钴、镍硒化物的溶剂热合成及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍和钴的硒化物纳米材料在催化剂、传感材料、磁性材料以及电池等方面有着极其广泛的应用。开发新型的镍、钴化合物以及深入研究它们在各领域中的应用具有十分重要的意义,将有利于充分发挥这一类材料的最大潜能。本论文利用溶剂热法合成NiSe和Co0.85Se两种化合物,并研究了它们在环境保护中的应用。论文主要内容如下:
     1、以乙二醇为溶剂兼还原剂,利用简单的溶剂热方法合成了六方相的八面体形貌的硒化镍(NiSe)。运用X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等测试手段对产物进行了表征,并研究了反应温度、反应时间对产物的影响,找到制备八面体NiSe的最佳反应条件。将制备的这一产物用于催化降解水合肼,并与非典型合成条件下制备样品的催化效果对比,发现八面体硒化镍对水合肼具有较为明显的催化降解作用。这一性质可用于污水中水合肼的去除,从而对环境保护具有重要的意义。
     2、在不使用任何表面活性剂和模板的情况下,成功地合成了六方相的石墨烯状的Co0.85Se。X-射线衍射(XRD)、扫描电子显微镜(SEM)、选区电子衍射(SAED)以及透射电子显微镜(TEM)和BET的方法都被用来表征产物的结构、形态和比表面积。SEM观察结果表明,得到的Co0.85Se纳米晶体是厚度小于10纳米的石墨烯状的薄片。对制备的产品在室温下进行铁磁性测试,发现这种样品具有弱的顺磁性。并且该产品具有较高的比表面积,可以作为吸附剂用于废水处理中。
     3、在前部分实验的基础上,对实验方法稍微改变,采用溶剂热方法制备出石墨烯状的纳米Co0.85Se薄膜。通过进一步的实验发现这种Co0.85Se纳米材料在催化还原对硝基苯酚的过程中具有较高的活性,同时对甲基蓝具有较强的吸附能力。在硼氢化钠的存在下,Co0.85Se作为催化剂用于还原对硝基苯酚的实验中,实验结果表明,随着硼氢化钠浓度和催化剂量的增加,还原反应的动力学常数也增大。并且这种催化剂在多次使用后,利用磁铁分离收集再用于同样的体系中仍然具有很高的活性。此外,该Co0.85Se对甲基蓝具有很强的吸附能力,并考虑了pH值对其吸附能力的影响,发现在不同条件下,吸附过程在30分钟内达到平衡。
Nickel and cobalt selenides are widely applied in the fields of catalyst, sensor materials, magnetic materials, cell and so on. It is important to explore novel synthesis and expand application extents of nickel and cobalt selenides. In this thesis, solvothermal routes have been chosen to synthesize Co0.85Se and NiSe nanosturctuers, and their applications in environmental protection have also been studied. The main contents are as follows:
     1. Nano nickel selenides with octahedral morphology were successfully synthesized via a simple mild solvothermal method. In the process, glycol was used as both solvent and reducing agent. The as-synthesized nano-sized nickel selenide was characterized by SEM, XRD, TEM, and so on. The results indicated that the formation of the octahedral NiSe was strongly dependent on the reaction temperature and reaction time. Interestingly, it was found that the as-prepared octahedral NiSe showed efficient catalytic performance for decomposition of hydrazine hydrate at room temperature.
     2. Hexagonal Co0.85Se with Ni0.85Se-type structure has been successfully synthesized without any surfactants by a solvothermal reduction route. X-ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction pattern (SAED), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) method were used to characterize the structure, morphology and specific surface area of the Co0.85Se nanocrystals. SEM observation indicated that the obtained Co0.85Se nanocrystals were of Graphene-like morphology with thickness less than10nm. The as-prepared products have ferromagnetic at room temperature from magnetic measurement. And the products with high specific surface area could be used as adsorbent in wastewater treatment, which may be very useful for the environment.
     3. Uniform Graphene-like Co0.85Se nanosheets which exhibit a remarkable catalytic activity for the reduction of p-nitrophenol and a high adsorption capacity for Methyl Blue were prepared via a modified solvothermal process. The prepared nanosheets were applied to catalyze the reduction of p-nitrophenol in the presence of NaBHt, and the results indicated that the kinetic constant of the reaction increased when the concentrations of NaBH4and the amount of catalyst increased. The catalyst can be recycled a number of times after the quantitative reduction of4-nitrophenol. In addition, the adsorption efficiency for methyl blue was evaluated by the product and possible influence factors were discussed.
引文
[1]B. M. Ginzburg, S. Tuichiev, S. H. Tabarov, Formation of Zero Density Regions During the Dissolving of C6o and C70 [J]. J. Macromol. Sci. Part B Phys.,2013, 52:773-787.
    [2]H. Zeng, P. M. Riee, S. X. Wang, etal. Shape-Controlled Synthesis and Shape-Induced Texture of MnFe2O4 NanoParticles [J]. J.Am.Chem.Soc.,2004, 126:11458-11459.
    [3]J. Kassim, C. Nolph, M. Jamet, etal. Ge1-xMnx heteroepitaxial quantum dots: Growth, morphology, and magnetism [J]. J. Appl. Phys.2013,113:073910.
    [4]Dan Xia, Qingzhong Xue, Teng Zhang, etal. Carbon/Silicon Heterojunction Formed by Inserting Carbon Nanotubes into Silicon Nanotubes:Molecular Dynamics Simulations [J]. J. Phys. Chem. C,2012,116:23181-2318.
    [5]J. Fu, Z. Cao, L.Yobas, Localized oblique-angle deposition:Ag nanorods on microstructured surfaces and their SERS characteristics [J]. Nanotechnology,2011, 22:505302.
    [6]H. L. Niu, X. H. Wu, M. Qiu, etal. A study on surfactant-free growth of silver-carbon nanocables by H2SO4-mediated hydrothermal process [J]. J. Mater. Res.,2011,26:2780-2794.
    [7]C. Petit,A. Taleb, M. P. Pileni, etal. Cobalt nanosized Particles organized in a 2D superlattice:Synthesis, characterization, and magnetic properties [J]. J. Phys. Chem.B,1999,103:1805-1810.
    [8]Z. P. Zhu, D. S. Su, G. Weinberg, etal. Supermolecular Self-Assembly of Graphene Sheets:Formation of Tube-in-Tube Nanostructures [J]. Nano Lett.,2004,4: 2255-2259.
    [9]S. Moonsub, G. S. PhiliPPe, n-type colloidal semiconductor nanocrystals [J]. Nature,2000,407:981-983.
    [10]R. Kubo, A. Kawabata, S. Kobayashi, Electronic properties of small particles [J]. Annu. Rev. Meter. Sci.,1984,14:49-66.
    [11]刘焕彬,陈小泉.纳米科学与技术导论[M].北京:化学工业出版社,2006,7.
    [12]S. Linderoth, S. Morup, Chemically prepared amorphous FeB particles:Influence of pH on the composition [J]. J. Appl. Phys.,1990,67:4472-4474.
    [13]Y. Zeng, W. Wu, S. Lee, etal. Photocatalytic performance of plasma sprayed Pt-modified TiO2 coatings under visible light irradiation [J]. Mater. Sci. Eng., A, 2007,458:44-47.
    [14]C. L. Zhu, X. Y. Song, W. H. Zhou, etal. An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates [J]. J. Mater. Chem.,2009,19:7765-7770.
    [15]张立德编著,严东生,冯端主编.材料新星—纳米材料科学[M].长沙:湖南科学技术出版社,1997.
    [16]H. Wang, W. Zhou, J. X. Liu, etal. Platinum-modulated Cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis [J]. J. Am. Chem. Soc.,2013,135:4149-4158.
    [17]乔宏霞,周茗如,朱彦鹏.纳米材料在建筑材料中的发展和应用[J].2008,4:61-64.
    [18]J. K. Mwauxa, X. Zhao, H. Jiang, etal. Spectral Broadening in Nanocrystalline TiO2 Solar Cells Based on Poly (p-phenylene ethynylene) and Polythiophene Sensitizers. Chem. Mater.,2007,19:1202-1202.
    [19]J. H. Yu, H. X. Ju, Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by aVapor deposition method. Anal.Chem.,2002,74: 3579-3583.
    [20]J. H. Yu, S. Q. Liu, H. X. Ju, etal. Glueose sensor for flow injection analysis of serumglueose based on immobilization of glueose oxidase in titania sol-gel membrane. Biosens. Bioelectron.,2003,19:401-406.
    [21]T. Chivers. Tellurium compounds of the main-group elements:progress and prospects [J]. J. Chem. Soc., Dalton Trans.,1996:1185-1194.
    [22]S. Song, S. S. Howard, Z. J. Liu, etal. Mode tuning of quantum cascade lasers through optical processing of chal cogenide glass claddings [J]. Appl. Phys. Lett., 2006,89:041115.
    [23]J. J. Ritter, M. Pichai. Synthesis of polycrystalline bismuth telluride by a metal-organo complex method [J]. Inorg. Chem.,1995,34:4278-4280.
    [24]Y. Zhang, X. Q. Yan, Y. Yang, etal. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices [J]. Adv. Mater.,2012,24: 4647-4655.
    [25]M. R. Hoffmann, S. T. Martin, W. Y. Choi, etal. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95:69-96.
    [26]M. Gratzel. From space to earth:The story of solar electricity [J]. Nature,2000, 403:363-363.
    [27]刘恩科,朱秉生.半导体物理学[M].北京:电子工业出版社,2008..
    [28]Nitta T, Terada Z, Hayakawa S. Humidity-sensitive electrical-conduction of MgCr2O4-TiO2 porous ceramics [J]. J. Am. Ceram. Soc.,1980,63:295-300.
    [29]X. P. Gao, J. L. Bao, G. L. Pan, etal. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery [J]. J. Phys. Chem. B,2004,108:5547-5551.
    [30]J. P. Ge, W. Chen, L. P. Liu, etal. Formation of disperse nanoparticles at the oil/water interface in normal microemulsions [J]. Chem. Eur. J.,2006,12: 6552-6558.
    [31]C. Wang, Y. Zhou, M. Y. Ge, etal. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity [J]. J. Am. Chem. Soc.,2010,132:46-47.
    [32]Z. Fang, Y. F. Liu, Y. T. Fan, etal. Epitaxial growth of CdS nanoparticle on Bi2S3 nanowire and photocatalytic application of the heterostructure [J]. J. Phys. Chem. C.,2011,115:13968-13976.
    [33]C. Zou, L. J. Zhang, S. M. Huang, etal. Facile synthesis of Cu2ZnSnS4 nanocrystals [J]. CrystEngComm,2011,13:3310-3313.
    [34]M. Jr, S. Weiss, A. P. Alivisatos. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281:2013-2016.
    [35]张克从,王希敏著.非线性光学晶体材料科学[M],科学出版社,1996年,253-254.
    [36]X. Wang, J. Lu, Y. Xie, etal. A novel route to multiwalled carbon nanotubes and carbon nanorods at low temperature [J]. J. Phys. Chem. B,2002,106:933-937.
    [37]L. Manna, E. C. Scher, A. P. Alivisatos, Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals [J], J. Am. Chem. Soc., 2000,122:12700-12706.
    [38]J. Nanda, S. Sameer, D. D. Sarma, Size-Selected Zinc Sulfide Nanocrystallites: Snythesis, Structure, and optical studies [J]. Chem. Mater.,2000,12:1018-1024
    [39]T. H. Lasrne, M. Sigman, A. Ghezelbash, etal. Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor [J]. J. Am. Chem. Soc,2003,125:5638-5639.
    [40]D. Reso, M. Silinskas, M. Lisker, etal. Hot wire chemical vapor deposition of germanium selenide thin films for nonvolatile random access memory applications [J]. Appl. Phys. Lett.,2011,98:151901.
    [41]A. Panneerselvam, M. A. Malik, M. Afzaal, etal. The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor [J]. J. Am. Chem. Soc.,2008,130:2420-2421.
    [42]Y. X. Hu, M. Afzaal, M. A. Malik, etal. Deposition of copper selenide thin films and nanoparticles [J]. J. Cryst. Growth,2006,297:61-65.
    [43]Z. H. Wang, F. Peng, Y. C. Wu, etal. Template synthesis of Cu2-xSe nanoboxes and their gas sensing properties [J]. CrystEngComm,2012,14:3528-3533.
    [44]B. Erenturk,S. Gurbuz,R. E. Corbett, etal. Formation of Crystalli ne Cadmium Seleni de Nanowires [J]. Chem. Mater.2011,23:3371-3376.
    [45]刘爱东.纳米材料的生物模板控制合成[J].云南大学学报:自然科学版,2005,27:190-194.
    [46]G. N. Karanikolos, P. Alexandridis, G. Itskos, etal. Synthesis and Size Control of Luminescent ZnSe Nanocrystals by a Microemulsion-Gas Contacting Technique [J]. Langmuir,2004,20:550-553.
    [47]周彦昭.微乳液法制备纳米粉体综述[S].陕西科技大学学报,2004,22:167-170.
    [48]T. S. Shyju, S. Anandhi, R. Indirajith, etal. Solvothermal synthesis, deposition and characterization of cadmium selenide (CdSe) thin films by thermal evaporation technique [J]. J. Cryst. Growth,2011,337:38-45.
    [49]B. X. Yuan, W. L. Luan, S. T. Tu, etal. One-step solvothermal synthesis of nickel selenide series:Composition and morphology control [J]. CrystEngComm,2012, 14:2145-2151.
    [50]K. B. Tang, Y. T. Qian, J. H. Zeng, etal. Solvothermal route to semiconductor nanowires [J]. Adv. Mater.,2003,15:448-450.
    [51]J. Yang, G H. Cheng, J. H. Zeng, etal. Shape control and characterization of transition metal diselenides MSe2 (M=Ni, Co, Fe) Prepared by a solvothermal-reduction process [J]. Chem. Mater.,2001,13:848-853.
    [52]R. C. Zhang, C. Zhang, D. J. Zhang, etal. Copper-rich framework selenoarsenates based on icosahedral CugSe13 Clusters [J]. Z. Anorg. Allg. Chem.,2012,638: 2503-2507.
    [53]B. Zheng, X. D. Chen, S. L. Zheng, etal. Selenium as a Structural Surrogate of Sulfur:Template-Assisted Assembly of Five Types of Tungsten-Iron-Sulfur/Selenium Clusters and the Structural Fate of Chalcogenide Reactants [J]. J. Am. Chem. Soc.2012,134:6479-6490.
    [54]J. C. Newton, K. Ramasamy, M. Mandal, etal. Low-temperature synthesis of magic-sized CdSe nanoclusters:influence of ligands on nanocluster growth and photophysical properties [J]. J. Phys. Chem. C,2012,116:4380-4389.
    [55]Z. A. Peng, X. G Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J]. J. Am. Chem. Soc.,2001:183-184.
    [56]W. N. Nan, Y. Niu, H. Y. Qin, etal. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals:synthesis and structure-dependent optical properties [J]. J. Am. Chem. Soc.,2012,134:19685-19693.
    [57]X. G Peng, L. Manna, W. D. Yang, etal. Shape control of CdSe nanocrystals [J]. Nature,2000,404:59-61.
    [58]S. Asokan, K. M. Krueger, V. L. Colvin, etal. Shape-controlled synthesis of CdSe tetrapods using cationic surfactant ligands [J]. Small,2007,3:1164-1169.
    [59]H. S. Chen, B. Lo, J. Y. Hwang, etal. Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO [J]. J. Phys. Chem. B,2004, 108:17119-17123.
    [60]J. K. Cooper, A. M. Franco, S. Gul, etal. Characterization of primary amine capped CdSe, ZnSe, and ZnS quantum dots by FT-IR:determination of surface bonding interaction and identification of selective desorption [J]. Langmuir,2011, 27:8486-8493.
    [61]M. A. Hines, P. Guyot-Sionnest, Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals [J]. J. Phys. Chem. B,1998,102:3655-3657.
    [62]Y. J. Bao, J. J. Li, Y. T. Wang, etal. Preparation of water soluble CdSe and CdSe/CdS quantum dots and their uses in imaging of cell and blood capillary [J]. Opt. Mater.,2012,34:1588-1592.
    [63]J. Ke, X. Y. Li, Y. Shi, etal. A facile and highly sensitive probe for Hg (Ⅱ) based on metal-induced aggregation of ZnSe/ZnS quantum dots [J]. Nanoscale,2012,4: 4996-5001.
    [64]D. Zhu,Y. Chen, L. P. Jiang, etal. Manganese-doped ZnSe quantum dots as a probe for time-resolved fluorescence detection of 5-fluorouracil [J]. Anal. Chem. 2011,83:9076-9081.
    [65]S. Y. Zhang, C. X. Fang, W. Wei, etal. Synthesis and electrochemical behavior of crystalline Ag2Se nanotubes [J]. J. Phys. Chem. C,2007,111:4168-4174.
    [66]S. K. Batabyal, C. Basu, A. R. Das, etal. Solvothermal synthesis of bismuth selenide nanotubes [J]. Mater. Lett.,2006,60:2582-2585.
    [67]C. X. Fang, S.Y. Zhang, P. F. Zuo, etal. Nanotube-nanotube transformation synthesis and electrochemistry of crystalline CuAgSe nanotubes [J]. J. Cryst. Growth,2009,311:2345-2351.
    [68]L. Li, Q. S. Wu, Y. P. Ding, Living bio-membrane bi-template route for simultaneous synthesis of lead selenide nanorods and nanotubes [J]. Nanotechnology,2004,15:1877-1881.
    [69]J. Pan, Y. T. Qian, Synthesis of cadmium chalcogenide nanotubes at room temperature [J]. Mater. Lett.,2012,85:132-134.
    [70]A. B. Panda, S. Acharya, S. Efrima, Ultranarrow ZnSe nanorods and nanowires: structure, spectroscopy, and one-dimensional properties [J]. Adv. Mater,2005,17: 2471-2474.
    [71]J. L. Wang, C. M. Yang, Z. P. Huang, etal. Seed-catalyzed heteroepitaxial growth and nonlinear optical properties of zinc selenide nanowires [J]. J. Mater. Chem., 2012,22:10009-10014.
    [72]J. Zhang, J. W. Liu, C. Y. Liang, etal. Highly crystalline manganese selenide nanorods:Synthesis, characterization, and microwave absorption properties [J]. J. Alloys Compd.,2013,548:13-17.
    [73]Z. Y. Wang, Q. F. Lu, M. G. Kong, etal. Manipulation of the morphology of semiconductor-based nanostructures from core-shell nanoparticles to nanocables: the case of CdSe/SiO2 [J]. Chem. Eur. J.,2007,13:1463-1470.
    [74]S. Mishra, K. Song, J. A. Koza, etal. Synthesis of superconducting nanocables of FeSe encapsulated in carbonaceous shell [J]. ACS Nano,2013,7:1145-1154.
    [75]L. Wang, J. S. Jie, C. Y. Wu, etal. Coaxial ZnSe/Si nanocables with controlled p-type shell doping [J]. Nanotechnology,2010,21:285206.
    [76]J. Xu, X. Yang, H. K. Wang, etal. Arrays of ZnO/ZnxCd1-xSe nanocables:band gap engineering and photovoltaic applications [J]. Nano Lett.,2011,11: 4138-4143.
    [77]Y. P. Du, B. Xu, T. Fu, etal. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor [J]. J. Am. Chem. Soc.2010,132:1470-1471.
    [78]S. L. Shen,Y J. Zhang, L. Peng, etal. Matchstick-shaped Ag2S-ZnS heteronanostructures preserving both UV/blue and near-infrared photoluminescence [J]. Angew. Chem. Int. Ed.,2011,50:7115-7118.
    [79]S. L. Shen, Y. J. Zhang, Y. S. Liu, etal. Manganese-doped Ag2S-ZnS heteronanostructures [J]. Chem. Mater.,2012,24:2407-2413.
    [80]L. Li, Z. Chen, Y. Hu, etal. Single-layer single-crystalline SnSe nanosheets [J]. J. Am. Chem. Soc.,2013,135:1213-1216.
    [81]X. D. Zhang, J. J. Zhang, J. Y. Zhao, etal. Half-metallic ferromagnetism in synthetic Co9Se8 nanosheets with atomic thickness [J]. J. Am. Chem. Soc.,2012, 134:11908-11911.
    [82]Y. N. Xia, Nanomaterials at working in biomedical research [J]. Nat. Mater,2008, 7:758-760.
    [1]X. Wang, J. Zhuang, Q. Peng, etal. A general strategy for nanocrystal synthesis [J]. Nature,2005,437:121-124.
    [2]S. T. Lakshmikvmar, A. C. Rastogi. Selenization of Cu and in thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source [J]. Sol. Energy Mater. Sol. Cells,1994,32:7-19.
    [3]S. G. Chen, K. Zeng, Y. D. Song, etal. Systematical shape evolution of hexagonal NiSe crystals caused by mixed solvents and ammonium chloride [J]. J. Cryst. Growth,2012,358:57-63.
    [4]J. P. Ge, Y. D. Li, Ultrasonic synthesis of nanocrystals of metal selenides and tellurides [J]. J. Mater. Chem.,2003,13:911-915.
    [5]M. R. Gao, Z. Y. Lin, T. T. Zhuang, etal. Mixed-solution synthesis of sea urchin-like NiSe nanofiber assemblies as economical Pt-free catalysts for electrochemical H2 production [J]. J. Mater. Chem.,2012,22:13662-13668.
    [6]P. R. Bonneau, R. F. Jarvis, R. B. Kaner, Rapid solid-state synthesis of materials from molybdenum disulphide to refractories [J]. Nature,1991,349:510-512.
    [7]C. E. M. Campos, J. C. de Lima, T. A. Grandi, et al. Nucleation and growth of nanocrystalline pyrite nickel diselenide by mechanical alloying [J]. Solid State Commun.,2003,128:229-234.
    [8]X. H. Liu, G Z. Qiu, J. W. Wang, etal. Formation of hollow submicrometer spheres of nickel selenides [J]. Chem. Lett.,2004,33:852-853.
    [9]Z. B. Zhuang, Q. Peng, J. Zhuang, etal. Controlled hydrothermal synthesis and structural characterization of a nickel selenide series [J]. Chem. Eur. J.,2006,12: 211-217.
    [10]Z. H. Han, S. H. Yu, Y. P. Li, etal. Convenient solvothermal synthesis and phase control of nickel selenides with different morphologies [J]. Chem. Mater.,1999, 11:2302-2304.
    [11]A. Y. Zhang, Q. Ma, M. K. Lu, etal. Nanocrystalline Metal Chalcogenides Obtained Open to Air:Synthesis, Morphology, Mechanism, and Optical Properties [J]. J. Phys. Chem. C,2009,113:15492-15496.
    [12]A. W. Zhao, L. Q. Xu, T. Luo, etal. Synthesis of Nickel Selenide Nanocables and Nanotubes [J]. Chem. Lett.,2005,34:1136-1137.
    [13]A. Panneerselvam, M. A. Malik, M. Afzaal, etal. The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor [J]. J. Am. Chem. Soc.,2008,130:2420-2421.
    [14]P. P. Hankare, B. V. Jadhav, K. M. Garadkar, etal. Synthesis and characterization of nickel selenide thin films deposited by chemical method [J]. J. Alloys Compd., 2010,490:228-231.
    [15]Z. H. Han, S. H. Yu, Y. P. Li, etal. Convenient solvothermal synthesis and phase control of nickel selenides with different morphologies [J]. Chem. Mater.,1999, 11:2302-2304.
    [16]A. Sobhani, F. Davar, M. Salavati-Niasari, Synthesis and characterization of hexagonalnano-sized nickel selenide by simple hydrothermal method assisted by CTAB [J]. Appl. Surf. Sci.,2011,257:7982-7987.
    [17]R. Kaveeshwar, V. K. Gupta, A new spectrophotometric method for the determination of hydrazine in environmental samples [J]. Fresenius J. Anal. Chem.,1992,344:114-117.
    [18]S. K. Singh, X. B. Zhang, Q. Xu, Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage [J]. J. Am. Chem. Soc.,2009, 1319894-9895.
    [19]X. W. Chen, T. Zhang, M. Y. Zheng, etal. The reaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst [J]. J. Catal.,2004,224:473-478.
    [20]M. Y. Zheng, X. W. Chen, R. H. Cheng, etal. Catalytic decomposition of hydrazine on iron nitride catalysts [J]. Catal. Commun.,2006,7:187-191.
    [21]J. B. O. Santos, G. P. Valenca, J. A. J. Rodrigues, Catalytic decomposition of hydrazine on tungsten carbide:the influence of adsorbed oxygen [J]. J. Catal., 2002,210:1-6.
    [22]Y. B. Jang, T. H. Kim, M. H. Sun, etal. Preparation of iridium catalyst and its catalytic activity over hydrazine hydrate decomposition for hydrogen production and storage [J]. Catal. Today,2009,146:196-201.
    [23]S. K. Singh, Q. Xu. Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine [J]. Chem. Commun.,2010,46: 6545-6547.
    [24]L. N. Ding, Y. Y. Shu, A. Q. Wang, etal. Preparation and catalytic performances of ternary phosphides NiCoP for hydrazine decomposition [J]. Appl. Catal., A: General,2010,385:232-237.
    [25]G W. Watt, J. D. Chrisp. A spectrophotometric method for the determination of hydrazine [J]. Anal. Chem.,1952,24:2006-2008.
    [1]G. R. Patzke, F. Krumeich, R. Nesper. Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology [J]. Angew. Chem. Int. Ed.,2002,41:2446-2461
    [2]J. Wang, Y. Chen, W. J. Blau. Carbon nanotubes and nanotube composites for nonlinear optical devices [J]. Mater J. Chem.,2009,19:7425-7443
    [3]S. T. Lakshmikvmar. Selenization of Cu and in thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source [J]. Sol. Energy Mater. Sol. Cells 1994,32:7-19
    [4]A. Hagfeldt, M. Gratzel. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev.,1995,95:49-68
    [5]O. Tatsuya, O. Satoru. Electrical properties of liquid Ni-Se and Cu-Se alloys [J]. Non-Cryst J. Solids,1999,250-2:344-347
    [6]W. Z. Wang, Y. Geng, P. Yan, etal. A novel mild route to nanocrystalline selenides at room temperature [J]. J. Am. Chem. Soc.,1999,121,4062-4063
    [7]M. R. Gao, S. Liu, J. Jiang, etal. In situ controllable synthesis of magnetite nanocrystals/CoSe2 hybrid nanobelts and their enhanced catalytic performancee [J]. J. Phys. Chem. A,2010,114:4173-4180
    [8]T. Ohtani, M. Motoki. Synthesis of binary copper chalcogenides by mechanical alloying [J]. Mater. Res. Bull.,1995,30:1495-1504
    [9]P. Pramanik, S. Bhattacharya, P. K. Basu. A solution growth technique for the deposition of cobalt selenide thin film [J]. Thin Solid Films,1987,149, L81-84
    [10]I. P. Parkin Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides:ionic or elemental pathways [J]. Chem. Soc. Rev.,1996,25: 199-207
    [11]P. Nekooi, M. Akbari, M. K. Amini. CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst [J]. Int. J. Hydrogen Energy,2010,35:6392-6398
    [12]G. N. Karanikolos, N. L. Law, R. Mallory, etal. Water-based synthesis of ZnSe nanostructures using amphiphilic block copolymer stabilized lyotropic liquid crystals as templates [J]. Nanotechnology,2006,17,3121-3128
    [13]D. Duphil, S. Bastide, J. C. Rouchaud, etal. The chemical synthesis in solution and characterization of transition metal dichalcogenide MX2 (M= Mo, W; X=S, Se) nanoparticles [J]. Nanotechnology,2004,15,828-832
    [14]M. Kristl, I. Ban, A. Danc, etal. A sonochemical method for the preparation of cadmium sulfide and cadmium selenide nanoparticles in aqueous solutions [J]. Ultrason. Sonochem.,2010,17,916-922
    [15]A. D. Christine, J. F. Mary, E. S. Richard, etal. Solvothermal Synthesis and Structure of a New Selenium-Rich Selenophosphate K3PSe4·2Se6 [J]. Inorg. Chem.,2002,41:640-642
    [16]X. Wang, J. Zhuang, Q. Peng, etal. A general strategy for nanocrystal synthesis [J]. Inorg. Chem.,2005,37:2844-2845
    [17]Z. H. Han, S. H. Yu, Y. P. Li, etal. Convenient solvothermal synthesis and phase control of nickel selenides with different morphologies [J]. Chem. Mater.,1999, 11:2302-2304
    [18]M. Hansen. Constitution of binary alloys, Geminuim Publ.Co, New York,1985, 502-503
    [19]T. Kazuhiro, Y. Sasaki. Kinetics and mechanism of the high temperature selenidization of cobalt [J]. Bull.Chem. Soc. Jpn,1992,65:329-333
    [20]W. X. Zhang, Z. H. Yang, J. W. Liu, etal. A hydrothermal synthesis of orthorhombic nanocrystalline cobalt diselenide CoSe2 [J]. Mater. Res. Bull.,2000, 35:2403-2408
    [21]C. E. M. Camposa, J. C. D. Limaa, T. A. Grandia, etal. Hexagonal CoSe formation in mechanical alloyed Co75Se25 mixture [J]. Solid State Commun.,2004, 131:265-270
    [22]J. H. Gao, B. Zhang, X. X. Zhang, etal. Magnetic-dipolar-interaction-induced self-assembly affords wires of hollow nanocrystals of cobalt selenide [J]. Angew. Chem. Int. Ed.,2006,45,1220-1223
    [23]X. H. Liu, N. Zhang, R. Yi, etal. Hydrothermal synthesis and characterization of sea urchin-like nickel and cobalt selenides nanocrystals Mater [J]. Sci. Eng., B, 2007,140:38-43
    [24]Y. J. Xiong, J. M. McLellan, J. Y. Chen, etal. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties [J]. J. Am. Chem. Soc.,2005,127:17118-17127
    [25]H. T. Yang, C. M. Shen, N. N. Song, etal. Facile synthesis of hollow nano-spheres and hemispheres of cobalt by polyol reduction [J]. Nanotechnology, 2010,21:375602
    [26]J. M. Song, Y. J. Zhan, A. W. Xu, etal. Cellulose Acetate-directed growth of bamboo-raft-like single-crystalline selenium superstructures:high-yield synthesis, characterization and formation mechanism [J]. Langmuir,2007,23:7321-7327
    [27]J. H. Zhan, X. G. Yang, S. D. Li, etal. Synthesis of nanocrystalline cobalt selenide in nonaqueous solvent [J]. J. Solid State Chem.,152:537-539
    [28]J. Zhang, F. J. Shi, J. Lin, etal. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst [J]. Chem. Mater.,2008,20:2937-2941
    [1]T. Vincent, E. Guibal. Chitosan-supported palladium catalyst.3. influence of experimental parameters on nitrophenol degradation [J]. Langmuir,2003,19: 8475-8483.
    [2]M. S. Dieckmann, K. A. Gray. A comparison of the degradation of 4-nitrophenol via direct and sensitized photocatalysis in TiO2 slurries [J]. Water Res.,1996,30: 1169-1183.
    [3]N. Takahashi, T. Nakai, Y. Satoh, etal. Variation of biodegradability of nitrogenous organic compounds by ozonation [J]. Water Res.,1994,28:1563-1570.
    [4]EPA (US Environmental Protection Agency), Ambient water quality for nitrophenols, EPA-440/580-063, Washington, DC, USA,1980.
    [5]M. Kulkarni, A. Chaudhari. Biodegradation of p-nitrophenol by Pseudomonas putida [J]. Bioresour. Technol.2006,97:982-988.
    [6]J. S. Zhang, Z. T. Sun, Y. Y. Li, etal. Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity [J]. J. Hazard. Mater., 2009,163:723-728.
    [7]Y. H. Deng, Y. Cai, Z. K. Sun, etal. Multifunctional mesoporous composite microspheres with well-designed nanostructure:A highly integrated catalyst system [J]. J. Am. Chem. Soc.,2010,132:8466-8473.
    [8]J. P. Ge, T. Huynh, Y. X. Hu, etal. Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports [J]. Nano Lett.,2008,8:931-934.
    [9]B. Naik, S. Hazra, V. S. Prasad, etal. Synthesis of Ag nanoparticles within the pores of SBA-15:An efficient catalyst for reduction of 4-nitrophenol [J]. Catal. Commun.,2011,12:1104-1108.
    [10]P. Liu, M. F. Zhao. Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP) [J]. Appl. Surf. Sci.,2009,255: 3989-3993.
    [11]C. M. Fan, L. F. Zhang, S. S. Wang, etal. A. W. Xu, Novel CeO2 yolk-shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol [J]. Nanoscale,2012,4:6835-6840.
    [12]R. Eising, A. M. Signori, S. Fort, etal. Development of catalytically active silver colloid nanoparticles stabilized by dextran [J]. Langmuir,2011,27:11860-11866.
    [13]T. Yu, J. Zeng, B. Lim, etal. Aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties [J]. Adv. Mater.,2010,22:5188-5192.
    [14]J. F. Zhao, J. M. Song, C. C. Liu, etal. Graphene-like cobalt selenide nanostructures:template-free solvothermal synthesis, characterization and wastewater treatment [J]. CrystEngComm,2011,13:5681-5684.
    [15]G. Mckay, J. F. Porter, G. R. Prasad. The removal of dye colours from aqueous solutions by adsorption on low-cost materials [J]. Water Air Soil Pollut.,1999,114: 423-438.
    [16]S. H. Chen, J. Zhang, C. L. Zhang, etal. Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis [J]. Desalination,2010,252:149-156.
    [17]A. C. Pradhan, K. M. Parida. Facile synthesis of mesoporous composite Fe/Al2O3-MCM-41:an efficient adsorbent/catalyst for swift removal of methylene blue and mixed dyes [J]. J. Mater. Chem.,2012,22:7567-7579.
    [18]M. Dogan, Y. Ozdemir, M. Alkan. Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite [J]. Dyes Pigm.,2007,75: 701-713.
    [19]H. T. Fan, Z. B. Lei, J. H. Pan, etal. Sol-gel synthesis, microstructure and adsorption properties of hollow silica spheres [J]. Mater. Lett.,2011,65: 1811-1814.
    [20]N. Pradhan, A. Pal, T. Pal, Silver nanoparticle catalyzed reduction of aromatic nitro compounds [J]. Colloids Surf. A,2002,196:247-257.
    [21]S. Jana, S. K. Ghosh, S. Nath, etal. Synthesis of silver nanoshell-coated cationic polystyrene beads:A solid phase catalyst for the reduction of 4-nitrophenol [J]. Appl. Catal. A:Gen.,2006,313:41-48.
    [22]Y. H. Zhu, J. H. Shen, K. F. Zhou, etal. Multifunctional magnetic composite microspheres with in situ growth Au nanoparticles:A highly efficient catalyst system [J]. J. Phys. Chem. C,2011,115:1614-1619.
    [23]H. Y. Zhu, R. Jiang, L. Xiao, etal. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nano-sized a-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange [J]. Bioresour. Technol.,2010,101:5063-5069.
    [24]R. P. Han, Y. F. Wang, P. Han, etal. Removal of methylene blue from aqueous solution by chaff in batch mode [J]. J. Hazard. Mater.,2006,137:550-557.
    [25]X. S. Wang, Y. Zhou, Y. Jiang, etal. The removal of basic dyes from aqueous solutions using agricultural by-products [J]. J. Hazard. Mater.,2008,157: 374-385.
    [26]B. H. Hameed, D. K. Mahmoud, A. L. Ahmad. Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste [J]. J. Hazard. Mater., 2008,158,499-506.
    [27]L. L. Fan, C. N. Luo, X. J. Li, etal. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue [J]. J. Hazard. Mater.,2012,215-216:272-279.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.