干眼症缓释泪道栓设计关键技术及其相关性能初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     静电纺丝法制备纳米壳-核结构微胶囊的可行性研究
     目的:
     通过纳米技术-静电纺丝法探索壳-核结构微胶囊制备的可行性,进而研究各种不同的静电纺丝条件对壳-核结构微胶囊形成的影响,得出静电纺丝法制备纳米壳-核结构微胶囊的基本规律,以期为进一步载药微胶囊的研究提供实验基础,快速推动生物降解型缓释载药泪道栓的成功制备,并进一步拓宽静电纺丝纳米技术在生物医学领域的应用范围。
     方法:
     采用生物相容性良好的天然高分子材料壳聚糖、透明质酸和海藻酸钠为主要的研究原料,以生物相容性良好的合成高分子聚合物聚氧化乙烯(PEO)为辅助原料,通过调整电纺原料的浓度配比,优化静电纺丝各项参数,制备得到静电纺微粒。然后,再分别利用各种高分子聚合物的荷电性质,应用自行改良设计的静电纺丝法-溶液接收装置进行纳米壳-核结构微胶囊的制备,再将所得的接收溶液利用真空抽滤法在微孔滤膜上富集制备得到的壳-核结构微胶囊,扫描电镜检测微胶囊的形状、分散性、均一性,透射电镜检测微胶囊的壳-核结构的相互关系,并对所得的微胶囊的粒径进行统计分析,得出其粒径分布范围和粒径平均值。并在此基础上,通过改变接收溶液以及接收溶液的条件,探索静电纺丝-改良溶液接收法制备壳-核结构微胶囊的基本规律特征。
     结果:
     通过调节壳聚糖和PEO的不同浓度配比,即在3%Chi:6.5%PEO=8:2,电纺参数调整为15Kv,流速为0.1ml/h,电纺距离15cm的条件时,可用静电纺丝法制备得到纳米微粒。在此基础上,应用静电纺丝法-改良溶液接收法,使用透明质酸(HA)或者海藻酸钠(ALG)溶液作为接收溶液,利用高分子聚合物之间的荷电性质,可进一步得到分散性良好、粒径均一、表面光滑的壳-核结构的Chi/EO@HA与Chi/PEO@ALG微胶囊。对微胶囊的粒径进行统计分析结果显示:微胶囊粒径分布范围为700-1500nm,平均粒径为1123nm。通过改变接收溶液和接收溶液的浓度并进行对比研究,结果显示分别利用透明质酸或者海藻酸钠溶液作为接收溶液均可成功制备得到微胶囊产物,0.3% HA溶液和1.2% ALG溶液得到的微胶囊产物分散性最好,且接收溶液的浓度越高,微胶囊的直径也越大。
     结论:
     本研究结果首先证实了纳米技术--静电纺丝法制备Chi/PEO纳米微粒的可行性;并在此基础上,通过改良的溶液接收法对静电纺Chi/PEO微粒进行接收,利用静电相互作用的原理,制备得到了壳-核结构Chi/PEO@HA与Chi/PEO@ALG微胶囊,进一步证实了静电纺丝法-改良溶液接收法制备壳-核结构微胶囊的可行性。为载药微胶囊的研究以及为快速推动生物降解型缓释载药泪道栓的成功研制提供了可靠的实验基础。
     第二部分
     载药电纺微胶囊的制备及相关性能初步研究
     目的:
     通过将各种不同的模型药物混入Chi/PEO混合电纺液中进行静电纺丝-改良溶液接收法接收,探索纳米载药微胶囊制备的可行性及模型药物的载药量的可调整性,并进一步研究载药微胶囊的缓释性能及生物相容性,为生物降解型缓释泪道栓的研究奠定实验基础,同时也为临床上多种缓释材料、支架的制备提供一种新的方法和研究思路。
     方法:
     分别将雌激素、环孢霉素A、罗丹明、左氧氟沙星加入Chi/PEO混合电纺液内,使其浓度达到5mg/ml,接收溶液为0.3%HA溶液,调整好各项电纺参数后,进行电纺产物的接收,将接收到的电纺产物用微孔滤膜过滤制成电镜样品行扫描电镜观察。同时分别加入不同浓度的模型药物进行载药量可调整性的研究。采用《中国药典》小杯法,不同时间点取样后用紫外-分光光度法检测药物浓度,计算累计释放率,对不同条件下制备的载药微胶囊凝胶的缓释性能进行研究。采用浸提液角膜上皮细胞培养法检测载药微胶囊凝胶的生物相容性,通过MTT比色法计算细胞相对增殖率,按照国家标准GB/T 1688615—1997“医疗器械生物学评价第五部分:细胞毒性试验体外法”进行凝胶生物相容性评价。
     结果:
     将各种不同的模型药物(雌激素、环孢霉素A、罗丹明、左氧氟沙星)混入Chi/PEO混合电纺液,均可成功制备得到载药微胶囊,且载药量可根据需要进行调整。选用左氧氟沙星作为模型药物进行缓释性能研究,通过使用电纺组和非电纺组(即机械搅拌组)、1*和3*的载药浓度以及1*和3*的接收液浓度分别进行对比研究,结果显示电纺组较机械搅拌组显示出明显的缓释性能,1*载药浓度组较3*载药浓度组释放缓慢,1*接收溶液浓度组较3*接收溶液浓度组释放快速。通过载药微胶囊凝胶浸提液角膜上皮细胞培养法,采用MTT比色法计算细胞相对增殖率得到材料生物相容性属1级,即显示生物相容性良好。
     结论:
     本研究结果首先证实了不同药物载入Chi/PEO混合电纺液进行静电纺丝-改良溶液接收法制备载药微胶囊的可行性;并在此基础上,通过改变载药量及接收溶液的浓度等因素,分析研究了静电纺丝-改良溶液接收法制备的载药微胶囊凝胶的缓释性能及其影响规律。通过生物材料生物相容性的评价标准,证实了本研究制得的微胶囊凝胶具有良好的生物相容性,为生物降解型缓释泪道栓的进一步研究奠定了实验基础。
     第三部分
     微胶囊凝胶交联改性及泪道栓制作的初步实验研究
     目的:
     通过将微胶囊凝胶进行交联改性改变凝胶的溶解性、降解性,在保留其生物相容性的同时,增加其抗降解性,并最终达到延长其在体内的存留时间,实现长效缓释给药治疗的目的。初步探索利用凝胶交联改性后材料制备所得的泪道栓的理化性能、生物相容性及降解性能,以期快速促进生物降解型缓释泪道栓的产业化和临床应用,最终为干眼症患者提供一种疗效显著、使用方便、“标本兼治”价格低廉的干眼症治疗方法,改善患者的生活质量。
     方法:
     分别采用两种不同的方法[己二酸二酰肼/乙基(N,N-二甲基氨基丙基)碳二亚胺(ADH/EDCI)法和1,4-丁二醇二缩水甘油醚(BDDE)法]对静电纺丝-溶液接收法制备得到载药微胶囊凝胶进行交联改性。取微胶囊HA溶液1g,按一定比例分别加入所对应的交联剂,快速搅拌,最终得到交联完成的HA凝胶经过纯水透析、提纯后备用。将交联后的凝胶样品置于PBS中浸泡,恒温水浴箱中振荡,定期观察凝胶样品的溶胀、降解情况。将交联得到的改性凝胶样品初步制成泪道栓形状,观察其生物相容性及降解性能。
     结果:
     采用两种不同的方法(ADH/EDCI法和BDDE法)对静电纺丝-溶液接收法制备得到微胶囊凝胶进行交联改性,结果显示两种方法均可成功地对HA进行交联改性,且经ADH/EDCI交联后的凝胶块,呈透明澄清,凝胶块弹性好,在水中降解非常缓慢;经BDDE交联后的凝胶块,呈淡黄色凝胶体,略呈流动性,但粘弹性非常好,在水中降解时间延长。将交联得到凝胶体制成的泪道栓具有一定的粘弹性、生物相容性良好、降解时间延长。
     结论:
     本研究结果首先证实了不同交联剂对微胶囊HA凝胶进行交联改性的可行性;通过改性,载药微胶囊HA凝胶的降解性能明显下降,可延长其在体内存留时间,达到了长效缓释治疗的目的。同时,利用微胶囊HA凝胶交联改性后的材料制备所得的泪道栓,具有一定的粘弹性、并且生物相容性良好、降解时间延长。初步实现了生物降解型缓释泪道栓的制备,但具体研究细节仍需进一步的深入研究。
PartⅠ
     Feasibility study on the electrospinning process in fabricating core-shell structured microcapsules
     Objective:
     The purpose of this study was to investigate the feasibility of an advanced nano-technology the electrospinning process in fabricating core-shell structured microcapsules, to reveal the basic regularity rule of electrospinning process in fabricating core-shell structured microcapsules via changing different electrospinning condition parameters, which will provide the experimental foundation for further study on drug delivered microcapsules and advance the process of successfully designed biodegradable controlled releasing drug loaded punctal plug. The results of this study will broaden the application scope of the nano-technology electrospinning process in the field of biomedicine.
     Methods:
     This was achieved by using excellent biocompatible natural polymers such as chitosan,, hyaluronic acid and alginate sodium as the main materias, and using biocompatible synthetic polymers as adjuvant material, through adjusting different concentration proportion ratio to produce electrospun microparticles. Then take advantage of the difference in charge characteristic among the polymers, using modified solution collecting method to receive the electrospun microparticles to fabricate core-shell structured microcapsules, using vacuum filtration machine to collecting the microcapsules on the surface of the micropore filter membranes, which were then examined by SEM to evaluate the shape, dispersion and uniform of the microcapsule and examined by TEM to reveal the interrelationship of the core and shell structure of the microcapsules. With statistically analyzing the particle diameter of the microcapsules, the distributing range and mean size of the microcapsules were calculated. By change the collecting solution or by changing the concentration of the collecting solution, we elucidate the basic characteristics of electrospinning-modified solution collecting method in producing core-shell structured microcapsules.
     Results.
     Through varing the concentration ratio of chitosan and PEO blends, we finally found that at the concentration ratio with 3% Chi:6.5% PEO and electrospinning parameters to be at voltage 15Kv, fluid speed 0.1ml/h and DBPC 15cm micropaticles can be produced by electrospinning. Then via electrospinning-modified solution collecting mothed, using HA or alginate as the colleting solution, take advantage of the difference between the polymers, we could further get well-dispersed, smooth-surfaced core-shell structured Chi/PEO@HAand Chi/PEO@ALG microcapsules. Statistical analysis results showed that microcapsules diameters were ranged from 700-1500nm and the mean diameter was 1123nm. Through changing the collecting solution or concentration of the collecting solution we found that 0.3% HA and 1.2% alginate solution was better in producing well-dispersed microcapsules and the diameter of the microcapsule was increasing as the concentration of the collecting solution increased.
     Conclusion:
     This study firstly testified the feasibility of nano-technology electrospinning process in produing Chi/PEO microparticles. Using modified solution collecting method to receive the electrospun Chi/PEO microparticles, utilizing the principle of electrostatic interaction, core-shell structured Chi/PEO@HA and Chi/PEO@ALG microcapsules were successfully fabricated, which further confirmed the feasibility of electrospinning modified solution collecting mothod in fabrication of core-shell structured microcapsules. The results will provide substantial experimental foundation for the further study on the drug-loaded microcapsules and for the finally successful fabrication of biodegradable controlled-releasing punctal plug.
     Part II
     Fabrication of drug-loaded microcapsule and the study on its properties
     Objective:
     The purpose of this study was to investigate the feasibility of electrospun microcapsule to load drug and its ability in adjusting drug loading amount. Further investigation was performed to study the releasing properties and compatibility of the drug loaded microcapsules, which will establish a substantial foundation for the manufacture of biodegradable controlled releasing punctal plug and will provide an new research approach in designing controlled releasing materials, scaffolds for clinical application.
     Methods:
     Different model drugs, such as estrodiol, cyclosporine A, rhodamine, levofloxacin, were added into the Chi/PEO blends respectively to a final concentration at 5mg/ml. The collecting solution was 0.3% HA solution. After adjusting all the electrospinning parameters, eletrospun productions were collected and then filterd through the micropore filtration membranes for SEM examination. Different concentrations of model drug were also added to the Chi/PEO blends for evaluating the ability in drug loading amount adjustment. According to the method of "Chinese Pharmacopoeias" in accessing the controlled releasing propertities, samples were fetched at different time point and measured by UV-Spectrophotometer. Drug loaded microcapsules electrospun from different conditions were also observed and accumulated releasing rates were calculated to evaluating the properties of the microcapsules. Leaching liquor of the microcapsules was used to culture the corneal epithelium cells to evaluate the biocompatility of the microcapsule hydrosols. MTT method was used to calculate the relative growth rate (RGR) and the results were evaluated according to the National Standard GB/T 1688615—1997 for the biocompatibility evaluation.
     Results:
     Different kinds of model drugs (such as estradiol, cyclosporin A, rhodamine and levofloxacin) mixed in the Chi/PEO blends were all successfully electrospun for drug loaded microcapsules and the drug loading amount could be adjusted according to different purpose. Lavofloxacin was used as a model drug for controlled releasing characteristic study. While comparing the performance of the electrospinnig group and the non-eletrospinning group (mechanically mixed group), different concentration of drug loading groups and different concentration of collecting solution groups repectively, encouraging results were showed that electrospinning group manifest greater controlled releasing ability than the contrast group. The results also showed that higher drug loading concentration displaying a higher releasing speed whereas higher collecting solution concentration displaying a lower releasing speed. Leaching liquor of the microcapsule collecting solution was used to culture corneal epithelium cells and were measured by MTT method which showed the biocompatibility belong to grade 1 according to the national standard, implying a fine biocompatibility.
     Conclusion:
     This study first demonstrated the feasibility of electrospinning-modified solution colleting method to fabricate drug loaded microcapsules via mixing different drugs into the Chi/PEO blends. The releasing profile of the microcapsules were also studied and showed a controlled releasing capability. The evaluating test of biomaterials biocompatibility also testified the fine biocompatilbility of the microcapsules hydrosel, which allow a further study on the biodegradable punctal plug for dry eye disease.
     PartⅢ
     Crosslink modification of microcapsules hydrosel and the primary study on punctal plug manufacture
     Objective:
     The purpose of this study was to modify the dissolubility of the microcapsules by crosslinking in order to increase its anti-degradability, prolong its resident time for long-time controlled release while maintaining its fine biocompatibility. Process a primary study on the punctal plug using the crosslinked hydrosel materials. The physical, chemical, biocompatibility as well as the degradability were studied, which will promote the success in manufacturing biodegradable controlled-releasing punctal plug for dry eye disease and improve the life quality of the patients.
     Methods:
     Using two different methods (ADH/EDCI method and BDDE method) to crosslink the microcapsule hydrosel with electrospinning-solution collecting method, 1g microcapsule hydrosel were mixed with a certain proportion of the crosslinking agent and stirred quickly to get the crosslinked HA gelatin which was then dialysed and purified with pure water. The crosslinked gelatin sample was soaked in the PBS with constant temperature and agitating water bath for interval observation of the degrading performance. The punctal plug was manufactured using the crosslinked gelatin materials and its biocompatibility and biodegradability were studied.
     Results:
     Both of the two methods (ADH/EDCI method and BDDE method) could successfully crosslinked the microcapsule hydrosel with electrospinning-modified solution collecting method. While using ADH/EDCI method, the gelatin was transparent, with good elasticity and low biodegradability. Using BDDE method, the gelatin was lightyellow with little fluidity and good viscoelasticity, as well as low biogegradability.
     Conclusion:
     This study first testified the feasibility in using different crosslinking agent to modify microcapsule hydrosel to increase its anti-degradability and prolong resident time for long-time controlled release. The punctal plug using the crosslinked materials was with certain elasticity, fine biocompatibility and low biodegradability. The results primarily accomplished the design of biodegradable controlled releasing punctal plug. However, the details of the process of crosslink and punctal plug modification still need further study.
引文
[1]Lemp MA, Baudouin C, Baum J, et al. The Definition and Classification of Dry Eye Disease:Report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop. Ocul Surf.2007; 5:275-292.
    [2]杨威,郑宵.有泪有健康:战胜干眼症.中国中医药出版社,2008.1.
    [3]Dalzell MD. Dry eye:prevalence, utilization, and economic implications. Manag Care.2003; 12:9-13.
    [4]Schein OD, Munoz B, Tielsch JM, et al. Prevalence of dry eye among the elderly. Am J Ophthalmol.1997; 124(6):723-728.
    [5]Miljanovic B, Dana R, Sullivan DA, et al. Impact of Dry Eye Syndrome on Vision-Related Quality of Life.Am J Ophthalmol.2007; 143:409-415.
    [6]刘祖国,陈家祺,主编.眼表疾病学.北京:人民卫生出版社.2003;286-288.
    [7]Smith RE. The Tear Film Complex:Pathogenesis and Emerging Therapies for Dry Eyes. Cornea.2005;24:1-7.
    [8]Solomon A, Dursun D, Liu Z, et al. Pro- and Anti-inflammatory Forms of Interleukin-1 in the Tear Fluid and Conjunctiva of Patients with Dry-Eye Disease. Invest Ophthalmol Vis Sci.2001;42:2283-2292.
    [9]Stern ME, Gao J, Siemasko KF,et al. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp Eye Res.2004; 78:409-416.
    [10]刘祖国,彭娟.干眼的诊断与治疗规范.眼科研究.2008;26(3):161-164.
    [11]Gifford P, Evans BJ, Morris J. A clinical evaluation of Systane. Cont Lens Anterior Eye.2006; 29(1):31-40.
    [12J Matsuo T. Trehalose versus hyaluronan or cellulose in eyedrops for the treatment of dry eye. Jpn J Ophthalmol.2004; 48(4):321-327.
    [13]Foulds WS. Intra-canalicular gelatin implants in the treatment of kerato-conjunctivitis sicca. Br J Ophthalmol.1961; 45(9):625-627.
    [14]Freeman JM. The punctum plug:evaluation of a new treatment for the dry eye. Tans Am Acad Ophthalmolol Otolaryngol.1975; 79:874-879.
    [15]Murube J, Murube E. Treatment of dry eye by blocking the lacrimalcanaliculi. Survey of Ophthalmology.1996; 40(6):463-480.
    [16]Rolando M, Zierhut M. The Ocular Surface and Tear Film and Their Dysfunction in Dry Eye Disease. Survey of Ophthalmology.2001; 45(S2):203-209.
    [17]Rapuano CJ, Laibson PR. The Clinical Efficacy of Silicone Punctal Plug Therapy. Cornea.2002; 21(2):135-139.
    [18]Yaycioglu RA, Gencoglu EA, Akova YA. Silicone Versus Collagen Plugs for Treating Dry Eye:Results of a Prospective Randomized Trial Including Lacrimal Scintigraphy. Am J Ophthalmol.2005; 140(1):88.el-88.e7.
    [19]Goto E, Yagia Y, Kaido M. Improved functional visual acuity after punctal occlusion in dry eye patients. Am J Ophthalmol.2003; 135(5):704-705.
    [20]Kojima T, Dogru M, Ishida R. Clinical Evaluation of the Smart PlugTM in the Treatment of Dry Eyes. Am J Ophthalmol.2006; 141(2):386-388.
    [21]Pflugfelder SC. Antiinflammatory therapy for dry eye. Am J Ophthalmol.2004; 137(2):337-342.
    [22]Kima EC, Choia JS, Joo CK. A Comparison of Vitamin A and Cyclosporine A 0.05% Eye Drops for Treatment of Dry Eye Syndrome. Am J Ophthalmol.2009; 147(2):206-213.
    [23]Aoki S, Mizote H, Minamoto A. Systemic FK506 improved tear secretion in dry eye associated with chronic graft versus host disease. Br J Ophthalmol.2005; 89(2):243-244.
    [241 Worda C, Nepp J, Huber JC. Treatment of keratoconjunctivitis sicca with topical androgen. Maturitas.2001; 37(3):209-212.
    [25]McCulley JP, Dougherty JM, Deneau DG. Classification of chronic blepharitis. Ophthalmology.1982;89(10):1173-1180.
    [26]Aronowicz JD, Shine WE, Oral D. Short term oral minocycline treatment of meibomianitis. Br J Ophthalmol.2006; 90:856-860.
    [271 Ono M, Takamura E, Shinozaki K. Therapeutic effect of cevimeline on dry eye in patients with Sjogren's syndrome:a randomized, double-blind clinical study. Am J Ophthalmol.2004; 138(1):6-17.
    [28]Gilbard JP, Rossi SR, Heyda KG. Stimulation of tear secretion by topical agents that increase cyclic nucleotide levels. Invest Ophthalmol Vis Sci.1990; 31(7):1381-1388.
    [29]Jumblatt JE, Jumblatt MM. Regulation of ocular mucin secretion by P2Y2 nucleotide receptors in rabbit and human conjunctiva. Exp Eye Res.1998; 67(3):341-346.
    [30]Noda TT, Asano KN, Toda I. Autologous serum eye drops for dry eye after LASIK. J Refract Surg.2006; 22(1):61-66.
    [31]Geerling G, Sieg P, Meyer C. Transplantation of autologous submandibular glands in very severe keratoconjunctivitis sicca.2 year outcome. Ophthalmologe.1998; 95(4):257-265.
    [32]高卫萍,孙化萍,王育良.针刺治疗干眼症的临床研究.中国针灸.2004;24(10):685-687.
    [33]Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology.2000; 47:119.
    [34]Scott G, Yiu SC, Wasilewski D, et al. Combined Esterified Estrogen and Methyltestosterone Treatment for Dry Eye Syndrome in Postmenopausal Women. Am J Ophthalmol.2005; 139:1109-1110.
    [35]Stonecipher K, Perry HD, Gross RH, et al. The impact of topical cyclosporine A emulsion 0.05% on the outcomes of patients with keratoconjunctivitis sicca. Curr Med Res Opin.2005; 21:1057.
    [36]Okamotoa H, Shirakia K, Yasuda R. Chitosan-interferon-β gene complex powder for inhalation treatment of lung metastasis in mice. Journal of Controlled Release. 2011; 150(2):187-195.
    [37]Allen TM, Cullis PR. Drug Delivery Systems:Entering the Mainstream. Science. 2004;303(5665):1818-1822.
    [38]Kingsley JD, Dou H, Morehead J. Nanotechnology:A Focus on Nanoparticles as a Drug Delivery System. Journal of Neuroimmune Pharmacology.2006; 1(3):340-350.
    [39]Farokhzad OC, Langer R. Impact of Nanotechnology on Drug Delivery. ACS Nano.2009; 3(1):16-20.
    [40]Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system:A potential approach for ocular drug delivery. J Controlled Release.2009; 136:2-13.
    [41]Janoria KG, Hariharan S, Dasari CR, et al. Recent patents and advances in ophthalmic drug delivery. Recent Pat Drug Deliv Formul.2007; 1:161.
    [42]Le Bourlais CA, Chevanne F, Turlin B. Effect of cyclosporine A formulations on bovine corneal absorption:ex-vivo study. J Microencapsul,1997; 14:457.
    [43]原艳波,原续波.眼用环孢霉素A缓释超微粒的制备及眼内分布研究.中国眼科杂志.2005;15:20.
    [44]Li D, Xia Y. Electrospinning of Nanofibers:Reinventing the Wheel. Advanced Materials.2004; 16(14):1151-1170.
    [45]Boudriot U, Dersch R, Greiner A. Electrospinning Approaches Toward Scaffold Engineering-A Brief Overview. Artificial Organs.2006; 30(10):785-792.
    [46]Zhang Y, Lim CT, Ramakrishna S, et al. Recent Development of Polymer Nanofibers for Biomedical and Biotechnological Applications. J Mater Sci Mater Med.2005; 16:933-946.
    [47]Luoa Y, Kirkerb KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Controlled Release.2000;66:281-292.
    [48]Lim ST, Martin GP, Berry DJ, et al. Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. J Controlled Release.2000; 66:281-292.
    [49]Anal AK, Stevens WF. Chitosan-alginate multilayer beads for controlled release of ampicillin. Int J Pharm.2005;290:45-54.
    [1]周江华,丁璇,王琛.纳米技术专利战略分析报告.高科技与产业化.2010;8:107-109.
    [2]王少春.合成纤维[M].北京:中国石化出版社,2006:3-5.
    [3]Zhang Y, Lim CT, Ramakrishna S, et al. Recent Development of Polymer Nanofibers for Biomedical and Biotechnological Applications. J Mater Sci Mater Med.2005; 16:933-946.
    [4]Li D, Xia Y. Electrospinning of Nanofibers:Reinventing the Wheel. Advanced Materials.2004; 16(14):1151-1170.
    [5]Dzenis Y. Spinning Continuous Fibers for Nanotechnology. Science.2004; 304(5679):1917-1919.
    [6]Chew SY, Wen Y, Dzenis Y. The Role of Electrospinning in the Emerging Field of Nanomedicine. Curr Pharm Des.2006; 12(36):4751-4770.
    [7]Fong H, Reneker DH. Elastomeric nanofibers of styrene-butadiene-styrene triblockcopolymer. J Polym Sci:Part B Polym Phys.1999; 37(24):3488-3493.
    [8]王爱勤,杨立明.天然高分子材料壳聚糖研究应用进展.化工新型材料.1994;(9):9-12.
    [9]蒋挺大.甲壳素.北京:化学工业出版社,2003.
    [10]马宁,汪琴,孙胜玲,王爱勤.甲壳素和壳聚糖化学改性研究进展[J],化学进展,2004,16(4):643-653.
    [11]Sinha V R, Singla AK, Wadhawan S, et al. Chitosan microspheres as a potential carrier for drugs. International Journal of Pharmaceuties.2004; 274:1-33.
    [12]Wu T, Zivanovic S,Draughon F A, et al. Hysicochemical Properties and Bioactivity of Fungal Chitin and Chitosan. Journal of Agricultural and Food Chemistry.2005; 53:3888-3894.
    [13]Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, et al. Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews.2004; 104:6017-6084.
    [14]Yi H, Wu LQ, Bentley WE, et al. Biofabrication with Chitosan. Biomacromolecules.2005; 6(6):2881-2894.
    [15]Macquarrie DJ, Hardy JJE. Applications of Functionalized Chitosan in Catalysis. Industrial and Engineering Chemistry Research.2005; 44:8499-8520.
    [16]周晴川,王俏.透明质酸的提取、应用及发展前景.技术研发.2010;17(11):22.
    [17]齐艳荣.透明质酸的制备及其应用进展.教育教学论坛.2010;20:222-224.
    [18]顾其胜,朱彬.海藻酸盐基生物医用材料.中国组织工程研究与临床康复.2007;11(26):5194-5198.
    [19]Homayoni H, Ravandi SAH, Valizadeh M. Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers.2009; 77:656-661.
    [20]Entov VM, Shmaryan LE, Numerical modeling of the capillary breakup of jets of polymeric liquids. Fluid Dynam.1997; 32(5):696-703.
    [21]Tan WB, Zhang Y. Multifunctional Quantum-Dot-Based Magnetic Chitosan Nanobeads. Advanced Materials.2005; 17:2375-2380.
    [22]Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning, Polymer.1999; 40:4585-4592.
    [23]Ohkawa K, Cha D, Kim H, et al. Electrospinning of Chitosan. Macromolecular Rapid communications.2004; 25(18):1600-1605.
    [24]Son WK, Youk JH, Lee TS, et al. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer.2004; 45(9):2959-2966.
    [25]Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. Journal of Electrostatics.1995; 35(2-3):151-160.
    [26]Li D, McCann JT, Xia Y. Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces. Small.2005; 1(1):83-86.
    [27]Jiang H, Hua Y, Lia Y, et al. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. Journal of Controlled Release.2005; 108(2-3):237-243.
    [1]管蓉,艾昭全,李建宗.高分子材料在微胶囊新技术中的应用.高分子材料科学与工程.1997;13(5):134-138.
    [2]李志强,任彦荣.微胶囊技术及其应用研究进展.化学推进剂与高分子材料.2004;2(6):19-31.
    [3]Dewettinck K, Huyghebaert A. Fluidized bed coating in food technology. Trends in Food Science & Technology.1999; 10:163-168.
    [4]Arshady R, Even W, Andelie T, et al. Suspension, dispersion, and interfacial polycondensation:a methodological survey. Polym Eng Sci.1993; 33(14):865-876.
    [5]吴克刚,佘纲哲.油脂喷雾干燥微胶囊化的研究.食品科学.1998;19(1):34-36.
    [6]Arshady R. Review:Biodegradable Microcapsular Drug Delivery Systems: Manufacturing Methodology, Release Control and Targeting Prospects. Journal of Bioactive and Compatible Polymers.1990; 5(3):315-342.
    [7]Fan C, Zhou X. Influence of operating conditions on the surface morphology of microcapsules prepared by in situ polymerization. Colloids and Surfaces A: Physicochem. Eng Aspects.2010; 363:49-55.
    [8]Bedard MF, De Geest BG, Skirtach AG. Polymeric microcapsules with light responsive properties for encapsulation and release. Advances in Colloid and Interface Science.2010; 158:2-14.
    [9]梁治齐.微胶囊技术及其应用.北京:中国轻工业出版社,1999.
    [10]Andersona JM, Miller KM. Biomaterial biocompatibility and the macrophage. Biomaterials.1984; 5(1):5-10.
    [11]Burg KJ L, Porterb S, Kellamb JF. Biomaterial developments for bone tissue engineering. Biomaterials.2000; 21(23):2347-2359.
    [12]Soletti L, Hong Y, Guan J. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomaterialia.2010; 6(1):110-122.
    [13]杨毅.羟基磷灰石义眼台材料特征及在眼窝成形中的应用.中国组织工程研究与临床康复.2010;14(38):7197-7200.
    [14]中华人民共和国国家标准-GBT16886医医疗器械生物学评价.2001-09.
    [1]凌沛学.透明质酸.北京:中国轻工业出版社,2000.
    [2]Chen WYJ, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair and Regeneration.1999; 7:79-89.
    [3]Laurent TC, Laurent UBG, Fraser JRE. The structure and function of hyaluronan: An overview. Immunology and Cell Biology.1996; 74:A1-A7.
    [4]Fraser JRE, Laurent TC, Laurent UBG. Hyaluronan:its nature, distribution, functions and turnover. Journal of Internal Medicine.1997; 242(1):27-33.
    [5]Laurent TC, Fraser JRE. Hyaluronan. The FASEB Journal.1992; 6:2397-2404.
    [6]Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Medicine.2005; 11:1173-1179.
    [7]Toole BP. Hyaluronan:from extracellular glue to pericellular cue. Nature Reviews Cancer.2004; 4:528-539.
    [8]Peyron JG. Intraarticular hyaluronan injections in the treatment of osteoarthritis: state-of-the-art review. J Rheumatol Suppl.1993; 39:10-15.
    [9]Radicel M, Brunl P, Cortivo R. Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors. Journal of Biomedical Materials Research.2000; 50(2):101-109.
    [10]Mironov V, Kasyanov V, Markwaldl RR, et al. Bioreactor-free tissue engineering: directed tissue assembly by centrifugal casting. Expert Opinion on Biological Therapy.2008; 8(2):143-152.
    [11]Allison DD, Grande-Allen KJ. Hyaluronan:A Powerful Tissue Engineering Tool. Tissue Engineering.2006; 12(8):2131-2140.
    [12]Bourguignon LYW, Peyrollier K, Gilad E, et al. Hyaluronan-CD44 Interaction with Neural Wiskott-Aldrich Syndrome Protein (N-WASP) Promotes Actin Polymerization and ErbB2 Activation Leading to (3-Catenin Nuclear Translocation, Transcriptional Up-regulation, and Cell Migration in Ovarian Tumor Cells. The Journal of Biological Chemistry.2007; 282(2):1265-1280.
    [13J Shu XZ, Liu Y, Palumbob F, et al. Disulfide-crosslinked hyaluronan-gelatin hydrogel films:a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials.2003; 24(21):3825-3834.
    [14]Shu XZ, Liu Y, Palumbol FS, et al. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials.2004; 25(7-8):1339-1348.
    [15]Mehra TD, Ghosh K, Shu XZ, et al. Molecular Stenting with a Crosslinked Hyaluronan Derivative Inhibits Collagen Gel Contraction. Journal of Investigative Dermatology.2006; 126:2202-2209.
    [16]陈景华,林枞,顾其胜,等.制备透明质酸衍生物交联剂的应用研究.中国修复重建外科杂志.2004;18(1):70-73.
    [1]何创龙,黄争鸣,张彦中等.静电纺丝法制备组织工程纳/微米纤维支架.自然科学进展.2005;15(10):1175-1182.
    [2]Rayleigh FRS. On the equilibrium of liquid conducting masses charged with electricity. Edinburgh and Dublin Philosophical Magazine and Journal.1882; 44: 184.
    [3]Formhals A. Process and apparatus for preparing artificial Threads. US Patent. 2077373.1934.
    [4]Lazaris A. et al. Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells. Science.2002; 295:472-476.
    [5]Ondarcuhu T, Joachim C. Drawing a single nanofibre over hundreds of microns. Europhysics Letters.1998; 42 (2):215-220.
    [6]Feng L, Li SH, Li HJ, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angewandte Chemie International Edition.2002; 41(7):1221-1223.
    [7]Martin CR. Membrane-Based Synthesis of Nanomaterials. Chem. Mater.,1996; 8: 1739-1746.
    [8]Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix. Journal of Biomedical Materials Research.1999; 46:60-72.
    [9]Vonnegut B, Neubauer RL. Production of monodisperse liquid particles by electrical atomization. Journal of Colloid Science.1952; 7:616-622.
    [10]Taylor GI. Disintegration of water drops in an electric field. Proceedings of Royal Society London.1964; 280(1382):383-397.
    [11]Simons HL. Process and Apparatus for Producing Patterned Nonwoven Fabrics. US Patent,3280229(1996).
    [12]Baumgarten PK. Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science.1971; 36(1):71-79.
    [13]Larrondo L, Manley RSTJ. Electrostatic fiber spinning from polymer melts. I. Experimental Observations on Fiber Formation and Properties. Journal of Polymer Science, Polymer Physics Eudcation.1981; 19:909-920.
    [14]Larrondo L, Manley, R. ST. J., Journal of Polymer Science, Polymer Physics Eudcation.1981; 19:921-932.
    [15]Larrondo, L., and Manley, R. ST. J., Journal of Polymer Science, Polymer Physics Eudcation.1981; 19:933-910.
    [16]Spivak AF, Dzenis YA, Reneker DH. A model of steady state jet in the electrospinning process. Mechamics Research Communications.2000; 27(1): 37-42.
    [17]Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer.1999; 40(16):4585-4592.
    [18]Buer A, Ugbolue SC, Warner SB. Electrospinning and Properties of Some Nanofibers. Textile Research Journal.2001; 71(4):323-328.
    [19]Deitzel JM, Kosik W, McKnight SH, et al. Electrospinning of polymer nonofibers with specific surface chemistry. Polymer.2002; 43(3):1025-1029.
    [20]Demir MM, Yilgor I, Yilgor E, et al, Electrospinning of polyurethane fibers. Polymer.2002; 43(11):3303-3309.
    [21]钱人元,材料科学与工程,1985,1:1.
    [22]Yuan X, Zhang Y, Dong C, et al. Morphology of ultrafine polysulfone fibers prepared by electospinning. Polymer International.2004; 53:1704-1710.
    [23]袁晓燕,董存海,赵瑾等,静电纺丝制备生物降解性聚合物超细纤维.天津大学学报.2003;36(6):707-709.
    [24]Duam B, Dong CH, Yuan XY, et al. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). Journal of Biomaterials Science-Polymer Edition. 2004; 15(6):797-811.
    [25]莫秀梅.甲壳素-明胶共混物的研究.高分子学报.1997;2(46):222-226.
    [26]Chen Z, Mo X, Qing F. Electrospinning of collagen-chitosan complex. Materials Letter.2007; 61(16):3490-3494.
    [27]Chen Z, Mo X, He C, et al. Intermolecular interactions in electrospun collagen-chitosan complex nanofibers. Carbohydrate Polymers.2008; 72(3): 410-418.
    [28]Zhang D, Chang J. Patterning of Electrospun Fibers Using Electroconductive Templates. Advanced Materials.2007; 19:3664-3667.
    [29]Parajuli DC, Bajgai MP, Ko JA, et al. Synchronized Polymerization and Fabrication of Poly(acrylic acid) and Nylon Hybrid Mats in Electrospinning. Materials and Interfaces.2009; 1(4):750-757.
    [30]Ding Y, Wang Y, Su L, et al. Preparation and characterization of NiO-Ag nanofibers, NiO nanofibers, and porous Ag:towards the development of a highly sensitive and selective non-enzymatic glucose sensor. Journal of Materials Chemistry.2010; 20:9918-9926.
    [31]Su P, Wang C, Yang X, et al. Electrospinning of chitosan nanofibers:The favorable effect of metal ions. Carbohydrate Polymers.2011; 84 (2):239-246.
    [32]Mo XM, Xu CY, Kotak M, et al. Electrospun P(LLA-CL) nanofiber:a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials.2004; 25(10):1883-1890.
    [33]Cui J, Wang Y, Postma A, et al. Monodisperse Polymer Capsules:Tailoring Size, Shell Thickness, and Hydrophobic Cargo Loading via Emulsion Templating. Advanced Functional Materials.2010; 20:1-7.
    [34]Katta P, Alessandro M, Ramsier RD, et al. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano letters.2004; 4(11): 2215-2218.
    [35]MacDiarmid AG. A novel role for organic polymers. Current Applied Physics. 2001; 1:269-279.
    [36]Ramakrishna S, Fujihara K, Teo WE, et al. Electrospun nanofibers:solving global issues. Materials Today.2006; 9(3):40-50.
    [37]Espy PG, McManus MC, Bowlin GL, et al. Electrospun elastin scaffolds for use in bladder tissue engineering. Journal of Urology.2004; 171(4):457-457.
    [38]Khil MS, Cha DI, Kim HY, et al. Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research.2003; 67:675-679.
    [39]Liu H, Hsieh YL. Ultrafin Fibrous Cellulose Membranes form Electrospinning of Cellulose Acetate. Journal of Polymer Science:Part B:Polymer Physics.2002; 40: 2119-2129.
    [40]Yang D, Niu X, Liu Y, et, al. Electrospun Nanofibrous Membranes:A Novel Solid Substrate for Microfluidic Immunoassays for HIV. Advanced Materials.2008; 20: 4770-4775.
    [41]Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers, Colloids and surfaces A: Physicochemical and engineering aspect.2001; 187(31):469-481.
    [42]Zeng J, Xu X, Chen X, et al. Biodegradable electrospun fibers for drug delivery, Journal of Controlled Release.2003; 92:277-231.
    [43]Zong X, Kim K, Fang D. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer.2001; 43(16):4403-4412.
    [44]Woraphon K. Electrospun skin masks and uses there of technical field. WO Pat: 01/26610,2001-10-06.
    [45]Li D, Freya MW, Vynias D, et al. Availability of biotin incorporated in electrospun PLA fibers for streptavidin binding. Polymer.2007; 48(21):6340-6347.
    [46]Zeng J, Xu X, Chen X, et al. Biodegradable electrospun fibers for drug delivery. Journal of Controlled Release.2003; 92(3):227-231.
    [47]Zeng J, Yang L, Liang Q, et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. Journal of Controlled Release.2005; 105(1-2):43-51.
    [48]Zeng J, Chen X, Liang Q, et al. Enzymatic Degradation of Poly(L-lactide) and Poly(s-caprolactone) Electrospun Fibers. Macromolecular Bioscience.2004; 4(12):1118-1125.
    [49]Xua X, Yang Q, Wang Y, et al. Biodegradable electrospun poly(1-lactide) fibers containing antibacterial silver nanoparticles. European Polymer Journal.2006; 42(9):2081-2087.
    [50]Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials.2005; 26(15):2603-2610.
    [51]Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure:A novel scaffold for tissue engineering. Journal of Biomedical Materials Research. 2002; 60(4):613-621.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.