气流场中粉尘颗粒流动行为与湿法净化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮带输运在工业短距离散装物料输送过程中应用广泛,但转运点常伴随有扬尘现象,特别在矿物加工与冶炼、水泥生产等初级产品生产过程更为严重。工业常用的“分散捕获、集中净化”抑尘模式存在通风管路复杂、易堵塞、堵塞后维护难度大、除尘能耗高等缺点,极不适合高产尘环节的粉尘抑制与净化。本文提出了“分散捕获、就地净化”的抑尘模式,依托徐州市兴达烧结厂转运点粉尘治理项目,对烧结矿粉尘理化特性和基本流动行为、转运点诱导气流大小、吸尘罩对粉尘捕获特性、湿式除尘器主要结构参数、阻力特性和除尘效率等进行了研究,并在烧结厂转运点进行了创新实践与推广应用。
     研究了烧结矿粉尘物理化学特性。烧结矿粉尘真密度约为3.854~4.195g/cm~3,球形度约为0.51~0.93,浸润速度约为0.306~0.483cm/min,皮带输运物料中粒度小于125μm的粉尘约占2.23%,粉尘中T.Fe含量约为44~46%,净化工艺过程需考虑回收利用。
     研究了气流场中粉尘颗粒的基本流动行为。烧结矿粉尘的自由沉降粒度分区主要落在Stockes区和Allen区,在Stockes区可用沉降末速度近似表示粉尘沉降速度,在Allen区需将加速沉降段和等速沉降分开考虑;呼吸性粉尘在静止气流场中的惯性运动和扩散作用都很弱,在水平湍流场中的跟随性较强;水平湍流场中粒度大于10μm的粉尘与气流的滑移速度较大,粉尘的运动轨迹受水平气流速度和粉尘沉降速度共同影响。
     研究了转运点物料下落产生诱导气流的大小,建立了诱导气流速度的经验模型。以量纲分析为着手点,推导出两个与诱导气流速度相关的无量纲准则数:Re和m_p/ρ_gg~(1/2)h~(3/2)D数,并建立了相似实验模型。相似实验研究认为对同一物料,诱导气流大小随物料质量流量和下落高度变化的趋势规律性很强;在实验粒度范围内,由于颗粒间相互作用的影响,诱导气流速度随粒度变化趋势规律性较差。
     研究了吸尘罩抽吸气流流速范围。随抽吸气流速度增大,诱导气流的扬尘作用逐渐被抽吸气流对粉尘的捕获作用取代,当抽吸气流增加到一定值后,抽吸气流对附着在料床上静止的粉尘起到扬尘作用。抽吸气流越大,吸尘罩捕获粉尘中大粒度粉尘百分比和粉尘总质量都增多,抽吸气流的上限风速应不能大量激扬附着在料床上的粉尘(约9.20m/s),下限风速应能完全抽吸诱导气流。
     通过模型实验对节流自激式除尘器主要结构参数进行了研究。结果显示,接触腔高度直接影响除尘效果,合适高度约为300mm;两级节流气液混合效果比单级好,较好的级间配合是:一级节流强度较大(α=250/300~235/300),用于激发液滴,二级节流强度较小(α=150/300~220/300),用于强化气液混合效果。
     发现了除尘器阻力的液相调节特性。液相通过改变节流液位差Δh调节节流口前后气液两相的受力平衡,进而改变除尘器总阻力系数,抑制气相阻力的增加。在液相调节作用的影响下,节流强度α随除尘器流速线性减小;除尘器总阻力系数ξ随气相流速增加而成倍降低,随节流强度增加而成倍增加,气相总阻力可间接用节流液位差Δh表达。除尘器经济合适的入口流速约为3.26~5.37m/s。
     建立了节流自激式除尘器分级除尘效率模型。将捕尘分为液面捕尘和液滴捕尘两个阶段,理论模型显示,液面捕尘对大颗粒粉尘有较高的分级除尘效率;液滴捕尘对大颗粒粉尘和呼吸性粉尘都有较高的分级除尘效率,液滴捕尘效率主要与气粒速度系数ζ1和除尘器流量有关。实验结果显示,气粒相对速度系数约为ζ1=0.79,呼吸性粉尘除尘效率达98.26%;除尘效率随进气口粉尘浓度升高而升高,排气口粉尘浓度随进气口浓度增加而增加;除尘器初始液位b0和流量对除尘效率有很大影响,合适的b0值介于-15~14mm,入口流速应不低于2.93m/s。
     验证了“分散捕获、就地净化”抑尘模式的可行性。现场应用显示,该抑尘模式降低了粉尘排放量和管路堵塞故障率,总除尘效率达98%以上,降低能耗约14.6%,目前已进行13个转运点的改造,具有较好的推广前景。
     论文共包含图54幅,表40张,参考文献168篇。
Belt conveyor is actively used in short conveying process of industrial for bulk materials.But the transfer station of belt conveyor often has the dust phenomenon, especially in theprimary products process of the mineral processing and smelting, cement production, etc. Dustsuppression model known as “Scattered capture, Centralized purification”is a common methodin the industry. It is not extremely suitable for the dust suppression and purification of high dustlink with the disadvantage of complex ventilation piping, easy choking, and difficultmaintenance after blockages, high energy consumption of removing dust, etc. In this paper, anew dust suppression model denoted as “Scattered capture, Local purification”(SCLP) isproposed. It based on the conveyor transfer station dust control program of Xingda sinteringplant in XuZhou city. The physical and chemistry properties of sintering ore and the basic flowbehavior, the induced air flow of conveyor transfer station, the dust-capture feature of dustexhaust hood, the main structural parameters of wet dust separator, the resistance characteristicsand the collection efficiency are studied and those are applying in the conveyor transfer stationof sintering plant.
     The physical and chemistry property of sintering ore dust is studied. The dust true density isabout3.854~4.195g/cm~3, and the sphericity is about0.51~0.93, and the wetting velocity is about0.306~0.483cm/min. The material on the belt conveying has a large amount of dust below125μm which about accounts for2.23%. There are the high level of minerals with about44~46%content of T.Fe in the dust. The minerals should be considered effective recycling in thepurification process.
     The basic flow behavior of dust particles in air flow field is studied. The free setting sizepartition of sintering ore dust is mainly at Stockes region and Allen region. The terminalvelocities can be expressed approximately as the settling velocity of dust at Stockes region, butthe accelerated settlement and uniform settlement must be considered individually at Allenregion. The respiratory dust has the weaker inertia movement and diffusion effect in a stationaryair field, but it has a stronger following performance in a horizontal turbulent flow field. The dustabove10μm in horizontal turbulent flow field has a larger slip velocity with the air flow and thetrajectories of dust need to be decided by horizontal airflow velocity and dust settling velocity.
     Induced airflow velocity which is produced by the dropping of conveyor transfer stationmaterial is studied and the empirical model of induced air velocity is built up. With thedimensional analysis as the starting point, two dimensionless criteria named Re andm_p/ρ_gg~(1/2)h~(3/2)D number related to the induced airflow are set up. The similar experiment showsthat the induced air velocity has a strong regularity trend with the material mass flow velocity and drop height to the same material. Because of the interaction influence on particles, theinduced airflow velocity has a poor trend with the particle diameter when the drop height is inthe experimental particle diameter range.
     The suction airflow velocity range of dust exhaust hood is studied. The raising dust effect ofinduced airflow is gradually replaced by catching dust effect of suction airflow with the increaseof suction airflow velocity. When suction airflow increases to a certain value, the suction airflowhas an effect on raising motionless dust which attached to the materials bed. The percentage oflarge granularity dust and total dust mass, which are caught by dust exhaust hood, increase alongwith the increase of suction airflow. The upper limit wind velocity of suction airflow should notblow a large number of dusts which attached to the materials bed (about9.20m/s). Theminimum wind velocity should be able to completely absorb induced air flow.
     The main structural parameters of throttling self-excited dust separator are studied by modelexperiment. The results show that the contact cavity height directly affects the dedusting effectand its suitable height is about300mm. Two-stage throttling effect of gas-liquid mixing is betterthan single-stage. The better interstage matching is that the primary throttling intensity is bigger(α=250/300~235/300) to stimulate droplets and the secondary throttling intensity is smaller(α=150/300~220/300) to strengthen the effect of gas-liquid mixing.
     The liquid phase adjustment characteristic for dust separator resistance is found out. Theforce balance of gas-liquid two phase before and after of the throttle is regulated by the changingof throttle liquid-level difference Δh. Then the total resistance coefficient of dust separator ischanged for restraining the increase of gas phase resistance. Due to the influence of liquid phaseadjustment, the throttling intensity α is linearly propotional decreased to the airflow velocity ofdust separator. The total resistance coefficient ξ relatively reduces along with the increase of gasphase velocity and relatively increases along with the increase of throttling intensity. The gasphase total resistance can be indirectly express by the throttling liquid-level difference Δh. Theeconomic and suitable inlet velocity of dust separator is about3.62~5.37m/s.
     Fractional collection efficiency model of throttling self-excited dust separator is established.The dust removal process is divided into catching dust on the liquid surface and catching dustwith the liquid droplet. The theoretical models show that catching dust on the liquid surface hashigher fractional collection efficiency for the large-granule dust, and catching dust with theliquid droplet has higher fractional collection efficiency for the large-granule dust and respirabledust. Collection efficiency of catching dust with the liquid droplets mainly depends on thegas-phase velocity coefficient ζ1and the dust separator airflow. The experiment results show thatthe gas-phase velocity coefficient ζ1is0.79and the collection efficiency for respirable dustreaches to98.26%. The collection efficiency raise along with the increase of air inlet dust concentration and the air outlet dust concentration increases along with the increase of air inletconcentration. When the entrance dust concentration is within the range of695.45~3667.34mg/m3, the outlet dust concentration meets discharge standards. The initial liquid level b0and thedust separator airflow have a great effect on the collection efficiency. The suitable b0is-15~14mm. And the inlet air velocity of dust separator is not lower than2.93m/s.
     The feasibility of “Scattered capture, Local purification”-dust suppression model is verified.The industry field application shows that the model can reduce the dust emission and greatlyreduce the jam failure rate. The total dust removal efficiency is more than98%, and the energyconsumption reduces about14.6%. The13conveyor transfer stations have currently transformed,and the transformation has a good popularization prospect, high economic and social value.
引文
[1] Gabriel Fedorkoa, Vladimír Ivanco. Analysis of Force Ratios in Conveyor Belt of Classic Belt Conveyor[J].Procedia Engineering,2012,48:123-128.
    [2] J.W. De Vries, C.M. Groenestein, I.J.M. De Boer. Environmental consequences of processing manure toproduce mineral fertilizer and bioenergy[J]. Journal of Environmental Management,2012,102:173-183.
    [3] Qing Wang, Haotian Jia. Method of Safety Assessment for Airport Baggage Conveyer Belt[J]. ProcediaEngineering,2012,43:561-564.
    [4] Joseph Chan, Tibor Horvath, Tibor Horvath, et al. Dust Suppression of Phosphate Rock: Storage,Conveyance and Shipping[J] Procedia Engineering,2012,46:213-219.
    [5] A.P. Grima, P.W. Wypych. Investigation into calibration of discrete element model parameters for scale-upand validation of particle-structure interactions under impact conditions[J]. Powder Technology,2012,212(1):198-209.
    [6] B. Fabiano, F. Currò, A. P. Reverberi, et al. Coal dust emissions: From environmental control to riskminimization by underground transport. An applicative case-study[J]. Process Safety and EnvironmentalProtection,2013, Available online11January.
    [7] Hannu Tapani Makkonen, Jyrki Heino, Leena Laitila, et al. Optimisation of steel plant recycling in Finland:dusts, scales and sludge[J]. Resources, Conservation and Recycling2002,35:77-84.
    [8] Sabah A. Abdul-Wahab. Impact of fugitive dust emissions from cement plants on nearby communities[J].Ecological modeling,2006,195:338-348.
    [9] José I. Huertas, María E. Huertas, Dora A. Solís. Characterization of airborne particles in an open pitmining region[J]. Science of the Total Environment,2012,423(4):39–46.
    [10] Tianshu Wang, David R. Anderson, Dennis Thompson, et al. Studies into the formation of dioxins in thesintering process used in the iron and steel industry.1. Characterisation of isomer profiles in particulateand gaseous emissions[J]. Chemosphere2003,51:585–594.
    [11] Mercedes D az-Somoano, Sven Unterberger, Klaus R.G. Hein. Mercury emission control in coal-firedplants: The role of wet scrubbers[J]. Fuel Processing Technology,2007,88:259-263.
    [12]龙红明.铁矿粉烧结原理与工艺[M].北京:冶金工业出版社,2010(8):18-23.
    [13]朱廷钰.烧结烟气净化技术[J].北京:化学工业出版社,2009(1):12-15.
    [14]赵红光,向天德,李兴义,等.莱钢烧结厂生石灰扬尘的治理[J].烧结球团,2009(6):50-53.
    [15]李化,高聪,苏丹,等.烟煤粉爆炸特性试验研究[J].四川大学学报(工程科学版),2009,41(6):79-83.
    [16] Eckhoff. Current status and expected future trends in dust explosion research[J]. Journal of LossPrevention in the Process Industries,2005,18(4-6):225-237.
    [17]甘勤.攀钢含铁尘泥的利用现状及发展方向[J].金属矿山,2003(2):62-64.
    [18]佘雪峰,薛庆国,董杰吉,等.钢铁厂典型粉尘的基本物性与利用途径分析[J].过程工程学报,2009,9(Suppl,1):7-12.
    [19] DING Cui, NIE Baisheng, YANG Hua, et al. Experimental research on optimization and coal dustsuppression performance of magnetized surfactant solution[J]. Procedia Engineering,2011,26:1314-1321.
    [20]温家宝.2012年中国政府工作报告[J/OL].(2012-03-05)[2013-04-05]. http://www.ccnt.gov.cn/xxfbnew2011/xwzx/lmsj/201203/t20120316_233571.html.
    [21]果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998(3):12-13.
    [22]王悦祥.烧结矿与球团矿生产[M].北京:冶金工业出版社,2006:1-2.
    [23]汤聂,蒋绍坚.烧结粉尘采用机械输送与气力输送的比较[J].烧结球团,2007,32(4):35-38.
    [24]贾艳,李文兴.铁矿粉烧结生产(冶金行业职业教育培训规划教材)[M].北京:冶金工业出版社,2006(2):82-88.
    [25]王维,李佑楚.颗粒流体两相流模型研究进展[J].化学进展,2000,12(2):208-217.
    [26] Liu D. Two-phaseFluid Dynamics.北京:高等教育出版社,1993,30-102.
    [27] D. GidasPow. Multiphase flow and fluidization. Academic Press, San Diego,1994:31-45.
    [28]唐学林,余欣,任松长.固-液两相流体动力学及其在水力机械中的应用.郑州:黄河水利出版社.2006:35-45.
    [29]孙晨,陈凌珊,汤晨旭.气固两相流模型在流场分析中的研究进展[J].上海工程技术大学学报,2011,25(3):49-53.
    [30] Tsuji Y, Tanaka T, Yonemura S. Cluster patterns in circulating fluidized beds predicted by numericalsimulation (discrete particle model versus two-fluid model)[J]. Powder Techolog,1998,95(3):254-264.
    [31] Wang wei, Li Youchu. Progress of the Simulation of Particle-Fluid Two-Phase Flow. PROGRESS INCHEMISTRY2000,12(2):208-210.
    [32] Horio M, Iwadate Y, Sugaya T. Particle normal stress distribution around a rising bubble in a fluidizedbed[J]. Powder Techolog.1998,96(2):148-157.
    [33] Bagnold R. A. The physics of wind blown sand desert dunes [M]. London, Methuen,1941.
    [34]韩桂波,詹水芬,张晓春,等.煤炭粉尘颗粒起动风速影响因素及数学模型.煤炭学报,2009,34(10):1359-1363.
    [35]丛晓春,陈志龙,詹水芬.露天煤场静态起尘量的实验研究[J].中国矿业大学学报,2010,39(6):849-853.
    [36]丛晓春,张旭.开放性尘源粉尘运动轨迹的数值计算[J].同济大学学报(自然科学版),2005,33(3):330-333
    [37]丛晓春,张光玉,詹水芬.露天煤尘污染扩散运动的数值计算[J].煤炭学报,2007,32(11):1138-1141.
    [38] C. Kanaoka, M. Furuuchi, J. Inaba, et al. Flow and dust concentration near working face of a tunnel underconstruction[J]. Journal of Aerosol Science,2000,31(Supplement1):31–32.
    [39]李荫亭,关德相.大雷诺数平稳湍流中悬浮颗粒的运动[J].科学通报,1980(6):273-276.
    [40] Ou-Sup Han, Masaaki Yashima, Toei Matsuda. A study of flame propagation mechanisms in lycopodiumdust clouds based on dust particles’ behavior[J]. Journal of Loss Prevention in the Process Industries,2001,14(3):153–160.
    [41]施学贵,徐旭常,冯俊凯.颗粒在湍流气流中运动的受力分析[J].工程热物理学报,1989,10(3):320-325.
    [42]张永泽,李嘉,赵文谦.紊流中悬浮颗粒跟随性对粒径和密度的依赖性分析[J].四川水力发电,1997,16(2):83-88.
    [43]李嘉,张永泽李克峰,等.剪切紊流中颗粒运动的数学模型和实验研究[J].水利学报,1998(6):7-13.
    [44]林官明.近壁面猝发湍流对颗粒物起尘机理的探讨[J]中国环境科学,2008,28(5):46-50.
    [45]许卫疆,车得福,徐通模.非球形颗粒的阻力系数与升力系数的数值求解[J].西安交通大学学报,2006,40(3):298-301.
    [46]齐学义,程效锐,肖聪,等.湍流边界层中单颗粒的运动方程[J].兰州理工大学学报,2004,30(3):55-57.
    [47]栗晶,柳朝晖,吴意,等.三维槽道两相流颗粒运动的大涡模拟[J].工程热物理学报,2006,26(6):973-976.
    [48]张洪军,赵周林, YANG William,等.90o弯管内气固两相流湍流变动实验研究[J].水动力学研究进展,2010,25A辑(4):559-565.
    [49]王汉封,栗晶,柳朝晖,等.水平槽道内气固两相湍流中颗粒行为的PIV实验研究[J].实验流体力学,2012,26(3):38-44.
    [50] William Kvasnak, Goodarz Ahmadi, Raymond Bayer, et al. Experimental investigation of dust particledeposition in a turbulent channel flow[J]. Journal of Aerosol Science,1993,24(6):795–815.
    [51]董长银,栾万里,周生田,等.牛顿流体中的固体颗粒运动模型分析及应用[J].中国石油大学学报(自然科学版),2007,31(5):55-63.
    [52]刘江,娄人怡,刘悦歧.吸尘罩的优选及其在玉石雕刻防尘中的应用[J]工业卫生与职业病,2007,33(2):76-80.
    [53]刘江,李德鸿.吸尘罩的空气动力性能实验研究[J].中国卫生工程学,2005,4(2):3-5.
    [54] C. Asbach, T.A.J. Kuhlbusch, H. Fissan. Investigation on the gas particle separation efficiency of the gasparticle partitioner[J]. Atmospheric Environment,2005,39(40):7825–7835.
    [55] Claudia Carotenuto, Francesco Di Nataleb, Amedeo Lancia.Wet electrostatic scrubbers for the abatementof submicronic particulate[J]. Chemical Engineering Journal,2010,165:35–45.
    [56]许钟麟.空气洁净技术原理[M].北京:科学出版社,2003(6):187-199.
    [57] K. Darcovich, K. A. Jonasson, C. E. Capes. Developments in the control of fine particulate air emissions[J]. Advanced Powder Technology,1997,8(3):179-215.
    [58] K.S. Lim, S.H. Lee, H.S. Park. Prediction for particle removal efficiency of a reverse jet scrubber[J].Journal of Aerosol Science,2006,37:1826-1839.
    [59] Licht,W.. Air pollution control engineering: Basic calculations for particulate collection (2nd ed.)[J].NewYork: Marcel Dekker,1988.
    [60]谭天祐,梁凤珍.工业通风除尘技术[M].北京:中国建筑工业出版社,1984(8):90-95.
    [61] T. Mi, X.M. Yu. Dust removal and desulphurization in a novel venturi scrubber [J]. Chemical Engineeringand Processing: Process Intensification.2012,62(12):159-167.
    [62] S.M. Ahuja. Wetted wall cyclone—A novel concept[J]. Powder Technology,2010,204:48-53.
    [63] S. Zarei, E. Jamshidi, A. Afshar Ebrahimi. PVC dust removal from the air by a new dynamical scrubber[J].Chemical Engineering and Processing,2010,49:1193-1198.
    [64] S. Nasseh, A. Mohebbi, Z. Jeirani. Predicting pressure drop in venturi scrubbers with artificial neuralnetworks[J]. Journal of Hazardous Materials,2007,143:144–149.
    [65] Li Yan-qiang, Qin Yue-ping, Yang Xiao-bin, et al. New Progress on Coal Mine Dust in Recent TenYears[J]. Procedia Engineering,2011,26:738–743.
    [66] Wei-Hsin Chen. Air pollutant absorption by single moving droplets with drag force at moderate Reynoldsnumbers[J]. Chemical Engineering Science,2006,61:449-458.
    [67]范健,胡春波,张育林,等.剪切气流驱动液滴运动的受力分析[J].实验流体力学,2011,25(2):5-12.
    [68] B. Miljevic, R.L. Modini, S.E. Bottle. On the efficiency of impingers with fritted nozzle tip for collectionof ultrafine particles[J]. Atmospheric Environment,2009,43:1372-1376.
    [69] Anh V. Nguyen, Geoffrey M. Evans. Computational fluid dynamics modelling of gas jets impinging ontoliquid pools[J]. Applied Mathematical Modelling,2006,30:1472–1484.
    [70] Mikael ERSSON, Anders TILLIANDER, Lage JONSSON, et al.. A Mathematical Model of an ImpingingAir Jet on a Water Surface[J]. ISIJ International,2008,48(4):377–384.
    [71] J. Solórzano-López, R. Zenit, M.A. Ramírez-Argáez. Mathematical and physical simulation of theinteraction between a gas jet and a liquid free surface[J]. Applied Mathematical Modelling,2011,35(10):4991–5005.
    [72] Collins, R. D. and Lubansca. The depression of Liquid Surfaces by Gas Jet. BR. J. Appl. Phys.,5(1),22,1954.
    [73] S.C. Koria, K.W. Lange. Penetrability of impinging gas jets in molten steel bath[J]. Steel Res.1987,58:421–426.
    [74] F. Qian, R. Muthasaran, B. Farouk, Studies of interface deformations in single-and multi-layered liquidbaths due to an impinging gas jet[J]. Metall. Mater. Trans. B,1996,27B:911–920.
    [75] A. Nordqist, N. Kumbhat, L. Jonsson, P. Jonss n, The effect of nozzle diameter lance height and flow rateon penetration depth in a top-blown water model[J]. Steel Res,2006,77(1)82–90.
    [76] D. Mu oz-Esparza, J.-M. Buchlin, K. Myrillas, et al. Numerical investigation of impinging gas jets ontodeformable liquid layer[J].2012,36(6):2687-2700.
    [77] Goldshmid, Y., Calvert, S. A. I. Ch. E. J.,1963(9):352.
    [78]时铭显,施从南,等.化学工程手册.第23篇气固分离[M].北京:化学工业出版社,1996,(第二版):65.
    [79] B.C. Meikap, Sanjay Biswas, B. Raj Mohan. Performance characteristics of the particulates scrubbing in acounter-current spray-column[J]. Separation and Purification Technology,2008,61(1):96-102.
    [80]陈维民.掘进工作面自激式除尘器除尘机理的研究[J].中国矿业大学学报,1993,22(3):67-73.
    [81]蒋仲安.湿式除尘器分级效率的计算和分析[J].安全,1995(3):1-6.
    [82]蒋仲安,黄元平.湿式除尘器中相似理论的研究[J].湘潭矿业学院学报,1996,11(2):1-5.
    [83]蒋仲安,金龙哲,杜翠风.湿式除尘器中脱水装置性能的理论和实验[J].北京科技大学学报,2001,23(3):196-198.
    [84]刘社育,蒋仲安,金龙哲.湿式除尘器除尘机理的理论分析[J].中国矿业大学学报,1998,27(1):47-50.
    [85]于庆波,王新华,王庆林,等.自激式除尘器的除尘性能[J].东北大学学报(自然科学版),2002,23(8):799-801.
    [86]于庆波,王新华,岳强.自激式除尘脱硫装置脱硫性能的实验研究[J].东北大学学报(自然科学版),2002,23(11):1101-1103.
    [87]裴清清,魏先勋.旋风喷雾式湿式除尘器性能试验研究[J].湖南大学学报(自然科学版),1996(2):54-58.
    [88]刘建,姚海飞,魏传光,等.掘进工作面湿式离心除尘器的结构优化及数值模拟[J].煤炭学报,2010.35(3):424-428.
    [89] Wu Chao, Gu Desheng. High efficiency dust scrubbers fo continuous miner in underground mines[J]. J.CENT. SOUTH UNIV. TECHNOL,2000,7(4):205-211.
    [90]熊建军,骆振福,卓卫民,等。两相对流自激式水幕除尘器内压力分布研究[J].中国矿业大学学报,2010,39(6):902-906.
    [91]李小川,胡亚非,熊建军,等.基于脉动压力时均值的除尘器气液耦合研究[J].煤炭学报,2011,36(8):1412-1416.
    [92]李小川,胡亚非,张巍,等.基于液相调节的除尘器阻力特性[J].煤炭学报,2013,38(2):336-341.
    [93]李小川,胡亚非,张巍,等.湿式除尘器综合运行参数的影响[J].中南大学学报(自然科学版),2013,44(2):862-866.
    [94]李小川,胡亚非,杨进成,等.新型湿式除尘器在烧结厂粉尘抑制中的实践[J].环境污染与防治,2012,34(8):83-85.
    [95]李小川,胡亚非,吴晓冰.石墨机加工车间的粉尘处理[J].中国科技论文在线,2010,5(12):979-982.
    [96] Xiaochuan Li, Yafei Hu, Qili Wang. PLC control system for dust removing system of carbon-producelathing process[J].2011International Conference on Consumer Electronics, Communications andNetworks (CECNet),2011(4):3344-3347.
    [97] Economopoulou A. A., Harrison R.M.. Graphical analysis of the performance of venturi scrubbers forparticle abatement, Part I: Rapid collection efficiency evaluation [J]. Aerosol Science Technology.2007,41,51-62.
    [98] Majid Ali, Changqi Yan, Zhongning Sun, et al. Dust particle removal efficiency of a venturi scrubber[J].Annals of Nuclear Energy,2013,54(4):178–183.
    [99] V.G. Guerra, J.A.S. Goncalves., J.R. Coury. Experimental verification of the effect of liquid deposition ondroplet size measured in a rectangular Venturi scrubber[J]. Chemical Engineering and Processing: ProcessIntensification,2011,50(11-12):1137-1142.
    [100] De-Jun Jiang, Hai-Feng Liu, Wei-Feng Li, et al.. Modeling atomization of a round water jet by ahigh-speed annular air jet based on the self-similarity of droplet breakup[J]. Chemical EngineeringResearch and Design,2012,90(2):185-192.
    [101] S. Nukiyama, Y. Tanasawa. Experiment on atomization of liquid by means of air stream[J]. Trans. Soc.Mech. Eng. Jpn,1938(4):86-93.
    [102] R.H. Boll, L.R. Flais, P.W. Maurer, et al.. Mean drop size in a full scale Venturi scrubber viatransmissometer[J]. J. Air Pollut. Control Assoc,1974(24):934-938.
    [103]李立清,胡蔷,黄贵杰,等.环栅喷淋泡沫塔欧拉–离散相模型三相除尘模拟[J].中国电机工程学报,2012,32(5):68-77.
    [104]赵海波,郑楚光.静电增强湿式除尘器捕集可吸入颗粒物的定量描述[J].燃烧科学与技术,2007,13(2):119-125.
    [105]王晓瑾,彭炯,陈晋南,等.除尘脱硫装置气液两相流场的数值模拟[J].北京理工大学学报,2006,26(4):356-360.
    [106]李彩亭,李思民,曾光明,等.矩形斜板湿法除尘塔气液两相流数值模拟[J]湖南大学学报(自然科学版),2008,35(5):72-75.
    [107]李彩亭,蔡志红,路培,等.伞罩除尘器内黑烟颗粒浓度分布特性的数值分析[J].湖南大学学报(自然科学版),2011,38(2):75-78.
    [108] Yating Huang, Dan Guo, Xinchun Lu, et al. Mechanisms for nano particle removal in brush scrubbercleaning[J]. Applied Surface Science2011,257:3055-3062.
    [109] Linjun Yang, Jingjing Bao, Jinpei Yan, et al. Removal of fine particles in wet flue gas desulfurizationsystem by heterogeneous condensation[J] Chemical Engineering Journal,2010,156:25-32.
    [110] S. Sarkar, B.C. Meikap, S.G. Chatterjee. Modeling of removal of sulfur dioxide from flue gases in ahorizontal cocurrent gas–liquid scrubber[J]. Chemical Engineering Journal,2007,131:263-271.
    [111] Bao Jingjing, Yang Linjun, Yan Jinpei, et al. Experimental study of fine particles removal in thedesulfurated scrubbed flue gas[J]. Fuel, Available online11January2011.
    [112]孔华,高翔,吕同波,等.湍流式湿法除尘脱硫装置试验研究及工业性应用[J].燃烧科学与技术,2001,7(4):261-263.
    [113]王运军,段钰锋,杨立国,等.湿法烟气脱硫装置和静电除尘器联合脱除烟气中汞的试验研究[J].中国电机工程学报,2008,28(29):64-69.
    [114]贾惠艳.皮带输煤系统转载点粉尘析出逸散规律及数值模拟研究[D].辽宁:辽宁工程技术大学,2007(5):12-18.
    [115]贾惠艳,马云东.选煤厂输煤系统转载点粉尘产出控制技术.环境污染与防治,2007,29(10):767-769.
    [116]葛少成,齐庆杰,邵良山.选煤厂毛煤仓仓项粉尘析出机理与控制技术.辽宁工程技术大学学报,2007,26(3):325-327.
    [117]蒋仲安,陈举师,王晶晶,等.胶带输送巷道粉尘运动规律的数值模拟[J].煤炭学报,2012,37(4):659-663.
    [118]马云东,罗根华,郭昭华.转载点粉尘颗粒扩散运动规律的数值模拟[J].安全与环境学报,2006,6(2):16-18.
    [119]张桂芹,刘泽常,李敏,等.工业粉体下落过程粉尘排放特性的实验研究[J].环境科学与技术,2006,29(11):3-7.
    [120]张桂芹,刘泽常, Wilhelm H flinger.物料下落过程中随机性粉尘的产生特性及其数学模型[J].山东农业大学学报(自然科学版),2008,39(1):114-118.
    [121] Peter Werner Grundnig, Wilhelm H flinger, Gerd Mauschitz, et al. Influence of air humidity on thesuppression of fugitive dust using water-spraying system[J].China Particuology,2006,4(5):229-233.
    [122] J. Faschingleitner, W. H flinger. Evaluation of primary and secondary fugitive dust suppression methodsusing enclosed water spraying systems at bulk solids handling [J]. Advanced Powder Technology,2011(22):236-244.
    [123] X.L. Chen, C.A. Wheeler, T.J. Donohue, et al. Evaluation of dust emissions from conveyor transfer chutesusing experimental and CFD simulation[J]. International Journal of Mineral Processing,2012:101-108.
    [124] P.J. Witt, K.G. Carey, T.V. Nguyen. Prediction of dust loss from conveyors using computational fluiddynamics modeling[J]. Applied Mathematical Modelling,2002,26(2):297-309.
    [125] Renaud Ansart, Alain de Ryck, John A. Dodds. Dust emission in powder handling: Free falling particleplume characterization [J]. Chemical Engineering Journal,2009,152:415-420.
    [126] Renaud Ansart, Alain de Ryck, John A. Dodds. Dust emission by powder handling: Comparison betweennumerical analysis and experimental results [J]. Powder Technology,2009,190:274-281
    [127] Renaud Ansart, Jean-Jacques Letourneau. Dust emission by powder handling: Influence of the hopperoutlet on the dust plume [J]. Powder Technology,2011,212:418-424.
    [128] Koichiro Ogata, Katsuya Funatsu, Yuji Tomita. Experimental investigation of a free falling powder jetand the air entrainment [J] Powder Technology,2001,115:90–95
    [129] Tomomi Uchiyama. Numerical analysis of particulate jet generated by free falling particles [J]. PowderTechnology,2004,145:123–130.
    [130] P. Cooper, P.C. Arnold. Air entrainment and dust generation from a falling stream of bulk material [J]Kona Powder Particle,1995,13:125–134.
    [131] W.D.L. Hemeon. Plant and Process Ventilation[M]. New York, USA: Industrial Press,1963.
    [132] J.N. Morrison. Controlling dust emissions at belt conveyor transfer points [J]. Trims. AIME,1971,250:47-48.
    [133] Amos Ullmann, Abraham Dayan. Exhaust volume model for dust emission control of belt conveyortransfer points [J]. Powder Technology,1998,96(2):139-147.
    [134] Peter Wypych, Dave Cook, Paul Cooper. Controlling dust emissions and explosion hazards in powderhandling plants[J]. Chemical Engineering and Processing,2005,44:323-326.
    [135]谢洪勇,刘志军.粉体力学与工程[M].北京:化学工业出版社,2007(7):8-9.
    [136] H. Y.Xie, D. W. Zhang. Stokes shape factor and its application in the measurement of spherity ofnon-spherical particles[J]. Powder Technology,2001(114):102-105.
    [137]国家标准. GB/T16913-2008粉尘物性试验方法.
    [138]李二欣,原永涛.粉尘浸润性实验研究[J].能源与节能,2011(2):43-45.
    [139]严超宇,卢春喜.气固环流燃烧器内颗粒流动行为[J].化工学报,2010,61(6):1357-1366.
    [140]王奎升.工程流体与粉体力学基础[M].北京:中国计量出版社,2002(10):170-172.
    [141]杨晓红.选粉机分级区水泥粉体颗粒运动及受力分析[J].中国粉体技术,2009,15(6):38-41.
    [142]舒玮.湍流中散射粒子的跟随性[J].天津大学学报,1980(1):75-83.
    [143] Z. Liu, P. Wypych, P. Cooper. Dust generation and air entrainment in bulk materials handling [J]. PowderHandling and Processing.1999,4(4):421–425.
    [144] I. Woodall, Investigation of Various Dust Generation Mechanisms as a Means of Controlling IndustrialPollution [M]. Department of Mechanical Engineering, University of Wollongong,1993.
    [145]刘启觉,王继焕.胶带输送机转运点局部密闭罩内诱导空气量的计算[J].武汉粮食工业学院学报,1998(1):50-54.
    [146] W. Barth, Stromungsvorgange beim transport von festteilchen and flussigkeitsteilchen in gasen [J],Chemie Ingenieur Technik,1958,30(3):171-180.
    [147] Chunhui He, Xianmei Chen, Jianhao Wang, et al. Conveying characteristics and resistancecharacteristics in dense phase pneumatic conveying of rice husk and blendings of rice husk and coal athigh pressure[J] Powder Technology,2012,227(9):51–60.
    [148] Daniel D. Josepha, Bobby H. Yanga. Friction factor correlations for laminar, transition and turbulentflow in smooth pipes [J]. Physica D: Nonlinear Phenomena,2010,239(14):1318–1328.
    [149] R. Pfeffer, S. Rossetti, S. Licklein. Analysis and correlation of heat transfer coefficient and friction factordata for dilute gas-solid suspensions[J].NASA TN D-3603(25th edn.)NASA, Washington, DC (1966).
    [150]张景松.流体力学[M].徐州:中国矿业大学出版社,2001(6):238-240.
    [151]陈博闻.基于量纲分析的爆破振动频率公式[J].水利水电技术,2012,43(2):54-57.
    [152] Kun Wang, Wei Wang, Houxiang Zhang, et al. Suction force of vibrating suction method based on pitheorem:Analysis and experiment[J]. Vacuum,2012,86(2):1783-1788.
    [153] J.H. Lin, C.Y. Huang, C.C. Su. Dimensional analysis for the heat transfer characteristics in thecorrugated channels of plate heat exchangers[J]. International Communications in Heat and MassTransfer,2007,34:304-312.
    [154]任松,陈结,姜德义,等.能源地下储库造腔期流场相似实验[J].重庆大学学报,2012,35(5):103-114.
    [155]张维一,龚家彪.圆管中充分发展紊流的流速分布与平均流速位置研究[J].计量学报,1983,4(1):1-6.
    [156] Peifeng Lin, Jianzhong Lin. Transport and deposition of nanoparticles in bend tube with circularcross-section [J]. Progress in natural science.2009,19(1):33-39.
    [157] A.M. Silva, J.C.F. Teixeira, S.F.C.F. Teixeira. Experiments in a large-scale venturi scrubber Part I:Pressure drop[J]. Chemical Engineering and Processing2009,48:59–67.
    [158]梁财,陈晓平,鹿鹏,等.高压浓相变粒径煤粉气力输送阻力特性[J].东南大学学报(自然科学版),2009,39(3):641-645.
    [159]蒋仲安.湿式除尘机理的研究与应用[D].北京:中国矿业学院北京研究生部,1994:34-35,84-88.
    [160] Amitava Bandyopadhyay, Manindra N. Biswas. Fly ash scrubbing in a novel dual flow scrubber[J].Waste Management,2007,27:1845–1859.
    [161] F. Amato a, X. Querol, C. Johansson. A review on the effectiveness of street sweeping, washing and dustsuppressants as urban PM control methods[J]. Science of the Total Environment2010,408:3070-3084.
    [162] A.M. Silva, J.C.F. Teixeira, S.F.C.F. Teixeira. Experiments in large scale venturi scrubber Part II. Dropletsize[J]. Chemical Engineering and Processing,2009,48:424-431.
    [163]小川明著,周世辉等译.气体中颗粒的分离[M].北京:化学工业出版社,1991(7):355-361.
    [164] R.H.Boll. Particle collection and pressure drop in venturi scrubber[J]. Ind. Eng.Chem. Fundam,1973,12(1),40-49.
    [165] Trond Austrheim, Lars H. Gjertsen, Alex C. Hoffmann. An experimental investigation of scrubberinternals at conditions of low pressure[J]. Chemical Engineering Journal,2008,138(1-3):95-102
    [166] Seung-Hyeok Byeon, Byeong-Kyu Lee, B. Raj Mohan. Removal of ammonia and particulate matter usinga modified turbulent wet scrubbing system[J]. Separation and Purification Technology,2012,98:221-229.
    [167]李文凯,吴玉新,黄志民,等.激光粒度分析和筛分法测粒径分布的比较[J].中国粉体技术,2007(5):10-13.
    [168] T. Mi, X.M. Yu. Dust removal and desulphurization in a novel venturi scrubber[J]. ChemicalEngineering and Processing: Process Intensification,2012,62:159-167.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.