中国降水与温度极值的时空分布规律模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变暖背景下,极端气候事件越来越频繁,气象灾害越来越严重,社会环境受到的破坏越来越大。气候极值作为发生极端事件的必要条件,其时空分布规律是预测气象灾害的重要依据。这种规律包括极值变率与破纪录率在空间尺度上的区域性,在时间尺度上的周期振荡性。极值向极端事件的转变一般通过时空群发性来实现,其气候背景与大气环流运动有关,并最终可能由海气耦合系统所主导,如ENSO循环等。海气系统的作用以各向异性的方式向不同区域传递,并导致极值出现时空依赖现象。这是极端事件预测理论的动力或统计基础。
     实际应用表明广义帕累托分布(GPD)模型是在中国现有气候资料基础上研究极值规律的理想方法,其空间参数化方案能充分模拟极值的区域特征,实现了“点”过程到“场”过程的拓展。计算结果揭示了中国降水极值和温度极值的空间分布特征主要以季风区与非季风区为界限的空间差异,时间尺度上表现为夏季与其它季节有明显区别。它们对海气系统响应的关键区也体现了与气候区密切相关的空间依赖性。(一)对于降水极值,在季风区的中国南部的变率大于北部,夏季大于秋季。破纪录率在非季风区最大,在季风区最小。时间尺度上表现为秋冬季节比夏季更容易发生破纪录事件。降水极值的变率对海气系统(SO)的响应也与季风过渡区有关,响应区位于干、湿过渡带,即在青藏高原及其东部的两河流域之间。破纪录率在大部分地区对海气系统都有响应,夏、秋季响应面积最大,春、冬季最小。(二)对于温度极值,无论高值还是低值,其变率的空间特征与降水基本相反,高纬度非季风区大于低纬度的季风区。其中低温极值的变率对海气系统(NAO)响应的面积要比降水大得多,并以东部为主;高温极值的变率对NAO的响应面积比低温极值小得多,仅在东北北部有所体现。温度极值的破纪录率也有类似的特征。(三)气候变暖对温度极值的破纪录率和变率的强迫特征基本相同,但高温极值与低温极值响应的空间格局基本相反。在面积上高温小于低温,低温极值除了在青藏高原和东北地区无明显响应外,在其它地区均响应强烈;而高温极值的情形几乎相反,对气候变暖响应的关键区主要位于季风过渡带上,从青藏高原经华北至东北结束,所表现的空间分布格局基本与低温极值相互弥补。(四)降水极值与温度极值具有相似的空间依赖性。以江苏省为例,面积越大,极值的群发几率越小;极值强度越大,面积就越小。(五)概率分析表明,极值具有可预测性,以高温为例,未来的破纪录强度在有些地区可能呈现上升态势,在部分地区则有下降的可能。Monte Carlo模拟显示,不同强迫条件下的破纪录情景体现了有趣的现象。如在当前气候变暖速率下,破纪录高温强度不会有明显变化。虽然其概率可能缓慢上升,但其值最终收敛于一个常数——增暖速率。
Under the background of global warming, climate extremes, meteorological disasters and related social and economical losses increased rapidly. As a necessary precondition of climate extremes, the spatial-temporal characteristics of extreme events provides fundamental scientific basis for severe weather prediction. Such laws include the variability of extremes, the regional coverage of record-breaking probability and the periodic oscillation in the time scale. Under most circumstance, the spatial-temporal cluster of extreme values mark a transition to extreme events, the climatic background is closely related to general circulation of atmosphere and might be dominated by air-sea coupled system, e.g. ENSO. The main contribution of air-sea coupled system is that their interactions transport to different regions by an anisotropic way, and resulted in a phenomenon of extremes'spatial-temporal dependence. This is statistical and dynamical basis of the theory of extreme events prediction.
     Results indicate that the generalized Pareto distribution (GPD) model is an effective tool for the study of climate extremes based on existing observations whose scheme of spatial parameterization can simulate the regional features of extreme value by extend its definition from 'points'to'fields'. The results reveal the differences of spatial distribution of extreme temperature and precipitation between the monsoon zone and non-monsoon region, and the temporal differences between summer and other seasons over China. The responses of them to air-sea system also reflect different key areas closely relating to climatic zones. (1)For precipitation, variability of extremes is comparatively bigger in the monsoon region of southern China than that of north of China, and larger in summer than that in autumn. Record-breaking probability is bigger in the non-monsoon and smaller in monsoon area. The frequency of Record-breaking events shows a lower frequent in summer than that in other seasons. Variability of the precipitation extremes responding to air-sea system (e.g. SO) is related to monsoon transition region, whose response area locates at the junction between dry region and wet region, e.g. between the Tibet Plateau and the eastern area between the Yellow River and Yangtze River. In most parts of China, record-breaking probability response to sea-air systems have larger region in summer and autumn than that of spring and winter. (2) No matter high and low, the spatial characteristics of temperature extremes variability is opposite to precipitation, e.g. the area of variability of extreme low temperature is larger in the high-latitude (non-monsoon region) than that in the low latitude (monsoon region). The area with variability of the low temperature extreme response to the ocean-atmosphere system (e.g.) is much larger than that of precipitation, and mainly at the east China; The spatial coverage of response region of extremes variability of high temperature response to NAO is much smaller than that of low temperature, only a minor response area locating at the north of northeast. The record-breaking probability also shows similar distribution. (3) The impact of global warming on record-breaking probability of temperature extremes is in a good accordance with its variability, while the response patterns of extreme high and low is opposite. The response area of high temperature is smaller than that of low temperature, the latter have a large strong response area in China except Qinghai-Tibet Plateau and Northeast China. The characteristics of extreme high temperatures is on the contrary, the key region response to global warming locates on the junction region between monsoon and non-monsoon belt, e.g. the area from the Qinghai-Tibet Plateau pass the North to the end of Northeast. Its spatial patterns of distribution are complementary with that of low-temperature. (4) Temperature Extreme shows similar spatial dependence to precipitation extreme, and take Jiangsu Province as an example, the coverage of extremes varies inversely with its probability and amplitude. (5) Probability analysis shows that climate extremes are predictable. Take temperature as an example, the record-breaking temperatures of China are different from region to region, whose levels of record-breaking temperature in future will rise in some regions and decline in others. Monte Carlo simulation indicates that record-breaking high temperature shows under different climate forcing scenarios. For example, under the background of current warming probability, the level of record-breaking high temperature would not change significantly. While the probability may rise slowly, it would eventually converge to a constant value, e.g. the warming probability.
引文
丁一汇,任国玉,石广玉,等2006.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势.气候变化研究进展,2(001),3-8.
    丁裕国,刘吉峰,张耀存2004.基于概率加权估计的中国极端气温时空分布模拟试验.大气科学,28(005),771-782.
    中国应对气候变化的政策与行动(白皮书)2008.中国应对气候变化的政策与行动(白皮书)
    王绍武,姚檀栋1998.近百年中国年气温序列的建立.应用气象学报,9(004),392-401.
    王绍武,龚道溢2000.全新世几个特征时期的中国气温.自然科学进展:国家重点实验室通讯,10(004),325-332.
    任福民1998.1951-1990年中国极端气温变化分析.大气科学,22(2),217-227.
    任国玉,郭军,徐铭志,等2005.近50年中国地面气候变化基本特征.气象学报,63(006),942-956.
    李威,翟盘茂2009.中国极端强降水日数与ENSO的关系.气候变化研究进展,(006),336-342.
    肖云茹1994.概率统计计算方法,南开大学出版社
    所玲玲,黄嘉佑,谭本馗2008.北极涛动对中国冬季同期极端气温的影响研究.热带气象学报,24(002),163-168.
    程炳岩,丁裕国,何卷雄2003.全球变暖对区域极端气温出现概率的影响.热带气象学报,J9(4).
    翟盘茂,任福民1999.中国降水极值变化趋势检测.气象学报,57(002),208-216.
    潘晓华2002.近五十年中国极端温度和降水事件变化规律的研究.),中国气象科学研究院.
    刘吉峰,程炳岩2002.利用随机模拟研究极值天气的预报模型试验.南京气象学院学报,25(006),823-829.
    张人禾1999.E(?)Nino盛期印度夏季风水汽输送在中国华北地区夏季降水异常中的作用.高原气象,18(004),567-574.
    张天宇,程炳岩,刘晓冉,等2008.重庆极端高温的变化特征及其对区域性增暖的响应.气象,34(002),69-76.
    杨金虎,江志红,魏锋,等2006.近45a来中国西北年极端高,低温的变化及对区域性增暖的响应.干旱区地理,29(005),625-631.
    邓自旺,丁裕国,陈业国2000.全球气候变暖对长江三角洲极端高温事件概率的影响.南京气象学院学报,23(001),42-47.
    《气候变化国家评估报告》编写委员会,2007,《气候变化国家评估报告》,科学出版社.
    史道济,2006,实用极值统计方法,天津科学技术出版社.
    陈洪滨,刁丽军2004.2003年的极端天气和气候事件及其它相关事件.气候与环境研究,9(001),218-223.
    陈洪滨,刁丽军2005.2004年的极端天气和气候事件及其它相关事件的概要回顾.气候与环境研究,10(001),140-144.
    陈洪滨,范学花2007.2006年极端天气和气候事件及其它相关事件的概要回顾.气候与环境研究,12(001),100-112.
    陈洪滨,范学花2008.2007年极端天气和气候事件及其它相关事件的概要回顾.气候与环境研究,13(001),102-112.
    陈洪滨,范学花2009.2008年极端天气和气候事件及其它相关事件的概要回顾.气候与环境研究,(003).
    陈洪滨,范学花,董文杰2006.2005年极端天气和气候事件及其它相关事件的概要回顾.气候与环境研究,11(002),236-244.
    马柱国,符淙斌,任小波,等2003.中国北方年极端温度的变化趋势与区域增暖的联系.地理学报,58(z1),11-19Ma.
    龚志强,封国林,万仕全,等2006a.基于启发式分割算法检测华北和全球气候变化的特征.物理学报,55(001),477-484.
    龚志强,封国林,董文杰,等2006b.非线性时间序列的动力结构突变检测的研究.物理学报,55(06),3180-3186.
    龚道溢,王绍武1999.近百年中国的异常暖冬与冷冬.灾害学,14(2),63-68.
    龚道溢,王绍武2000.大气涛动对全球低层大气环流的贡献.高原气象,19(4),427-434.
    龚道溢,韩晖2004.华北农牧交错带夏季极端气候的趋势分析.地理学报,59(002),230-238.
    Aronica, G., Cannarozzo, M.,Noto, L.2002. Investigating the changes in extreme rainfall series recorded in an urbanised area. Water Sci Technol,45(2),49-54.
    Beirlant, J., Vynckier, P.,Teugels, J. L.1996. Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics. Journal of the American Statistical Association,91 (436),1659-1667.
    Bell, G. D.,Halpert, M. S.1998. Climate Assessment for 1997. Bulletin of the American Meteorological Society,79(5),1014-1014.
    Beniston, M.,Jungo, P.2002. Shifts in the distributions of pressure, temperature and moisture and changes in the typical weather patterns in the Alpine region in response to the behavior of the North Atlantic Oscillation. Theoretical and Applied Climatology,71(1),29-42.
    Beniston, M.,Stephenson, D. B.2004. Extreme climatic events and their evolution under changing climatic conditions. Global and Planetary Change,44(1-4),1-9.
    Beniston, M., Stephenson, D. B., Christensen, O. B., et al. 2007. Future extreme events in European climate:an exploration of regional climate model projections. Climatic change,81,71-95.
    Brunetti, M., Buffoni, L., Maugeri, M., et al. 2000. Precipitation intensity trends in northern Italy. International Journal of Climatology,20(9),1017-1031.
    Brunetti, M., Colacino, M., Maugeri, M., et al. 2001. Trends in the daily intensity of precipitation in Italy from 1951 to 1996. International Journal of Climatology, 21(3),299-316.
    Buishand, T. A.1984. Bivariate extreme-value data and the station-year method. Journal of Hydrology,69(1-4),77-95.
    Cassou, C., Terray, L.,Phillips, A. S.2005. Tropical Atlantic Influence on European Heat Waves. Journal of Climate,18(15),2805-2811.
    Coelho, C. A. S., Ferro, C. A. T., Stephenson, D. B., et al. 2008. Exploratory tools for the analysis of extreme climate and weather events in gridded datasets. Journal of Climate,21,2072-2092.
    Colacino, M.,Conte, M.1993. Greenhouse effect and pressure patterns in the Mediterranean basin. Il Nuovo Cimento C,16(1),67-77.
    Coles, S.2001. An Introduction to Statistical Modeling of Extreme Values, London, Springer,224pp
    Coles, S., Heffernan, J.,Tawn, J.1999. Dependence measures for extreme value analyses. Extremes,2(4),339-365.
    Crisci, A., Gozzini, B., Meneguzzo, F., et al.2002. Extreme rainfall in a changing climate:regional analysis and hydrological implications in Tuscany. Hydrological Processes,16(6),1261-1274.
    D'Agostino, R. B.,Stephens, M. A.1986. Goodness-of-fit Techniques, New York, CRC Press,560pp
    Davison, A. C.,Smith, R. L.1990. Models for exceedances over high thresholds. Journal of the Royal Statistical Society,52(3),393-42.
    Dodd, E. L.1923. The greatest and the least variate under general laws of error. Transactions of the American Mathematical Society,25(4),525-539.
    Easterling, D. R., Evans, J. L., Groisman, P. Y., et al.2000. Observed Variability and Trends in Extreme Climate Events:A Brief Review. Bulletin of the American Meteorological Society,81(3),417-425.
    Easterling, D. R., Horton, B., Jones, P. D., et al.1997. Maximum and minimum temperature trends for the globe. Science,277(5324),364.
    Fisher, R. A.,Tippett, L. H. C.1928. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society,24(2),180-190.
    Fourier, J. B. J.1824. General Remarks on the Temperature of the Terrestrial Globe and Planetary Spaces'.).
    Frechet, M.1927. Sur la loi de probabili de l'ecart. maximum. Ann, Soc, Polonaise Math, Cracow,6,93-116.
    Frich, P., Alexander, L. V., Della-Marta, P., et al.2002. Observed coherent changes in climatic extremes during the second half of the twentieth century. CLIMATE RESEARCH,19(3),193-212.
    Gershunov, A.,Barnett, T. P.1998a. ENSO Influence on Intraseasonal Extreme Rainfall and Temperature Frequencies in the Contiguous United States:Observations and Model Results. Journal of Climate,11(7),1575-1586.
    Gershunov, A.,Barnett, T. P.1998b. Interdecadal Modulation of ENSO Teleconnections. Bulletin of the American Meteorological Society,79(12),2715-2725.
    Gnedenko, B.1943. Sur la distribution limite du terme maximum d'une serie aleatoire. Annals of Mathematics,44(3),423-453.
    Groisman, P. Y, Karl, T. R., Easterling, D. R., et al.1999. Changes in the probability of heavy precipitation:important indicators of climatic change. Climatic change, 42(1),243-283.
    Gumbel, E. J.1958. Statistics of Extremes.), Columbia University Press, New York.
    Haan, D.1970. On Regular Variation and Its Applications to the Weak Convergence of Sample Extremes. Math. Centre Tract,32.
    Haan, L.1971. A form of regular variation and its application to the domain of attraction of the double exponential distribution. Probability Theory and Related Fields,17(3),241-258.
    Helmert, C. A. F.,Peters, C. A. F.1878. Notiz zur Berechnung der Lothablenkung durch den Mond. Astronomische Nachrichten,91,235.
    Hoerling, M. P.,Kumar, A.1997. Origins of Extreme Climate States during the 1982-83 ENSO Winter. Journal of Climate,10(11),2859-2870.
    Houghton, J. T.1996. Climate Change 1995:The Science of Climate Change, London, Cambridge University Press
    Houghton, J. T.2001. Climate Change 2001:The Scientific Basis, London, Cambridge University Press Cambridge
    Huang, R.,Wu, Y.1989. The influence of ENSO on the summer climate change in China and its mechanism. Advances in Atmospheric Sciences,6,21-32.
    Hurrell, J. W.1996. Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. GEOPHYSICAL RESEARCH LETTERS, 23(6),665-668.
    Hurrell, J. W.,Van Loon, H.1995. Decadal changes in the circulation of the Northern Hemisphere:relation to surface temperature. Proceedings of the 20th annual climate diagnostics workshop, Washington, U.S.A., Seattle,292-295
    Hurrell, J. W.,Van Loon, H.1997. DECADAL VARIATIONS IN CLIMATE ASSOCIATED WITH THE NORTH ATLANTIC OSCILLATION. Climatic change,36(3),301-326.
    Jenkinson, A. F.1955. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal of the Royal Meteorological Society,81(348),158-171.
    Jones, P. D.1994. Hemispheric surface air temperature variations:a reanalysis and an update to 1993. Journal of Climate,7(11),1794-1802.
    Jones, P. D., Horton, E. B., Folland, C. K., et al. 1999. The use of indices to identify changes in climatic extremes. Climatic change,42(1),131-149.
    Jones, P. D.,Moberg, A.2003. Hemispheric and large-scale surface air temperature variations:An extensive revision and an update to 2001. Journal of Climate, 16(2),206-223.
    Kalnay, E., Kanamitsu, M., Kistler, R., et al.1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society,77(3), 437-471.
    Karl, T. R., Jones, P. D., Knight, R. W., et al.1993. Asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society,74(6),1007-1023.
    Karl, T. R.,Knight, R. W.1998. Secular trends of precipitation amount, frequency, and intensity in the United States. Bulletin of the American Meteorological Society, 79(2),231-241.
    Karl, T. R., Knight, R. W, Easterling, D. R., et al.1996. Indices of climate change for the United States. Bulletin of the American Meteorological Society,77(2), 279-292.
    Karl, T. R., Kukla, G, Razuvayev, V. N., et al.1991. Global warming:Evidence for asymmetric diurnal temperature change. GEOPHYSICAL RESEARCH LETTERS,18(12),2253-2256.
    Katz, R. W.,Brown, B. G 1992. Extreme events in a changing climate:variability is more important than averages. Climatic change,21(3),289-302.
    Kharin, V. V.,Zwiers, F. W.2000. Changes in the Extremes in an Ensemble of Transient Climate Simulations with a Coupled Atmosphere-Ocean GCM. Journal of Climate,13(21),3760-3788.
    Kiktev, D., Sexton, D. M. H., Alexander, L., et al.2003. Comparison of modeled and observed trends in indices of daily climate extremes. Journal of Climate,16,22.
    Koutsoyiannis, D.,Baloutsos, G.2000. Analysis of a Long Record of Annual Maximum Rainfall in Athens, Greece, and Design Rainfall Inferences. Natural Hazards, 22(1),29-48.
    Lorenz, E. N.1969. Atmospheric Predictability as Revealed by Naturally Occurring Analogues. Journal of the Atmospheric Sciences,26(4),636-646.
    Meehl, G. A., Karl, T., Easterling, D. R., et al.2000. An introduction to trends in extreme weather and climate events:observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bulletin of the American Meteorological Society, 81(3),413-416.
    Naveau, P., Nogaj, M., Ammann, C., et al.2005. Statistical methods for the analysis of climate extremes. Comptes rendus-Geoscience,337(10-11),1013-1022.
    Nguyen, V. T., Nguyen, T. D.,Ashkar, F.2002. Regional frequency analysis of extreme rainfalls. Water Sci Technol,45(2),75-81.
    Nguyen, V. T. V, Nguyen, T. D.,Wang, H.1998. Regional estimation of short duration rainfall extremes. Water Science and Technology,37(11),15-19.
    Peirce, F. T.1926. Tensile Tests for Cotton Yarns, v.-'The Weakest Link,'Theorems on the Strength of Long and of Composite Specimens. J. Textile Inst,17, T355-368.
    Phillips, N. A.1956. The general circulation of the atmosphere:a numerical experiment, QJ Roy. Meteor. Soc,82,123-164.
    Pickands, J.1975. Statistical inference using extreme order statistics. Ann. Statist,3(1), 119-131.
    Rao, C. R.1976. Linear Statistical Inference and its Applications, New York, John Wiley and Sons,625pp
    Redner, S.,Petersen, M. R.2006. Role of global warming on the statistics of record-breaking temperatures. Physical Review E,74(6),61114.
    Robertson, A. W., Mechoso, C. R.,Kim, Y. J.2000. The Influence of Atlantic Sea Surface Temperature Anomalies on the North Atlantic Oscillation*. Journal of Climate, 13(1),122-138.
    Serreze, M. C., Walsh, J. E., Chapin, F. S., et al.2000. Observational evidence of recent change in the northern high-latitude environment. Climatic change,46(1), 159-207.
    SHI, D.1995a. Fisher information for a multivariate extreme value distribution.), Biometrika Trust.
    SHI, D.1995b. Moment estimation for multivariate extreme value distribution. Applied Mathematics-A Journal of Chinese Universities,10(1),61-68.
    SHI, D.1995c. Multivariate extreme value distribution and its fisher information matrix. Acta Mathematicae Applicatae Sinica (English Series),11(4),421-428.
    Smagorinsky, J., Manabe, S.,Holloway, J. L.1965. Numerical results from a nine-level general circulation model of the atmosphere. Mon. Wea. Rev,93(12),727-768.
    Solomon, S.2007. Climate Change 2007:The Physical Science Basis:Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, London, Cambridge University Press,996pp
    Thompson, D. W. J.,Wallace, J. M.1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. GEOPHYSICAL RESEARCH LETTERS,25,1297-1300.
    Timmermann, A., Oberhuber, J., Bacher, A., et al.1999. Increased El Nino frequency in a climate model forced by future greenhouse warming. Nature,398,694-697.
    Tippett, L. H. C.1925. On the extreme individuals and the range of samples taken from a normal population. Biometrika,17(3-4),364.
    von Bortkiewicz, L.1922. Variationsbreite und mittlerer Fehler. Sitzungsber. d. Berliner Math. Ges,21(3).
    von Mises, R.1923. uber die Variationsbreite einer Beobachtungsreihe. Sitzungsber. d. Berliner Math. Ges,22(3).
    von Mises, R.1936. La distribution de la plus grande de n valeurs. Rev. math. Union interbalcanique,1(1).
    Wallace, J. M., Zhang, Y.,Bajuk, L.1996. Interpretation of Interdecadal Trends in Northern Hemisphere Surface Air Temperature. Journal of Climate,9(2), 249-259.
    Wallace, J. M., Zhang, Y.,Renwick, J. A.1995. Dynamic Contribution to Hemispheric Mean Temperature Trends. Science,270(5237),780.
    Walsh, J. E., Phillips, A. S., Portis, D. H., et al.2001. Extreme cold outbreaks in the United States and Europe,1948-99. Journal of Climate,14,12.
    Wang, H. J.2003.2002:The Extra-strong warm winter event in North Asia and its accompanying anomalous atmospheric circulation. Chinese Science Bulletin, 48(10),1031-1033.
    Weibull, W.1939. A statistical theory of the strength of materials.
    Weibull, W.1951. A statistical distribution function of wide applicability. J. appl. Mech, 18(3),293-297.
    Wettstein, J. J.,Mearns, L. O.2002. The Influence of the North Atlantic-Arctic Oscillation on Mean, Variance, and Extremes of Temperature in the Northeastern United States and Canada. Journal of Climate,15(24),3586-3600.
    XIE, Z., JIANG, A., DU, Y., et al.2005. Spatial-temproal Features of Annual Extremes of Heavy Precipitation Processes in the Yangtze River Delta. Journal of Nanjing Institute of Meteorology,28(2),267-274.(in Chinese).
    Yan, Z., Bate, S., Chandler, R. E., et al.2002a. An analysis of daily maximum wind speed in northwestern Europe using generalized linear models. Journal of Climate,15(15),2073-2088.
    Yan, Z., Jones, P. D., Davies, T. D., et al.2002b. Trends of extreme temperatures in Europe and China based on daily observations. Climatic change,53(1),355-392.
    Yiou, P.,Nogaj, M.2004. Extreme climatic events and weather regimes over the North Atlantic:When and where. GEOPHYSICAL RESEARCH LETTERS,31,1-10.
    Yun, S.2000. A class of Pickands-type estimators for the extreme value index. Journal of Statistical Planning and Inference,83(1),113-124.
    Zhai, P.,Pan, X.2003. Trends in temperature extremes during 1951-1999 in China. Geophys. Res. Lett,30(17),1913.
    Zhai, P., Sun, A., Ren, F., et al.1999. Changes of climate extremes in China. Climatic change,42(1),203-218.
    Zhai, P., Zhang, X., Wan, H., et al.2005. Trends in total precipitation and frequency of daily precipitation extremes over China. Journal of Climate,18(7),1096-1108.
    Zhang, R.,Sumi, A.2002. Moisture circulation over East Asia during El Ni o episode in northern winter, spring and autumn.気象集誌,80(2),213-227.
    Zhang, R., Sumi, A.,Kimoto, M.1996. Impact of El Ni o on the East Asian monsoon:A diagnostic study of the'86/87 and'91/92 events. Journal of the Meteorological Society of Japan,74(1),49-62.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.