降,且脂质代谢的一个重要转录因子Foxo1可显著下调Musclin mRNA表达,推测Musclin基因在脂代谢中也具有重要的调节作用,提示骨骼肌分泌的Musclin可能是糖、脂肪代谢中的又一个活性因子。为初步揭示Musclin调控生脂的分子机制及最终为瘦肉型猪选育提供理论依据。本试验以猪为研究对象,克隆了猪Musclin cDNA,利用用生物信息学分析探讨了Musclin蛋白的结构和特性,RT-PCR技术研究了猪Musclin mRNA在不同组织、不同月龄、不同品种、以及猪皮下前体脂肪细胞、骨骼肌肌卫星细胞、联合培养细胞的表达规律,并探讨了猪Musclin基因与生脂基因LPL、FAS、PPARγ、TGH以及骨骼肌分化特异性基因Myf5与MyoG mRNA表达的相关性,为初步揭示Musclin调控脂代谢的分子机制及最终为瘦肉型猪选育提供理论依据。结果如下:
     1.克隆了374 bp的猪Musclin基因片段,通过对预测的氨基酸序列分析发现,猪Musclin基因序列和小鼠骨骼肌获得Musclin cDNA结构一致都有一个丝氨酸蛋白酶切割位点——KKKR,同源序列比对发现,猪Musclin基因碱基序列与家兔、牛、绵羊和人的同源性达85%以上;而与鸡的同源性只有59%,说明Musclin在进化过程保守性较差。
     2.Musclin蛋白属于亲水性不稳定蛋白,以α螺旋为主,中间夹杂一些Extended strand可确定Musclin蛋白属于混合型蛋白。主要集中在分泌途径上,是分泌型蛋白且第1—26位氨基酸序列是一段信号肽,26与27之间存在一个酶切位点。羟基端含有较多的转角结构,同时该区域的抗原指数较高,其亲水性指数和呈现在蛋白表面的可能性也比较大,因此该区段的抗原表位应该是优势抗原表位所在。这为研究Musclin蛋白的免疫功能的研究提供理论依据和一定的指导意义。
     3.猪Musclin mRNA在内脏脂肪和皮下脂肪表达丰度最高,脾脏表达量最低(P<0.05);随月龄增长猪肌肉和皮下脂肪组织中Musclin mRNA表达量呈显著下降(P<0.05);瘦肉型猪肌肉和皮下组织Musclin mRNA表达显著高于脂肪型猪(P<0.05)。皮下脂肪组织中该基因mRNA表达分别与FAS、PPARγ呈显著负相关和正相关(P<0.05),与TGH相关性不显著(P>0.05)。因此,猪Musclin基因除在肌肉中表达外,在脂肪等其他组织也能表达;该基因的表达与猪月龄、品种有关,且与生脂基因FAS、PPARγ密切相关,推测该基因可能在脂代谢中起到一定的作用。
     4 Musclin在原代脂肪细胞中的表达呈时间依赖性减少;联合培养细胞中Musclin表达显著高于同期单独培养原代脂肪细胞(P < 0.01)。而低于同期单独培养的骨骼肌卫星细胞,第10天的表达量达到显著水平(P >0.01),细胞Musclin mRNA表达与LPL、PPARγ、Myf5、MyoG mRNA表达都有显著相关。推测Musclin参与了脂肪和肌代谢过程,但具体机制较为复杂,有待我们深入的研究。
Accumulating evidences exist that skeletal muscle acts as an endocrine organ modulating hepatic glucose production and white adipose tissue lipolysis. such as production of interleukin-6 (IL-6) during exercise. Recently the people using an efficient signal sequence trap (SST) method from the 1812 cloning technology in almost a screened only in the expression of skeletal muscle in mice with a single signal sequence without cross-domain model of the unknown protein, was named "Musclin". Insulin can induce Musclin mRNA expression and the transfer Musclin Adenovirus can cause mice fat tissue volume decreased significantly, and lipid metabolism in an important transcription factor Foxo1 can significantly lower Musclin mRNA expression, to speculate Musclin gene in lipid metabolism also has important The regulation of, suggesting that skeletal muscle could be Musclin secretion of sugar and fat metabolism in the activity of another factor. Musclin for control of Health revealed the molecular mechanism of fat and lean pig breeding eventually provide a theoretical basis. The present study examined the distrution of pig,we cloned the pig Musclin gene and analyzed structure and characteristics of Musclin by bioinformatics. Levels of Musclin mRNA in different tissues, at different ages ,in adipose muscle tissues of different breeds, primary adipocytes and co-culture cells (adipocyte and muscle satellite cell), muscle satellite cell were measured by Semi Quantitative Reverse Transcription-Polymerase Chain Reaction ( SQ RT-PCR). Correlation were studied between mRNA level of musclin and that of lipogenetic genes including lipoprotein lipase(LPL), fatty acid synthetase (FAS), peroxisome proliferator-activated receptorγ(PPARγ), triacylglycerol hydrolase(TGH).and specificity genes of skeletal muscle including Myf5 and MyoG. It may plays an important role in lipid metabolism. The main results were summarized as following:
     1.Successfully cloned 374bp of the pig Musclin gene, Musclin pigs and mice muscle gene sequences were consistent Musclin cDNA structure has a serine protease cleavage point - KKKR, homologous sequences than on that pig Musclin gene sequence and rabbits, cattle, sheep and The identity of more than 85 percent, while the identity of chicken and only 59 percent of that in the course of evolution Musclin conservative poor.
     2.Musclin hydrophilic proteins are unstable protein, to the Rulesαspiral and non-curly-based structure, inclusion of some middle Extended strand of protein can be identified Musclin hybrid protein. Mainly concentrated in the secretion of ways, the mitochondria in the small, is secreted protein and 1-26 in the first amino acid sequence is a signal peptide, between 26 and 27 there is a restriction site. The N-terminal No. 3-44 , 81-93 and 111-131 maybe the predominant epitopes of the B cell. This study would be helpful for research of mmunological function of Musclin.
     3.The highest of Musclin expression levels were found in visceral adipose tissues and subcutaneous adipose tissues and the lowest expression in spleen among all other tissues(P<0.05); the expression of musclin mRNA in muscle and subcutaneous adipose tissue were decreased significantly during aging (P<0.05); in the same ages, the levels of Musclin mRNA in subcutaneous adipose and muscle of lean-type pig was significantly higher than that of obesity-type pig ( P<0.05); and the express of Musclin was negative correlated and positively correlated with FAS and PPARγrespectively (P<0.05). However,it had no significant correlation with TGH ( P>0.05). So, we concluded that pig Musclin mRNA was expressed in the muscle as well as other tissues such as adipose tissue. The express of porcine Musclin gene was related to age, breed and FAS, PPARγ. it may plays an important role in lipid metabolism
     4.Musclin in the primary fat cells of a time-dependent reduction in the cultured cells Musclin expression was significantly higher than the same period in a separate training of primary fat cells (P <0.01). But lower than the same period a separate culture of skeletal muscle satellite cells, the expression of 10 days to achieve significant levels (P> 0.01). Expression of Musclin mRNA in cell had significant correlation with and LPL, PPARγ, Myf5, MyoG. Musclin speculate may be involved in regulating fat synthesis, but we have to further study this mechanism.
引文
[1] Rexford SA, Jeffery SF. Adipose tissue as an endocrineorgan[J]. J Endocrinol Metab, 2000, 11: 327-332.
    [2] Andrea RN, Philipp ES. The delicate balance between fat muscle. adipokines in metabolic disease and musculoskeletal inflammation[J]. Current Opinion in Pharmacology, 2004, 4: 281-289.
    [3] Quinn LS, Strait-Bodey L, Anderson BG, et al. Interleukin-15 stimulates adiponection secretion by 3T3-L1 adipocytes: Evidence for a skeletal muscle-to-fat signaling pathway[J]. Cell Biology international, 2005, 29(6): 449-457.
    [4] Castillo J, Ammendrup-Johnsen I, Codina M, et al. IGF-I and insulin receptor signal transduction in trout muscle cells[J]. Am J Physiol Regul Integr Comp Physiol, 2006,290(6):R1683-90.
    [5] Eva Tomas, Meghan Kelly, Xiaoqin Xiang, et al. Metabolic and hormonal interactions between muscle and adipose tissue[J]. Proceedings of the Nutrition Society, 2004, 63: 381-385.
    [6] Tang QQ, Otto TC, Lane MD. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage[J]. Proc Natl Acad Sci USA, 2004,101: 11-9607.
    [7] Francine M. Gregoire, Cynthia M. Smas, Hei Sook Sul. Undeistanding adipocyte differentiation[J]. Physiological Reviews, 1998, 78.
    [8] Simith S, Wikowski A, Joshi A K. Structural and functional organization of the animal fatty acid synthase[J]. Progress in Lipid Research, 2003, 40: 289-3l7.
    [9] Semenkovich C F. Regulation offatty acid synthase (FAS)[J]. Progress in Lipid Research, 1997, 36: 43-53.
    [10] Becard D, Hainault I, Azzout-Marniche D, et al. Adenovirus-mediated over expression of sterol regulatory element binding protein-1c mimics insulin effects on hepatic gene expression and glucose homeostasis in diabetic mice[J]. Science, 2000, 288(30): 2379-2381.
    [11] Lehmanm JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferators-activated gamma[J]. Biol Chem, 1995, 270: 12953-12956.
    [12] Kubota N, Terauchi Y, Miki H, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma[J]. Biol Chem, 1995, 270: 12953-12956.
    [13] Saladin R, Fajas L, Dana S, et al. Differential regulation of peroxisome proliferators-activated receptor-gamma 1(PPAR-gamma 1) and PPAR-gamma 2 messenger RNA expression in the early stages of adipogenesis[J]. Cell Growth & Differention, 1999, 10: 43-48.
    [14] Delin Ren, Trevor N, Collingwood, et al, PPARγ knockdown by engineered tuanscription factors:exogenous PPARγ2 but not PPARγ1 reactivates adipogenesis[J]. Genes Develop, 2002, 98: 5306-5311.
    [15] Naras M, Lapsys, Adamandia D. Expression of genes involved in lipid metabolism correlate with peroxisome proliferator-activated receptor γ Expression in human skeletal muscle[J]. Clin Endocrinol Metab, 2000, 85: 4293-4297.
    [16] Hauner H. The mode of action of thiazolidinediones[J]. Diabetes Metab Res Rev, 2002, 18 Suppl 2: S10-5.
    [17] Vidal-Puig AJ, Considine RV, Jimenez-Linan M, et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids[J]. Clin Invest, 1997, 99: 2416-2422.
    [18] Barroso I, Gumell M, Crowley VEF, et al. Dominant negative mutations in human PPARγassociated with severe insulin resistance, diabetes mellitus, and hypertension[J]. Nsture, 1999, 402: 880-883.
    [19] Hahn PF. Abolishment of alimentary lipemia following injection of heparin[J]. Science, 1943, 98(1): 19-20.
    [20] Scanu A. Serum high-density lipoprotein: effect of change in structure on activity of chicken adipose tissue lipase[J]. Science, 1966, 153(736): 640-641.
    [21] Fan C, Yan J, Qian Y, et al. Regulation of Lipoprotein Lipase expression by effect of hawthorn flavonoids on peroxisome proliferator response element pathway[J]. Pharmacol Sci, 2006, 100(1): 51-58.
    [22] Michaud SE, Renier G. Direct regulatory effect of fatty acids on macrophage lipoprotein lipase: potential role of PPAR[J]. Diabetes, 2001, 50(3): 660-666.
    [23] Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al. PPAR and PPAR activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene[J]. EMBO, 1996, 15(19): 5336-5348.
    [24] Sartippour MR, Renier G. Differential regulation of macrophage peroxisome proliferators-activated receptor expression by glucose: role of peroxisome proliferatoractivated receptors in lipoprotein lipase gene expression[J]. Arterioscler Thromb Vasc Biol, 2000, 20(1): 104-110.
    [25] Ranganathan S, Kern PA. Thiazolidinediones inhibit lipoprotein lipase activity in adipocytes [J]. Biol Chem, 1998, 273(40): 26117-26122.
    [26] Gbaguidi FG, Chinetti G, Milosavljevic D, et al. Peroxisome proliferator- activated receptor (PPAR) agonists decrease lipoprotein lipase secretion and glycated LDL uptake by human macrophages[J]. FEBS Lett, 2002, 512(1~3): 85-90.
    [27] Robinson CE, Wu X, Nawaz Z, et al. Acorepressor and chicken ovalbumin upstream promoter transcriptional factor proteins modulate peroxisome proliferator-activated receptor-gammaretinoid X receptor alpha-activated transcription from the murine lipoprotein lipase promoter[J]. Endocrinology, 1999, 140(4): 1586-1593.
    [28] Schoonjans K, Gelman L, Haby C, et al.Induction of LPL gene expression by sterols is mediatedby a sterol regulatory element and is independent of the presence of multiple E boxes. J Mol Biol, 2000, 304(3):323-334.
    [29] Goldberg I J. Lipop rotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis [J]. Journal of Lipid Research, 1996, 37: 693-707.
    [30] 廉红霞, 卢德勋, 高民. 猪生长肥育期背最长肌LPL基因表达与肌内脂肪含量相关研究[J]. 畜牧与兽医, 2007, 39: 17-20.
    [31] Soni KG, Lehner R,Metalnikov P, et al. Carboxylesterase 3(EC3.1.1.1)is a major adipocyte lipase[J]. Biol Chem, 2004, 278(39): 40683-9.
    [32] Dolinsky VW, Giham D, Alam M, et al. Triglycerol hydrolase :regulation by insulin, and comparison with asiponutrin[J]. Cell Mol Life Sci, 2004, 61(13): 1633-51.
    [33] Giham D, Alam M, Gao W, et al. Triacylglycerol hydrolase is localized to the endoplasmic reticulumby an unsual retrieval sequence where it participates in VLDL assembly without utilizing VLDL lipids as substrates[J]. Mol Biol Cell, 2005, 16(2): 984-96.
    [34] Lehner R, Vance DE. Cloning and expression of a cDNA encoding a hepatic microsomal lipase that mobilizes stored triacylglycerol[J]. Biochem, 1999, 343(Pt)1: 1-10.
    [35] Wong H, Schotz MC. The lipase gene family[J]. Lipid Res, 2002, 43(7): 993-9.
    [36] Gilham D, Ho S, Rasouli M, et al. Inhibitors of hepatic microsomal triacylglycerol hydrolase decrease very low density lipoprotein secretion[J]. Faseb, 2003, 17: 1685-1687.
    [37] Naidu PS, Ludolph DC, To RQ, et al. Myogenin and MEF2 function syner-gistically to activate the MRF4 promoter during myogenesis[J]. Molecular and Cellular Biology, 1995, 15(5): 2707-2718. [38 ] Hasty P , Bradley A , Morris J H , et al. Muscle deficiency and neonatal death in micewith a targeted mutation in the myogenin gene[J] . Nature , 1993 ,364 :501-506.
    [39] Wright WE, Sassoon DA, V KLin. Myogenin , a factor regulating myogenesis , has a domain homologous to MyoD[J]. Cell , 1989 ,56(4) :607-617.
    [40] Yun K, Wold B. Skeletal muscle determination and differention :story of a core regulatory network and its context[J]. Curropin In Cell Biol, 1996(8) :877-889.
    [41] Lattanzi L, Salvatori G, Coletta M, eta. High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies[J]. Clin Invest, 1998, 101(10): 2119.
    [42] Nishizawa H. Musclin, a novel skeletal muscle-derived secretory factor[J]. Journal of Biological Chemistry, 2004, 279(19): p. 19391-19395.
    [43] Thomas G. Osteocrin, a novel bone-specific secreted protein that modulates the osteoblast phenotype[J]. Journal of Biological Chemistry, 2003. 278(50): p. 50563-50571.
    [44] Staiger H. The PPAR gamma agonist troglitazone induces Musclin mRNA expression in human myotubes[J]. Hormone and Metabolic Research, 2006. 38(9): p. 614-616.
    [45] Banzet S. Musclin gene expression is strongly related to fast-glycolytic phenotype[J]. Biochemical and Biophysical Research Communications, 2007, 353(3): p. 713-718.
    [46] Fruchart JC, P Duriez, B. Staels. Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis[J]. Current Opinion in Lipidology, 1999, 10(3): p. 245-257.
    [47] Ye JM. Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats - Comparison with PPAR-gamma activation[J]. Diabetes, 2001. 50(2): p. 411-417.
    [48] Tetteh K. Exploring parasite genome: the way forward[J]. Parastitol Today, 1999, 15(3): 88-90.
    [49] 祁美艳, 李伟. 生物信息学的现状与展望[J]. 日本医学介绍, 1996, (8): 371.52.
    [50] Marth GT, Korf I, Yandell MD, et al. A general approach to single-nucleotide polymorphism discovery [J]. Nature Genet, 1999, 23: 452-456.
    [51] Delcher AL, Kasif S, Fleischmann RD, et al. Alignment of whole genomes[J]. Nucleic Acids Res, 1999, 27: 2369-2376.
    [52] Kyte J, Doolittle RF. A simple method for displaying the hydropathic charactor of a protein[J]. Mol Biol, 1982, 157: 105-132.
    [53] Wilkins MR, Lindskog I, Gasteiger E, et al. Detailed peptide characterization using PeptideMass, a World Wide Web accessible tool[J]. Electrophoresis, 1997, 18: 403-408.
    [54] Pauling L, Corey RB. The structure of proteins: Tow hydrogen-bonded helical configurations of the polypeptide chain[J]. Proc Natl Acad Sci USA, 1951 37, 205-211.
    [55] Levitt M, Chothia C. Structural patterns in globular proteins[J]. Nature, 1976, 261: 552-558.
    [56] Enright AJ, IIiopoulos I, Kyrpides NC, et al. Protein interaction maps for complete genomes based on gene fusion events[J]. Nature, 1999, 402:86-90.
    [57] Brunning JC. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance[J]. Mol.Cell ,1998,2:559-569.
    [58] Febbraio MA, Hiscock N, Sacchetti M, et al. Interleukin-6 is a novel factor mediating glucose homeostasis during. skeletal muscle contraction[J]. Diabetes, 2004, 53: 1643-1648.
    [59] van Hall G, Steensberg A, Sacchetti M, et al. Interleukin-6 stimulates lipolysis and fat oxidation inhumans[J]. Clin Endocrinol Metab, 2003, 88: 3005-3010.
    [60] Akerstrom T, Steensberg A, Keller P, et al. Exercise induces interleukin-8 expression in human skeletal muscle[J]. Physiol, 2005, 563: 507-516.
    [61] Pedersen BK, Steensberg A, Fischer C, et al. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor?[J]. Proc Nutr Soc, 2004, 63: 263-267.
    [62] Yasui A, Hitoshi N, Yosuke O, et al. Foxo1 represses expression of Musclin, a skeletal muscle-derived secretory factor[J]. Biochem Biophys Res Communication, 2007, 364: 358–365.
    [63] Smith S, Witkowski A, Joshi AK, et al. Structural and functional organization of the animal fatty acid synthase[J]. Prog Lipid Res, 2003, 42: 289-317.
    [64] Badger AM, Newman-Tarr TM, Satterfield JL. Regulation of fatty acid synthase (FAS)[J]. Progress in Lipid Research, 1997, 36(1): 43-53.
    [65] Matthew HH, Chirala SS, Wakil SJ. Human fatty- acid synthase gene[J]. Biol Chem, 1996, 271: 13584–13592.
    [66] Ntambi M, Young-Cheul K. Adipocyte Differentiation and Gene Expression[J]. Nutr, 2000, 130(12): 3122–3126.
    [67] Dolinsky VW, Gilham D, Hatch GM, et al. Regulation of triacylglycerol hydrolase expression by dietary fatty acids and peroxisomal proliferator-activated receptors. Biochim. Biophys[J]. Acta, 2003, 1635: 20-28.
    [68] Sharma AM, Staels B. Peroxisome proliferator-activated receptor and adipose tissue—understanding obesity-related changes in regulation of lipid and glucose metabolism[J]. Clin Endocrinol Metab, 2007,92(2): 386-395.
    [69] Wei EH, Gao WH, Richard LH. Attenuation of adipocyte triacylglycerol hydrolase activity decreases basal fatty acid efflux[J]. Biol Chem, 2007, 282(11): 8027–8035.
    [70] Hao BL, Zhang ST. Handbook of Bioinformatics[M]. ShangHai:ShangHai Sci-Tech. Press, 2002: 250-256.
    [71] Rost B, Sander C. Combining evolutionary information and neural networks to predict protein secondary structure[J]. Proteins, 1994, 19(1): 55-72.
    [72] Rost B,Yachdav G,Liu J. The PredictProtein server[J]. Nucleic Acids Res, 2004, 32: W321-326.
    [73] Skolnick J. Fetrow JS. From genes to protein structure and function: novel applications ofcomputational approaches in the genomic era[J]. 2000, p, 34-9.
    [74] 王伟杰, 郭豫杰, 李卫华,等. 猪Musclin基因片段克隆与序列分析[J]. 中国农学通报 2007, 23(6): 72-74.
    [75] Carr DB, Utzschneider KM, Hull RL, et al. Intra-abdominal fat is a major determinant of the national cholesterol education program adult treatment panel III criteria for the metabolic syndrome[J]. Diabetes 2004, 53: 2087–2094.
    [76] Holden PJ, Ensminger ME, Wang AG (translator). Beijing: China Agriculture University Publishing Company[J]. Swine Science, 2007, 201-204.
    [77] 白亮, 庞卫军, 杨燕军. 烟酰胺在原代培养的猪前体脂肪细胞增殖分化中的作用[J]. 动物学报, 2007, 53(6): 1063 – 1068.
    [78] 陈粉粉,张立杰,张利红..EGCG 对猪前体脂肪细胞增殖和分化的作用[J]. 动物学报, 2006, 52(6): 1119-1124.
    [79] McPherron AC, Lee SJ . Suppres s ion of body fat accumulation in myostatin-deficient mice [J]. Clin Invest, 2002;109(5):595-601.
    [80] Cos telli P, Carbo N, Busquets S, et al. Reduced protein degradation rates and low expres s ion of proteolytic systems support skeletal muscle hypertrophy in transgenic mice over expressing the c-ski on cogene[ J].Cancer Lett, 2003;200(2):153-160.
    [81] Etgen GJ J r, Jensen J , Wilson CM, et al. Exercise training reverses insulin res is tance in muscle by enhanced recruitment of GLUT-4 to the cell surface[J]. Am J Physiol, 1997;272(5 Pt 1):E864-E869.
    [82] Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifes tyle intervention or metformin[J]. NEngl Med 2002;346(6):393-403.
    [83] Quinn LS, Haugk KL, Grabs tein KH. Interleukin-15:a novel anabolic cytokine for skeletal muscle[J]. Endocrinology, 1995;136(8):3669-3672.
    [84] Quinn LS, Anderson BG, Drivdahl RH, et al. Overexpres s ion of interleukin-15 induces skeletal muscle hypertrophy in vitro:implications for treatment of muscle was ting disorders[J]. Exp Cell Res, 2002; 280(1):55-63.
    [85] Harcourt LJ , Holmes AG, Gregorevic P, et al. Interleukin-15adminis tration improves diaphragm muscle pathology and function in dys trophic mdx mice[J]. Am Pathol, 2005;166(4):1131-1141.
    [86] Carbo N, Lopez-Soriano J , Cos telli P, et al. Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control[J]. Biochim Biophys Acta, 2001;1526 (1):17-24.
    [87] Grunfeld C, Zhao C, Fuller J , et al. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hams ters[J]. Clin Inves t,1996; 97(9):2152-2157.
    [88] Daviaud D, Boucher J , Ges ta S, et al. TNFalpha up-regulates apelin express ion in human and mouse adipose tissue[J]. FASEB J, 2006;20(9):1528-1530.
    [89] Frederich RC, Lollmann B, Hamann A, et al. Expres s ion of ob Mrna and its encoded protein in rodents . Impact of nutrition and obesity[J].Clin Inves t 1995;96(3):1658-1663.
    [90] Cohen P, Yang G, Yu X, et al. Induction of leptin receptor expres s ion in the liver by leptin and food deprivation[J]. J Biol Chem 2005;280 (11):10034-10039.
    [91] Lappas M, Yee K, Permezel M, et al. Release and regulation of leptin, resistin and adiponectin from human placenta, fetal membranes , and maternal adipose tissue and skeletal muscle from normal andges tational diabetes mellitus -complicated pregnancies [J]. Endocrinol,2005;186(3):457-465.
    [92] Lopez-Soriano J , Carbo N, Lopez-Soriano FJ , et al. Short-term effects ofleptin on lipid metabolism in the rat[J]. FEBS Lett, 1998;431(3):371-374.
    [93] Rosenbaum M, Goldsmith R, Bloomfield D, et al. Low-dose leptin reverses skeletal muscle , autonomic, and neuroendocrine adaptations to maintenance of reduced weight [J]. Clin Invest, 2005;115(12):3579-3586.
    [94] 孙红梅, 杨公社, 孙超. 猪前体脂肪细胞与肌卫星细胞体外联合培养[J]. 农业生物技术学报, 2007,15 (4): 617-621.
    [95] Bruning, JC. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance[J]. Molecular Cell, 1998, 2(5): p.559-569.
    [96] Dandona P. Metabolic syndrome - A comprehensive perspective based on interactions between obesity, diabetes, and inflammation[J]. Circulation, 2005, 111(11): p. 1448-1454.
    [97] Despres, JP. Is visceral obesity the cause of the metabolic syndrome? [J]. Annals of Medicine, 2006, 38(1): p. 52-63.
    [98] Bord S. Characterization of osteocrin expression in human bone[J]. Journal of Histochemistry & Cytochemistry, 2005, 53(10): p. 1181-1187.
    [99] Carr DB. Intra-Abdominal Fat Is a Major Determinant of the National Cholesterol Education Program Adult Treatment Panel III Criteria for the Metabolic Syndrome[J].Diabetes, 2004, p. 2087-2094.
    [100] Schoonjans K. PPAR alpha and PPAR gamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene[J]. Embo Journal, 1996, 15(19): 5336-5348.
    [101] Albalat A. Insulin regulation of lipoprotein lipase (LPL) activity and expression in gilthead sea bream (Sparus aurata) [J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 2007, 148(2): p. 151-159.
    [128] Sharma AM, Staels B. Peroxisome Proliferator-Activated Receptor and Adipose Tissue— Understanding Obesity-Related Changes in Regulation of Lipid and Glucose Metabolism [J]. J Clin Endocrinol Metab, 2007, 92(2):386-95.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.