钌基催化剂对二硝基苯类化合物选择性加氢制备硝基苯胺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝基芳胺是重要的有机中间体,可用于有机合成、颜料和染料、医药、农药和橡胶助剂、树脂、感光材料等领域中。目前硝基苯类化合物制备芳胺的液相催化加氢工艺已趋成熟,但当苯环上硝基与其他不饱和基团共存时,如何实现硝基的选择性还原一直是国内外选择性催化领域的研究热点,特别是对于二硝基苯类化合物的高选择性部分还原更具挑战性。因此对二硝基苯类化合物高选择性部分加氢生成硝基芳胺的催化体系的深入研究兼具有理论意义和实际应用价值。
     间二硝基苯是最简单并且选择性加氢研究最多的二硝基化合物,因此本论文首先从间二硝基苯的催化加氢展开,通过比较不同骨架型催化剂对间二硝基苯的加氢反应历程,发现骨架钌镍炭(RuNiC)催化剂对间硝基苯胺的选择性最高,当底物完全转化时,间硝基苯胺选择性为96%;系统考察了反应溶剂、反应温度、压力和底物浓度因素对加氢选择性的影响。此外,邻二硝基苯和对二硝基苯的选择性加氢也呈现出了较高的选择性,当底物完全转化时,邻硝基苯胺及对硝基苯胺的选择性分别为92%和90%;通过跟踪邻、间、对二硝基苯的反应历程,发现三种底物的反应速率虽略有差异,但具有相似的反应规律。
     本论文进一步对底物范围进行了扩充,发现骨架钌镍炭对2,4-二硝基甲苯、2,4-二硝基苯甲醚、2,4-二硝基苯胺、2,4-二硝基苯酚及3,5-二硝基苯甲酸的选择性加氢均呈现出较高的选择性,但不同取代基会影响底物的反应活性;吸电子基团(-COOH)比供电子基团(-OH、-OCH_3、-NH_2)更有利于加氢反应的进行。此外,由于取代基与两个硝基(2,4-二硝基苯类化合物)位置上的相对差异,会生成不同的单还原位置异构体,特别是取代基为-NH_2、-OH、-OCH_3,表现出较强的邻基效应,产物以取代基邻位硝基还原为主。
     考虑到金属钌价格昂贵且骨架钌基催化剂难于制备,限制了骨架钌基催化剂的工业应用。采用负载型催化剂可以大大减少金属用量,降低催化剂制备成本,在本论文中采用表面活性剂保护法制备出高分散纳米负载型催化剂,比较Ru/C、Rh/C、Pd/C及Pt/C对间二硝基苯的催化加氢历程,发现Ru/C催化剂对间硝基苯胺的选择性高于其它三种催化剂,在较温和条件下,当底物完全转化时,间硝基苯胺的选择性可达到99%;系统考察了反应溶剂、温度、压力、底物浓度、催化剂担载量及催化剂用量对反应的影响,催化剂连续使用15次后,补加催化剂后,仍然可以保持较高的活性和选择性。此外,对邻、对二硝基苯进行选择性加氢,当底物转化率为100%时,邻硝基苯胺、对硝基苯胺的选择性分别为99%和95%,均高于骨架RuNiC体系。对比邻、间、对二硝基苯加氢的反应历程,结果表明三种底物具有相似的反应规律,均为典型的连串反应,而反应速率略有差异。
     进而将底物范围进行扩充,发现纳米Ru/C催化剂对取代二硝基苯类化合物的选择性催化加氢也表现出较高的选择性和反应活性。分别对2,4-二硝基甲苯、1,3-二硝基甲苯、2,5-二硝基-对二甲苯选择性加氢,底物转化率为98%、100%、95%时,单硝基还原产物的选择性分别为98%、92%、100%;在2,4-二硝基苯酚、2,4-二硝基苯胺、2,4-二硝基苯甲醚的选择性加氢中,底物完全转化时,部分还原产物的选择性为100%、100%、96%;对3,5-二硝基苯甲酸、3,5-二硝基水杨酸,2,4-二硝基氟苯的选择性加氢,底物完全转化时,硝基苯胺的选择性分别为97%、100%、97%,反应活性及对目标产物的选择性均高于文献报道。
     与骨架RuNiC体系相同,取代基性质会影响底物的反应活性及选择性。含有吸电子基团的二硝基苯类化合物反应活性明显高于含有供电子基的二硝基化合物的加氢反应;部分底物由于取代基与硝基相对位置不同,会导致单还原产物异构体的生成,并且取代基为-OH、-NH_2、-OCH_3时,邻基效应表现更为强烈,取代基邻位硝基还原产物的选择性分别100%,98%,96%。3,5-二硝基水杨酸的选择性加氢反应为两段反应,第一段反应是-OH邻位硝基的选择性还原,3,5-二硝基水杨酸完全转化时,3-氨基-5-硝基水杨酸的选择性为100%;第二段反应则需要提高反应条件后才能生成双还原产物3,5-二氨基水杨酸。
Nitroanilines are important intermediates widely used in pharmaceuticals,polymers, herbicides,fine chemicals and some other industrial fields;therefore,there is a strong incentive both in theoretical and economic perspective to develop chemoselective catalyst for the partial hydrogenation of dinitrobenzenes to nitroanilines.Although the reductions of various simple nitro compounds have been readily carded out with different commercial catalysts,the selective reduction of a nitro group amoung several reducible groups in the same molecule is more challenging,especially when two NO_2 groups co-exist.
     In recent years,ruthenium-catalyzed processes have become one of the most preferred methodologies in reduction reactions due to their high efficiency and versatile applications.In this dissertation,hydrogenations of m-dinitrobenzene over four kinds of skeletal catalysts were compared.The hydrogenation of m-dinitrobenzene to m-nitroaniline over skeletal RuNiC was higher than other catalysts,when m-dinitrobenzene converted completely,the selelctity to m-nitroaniline reached 96%.Based on this result,effects of the reaction conditions including temperature,pressure,and substrate concentration on selective hydrogenation of m-dinitrobenzene over Skeletal RuNiC were investigated.Additionally,the hydrogenation of o-,p-dinitrobenzene over Skeletal RuNiC also showed high selectivity to o-, p-nitroaniline.The reaction courses were tracked by gas chromatography,indicating that three substrates converted in a similar rule with different reaction order.
     In order to extend the applicability of skeletal ruthenium,selective hydrogenations of substituted dinitrobenzenes(2,4-dinitrophenol,2,4-dinitrobenzamine,2,4-dinitrotoluene, 3,5-dinitrobenzoic acid) were studied.The electron-withdrawing groups favored the hydrogenation of substituted dinitrobenzenes than electron-donating group.In addition, different position of the substituted group to two nitro groups in 2,4-dinitrobenzenes could lead to isomers,and the effect of substituted group on the isomer ratio was discussed.
     The industrial application of Skeletal Ru-based catalysts is limited by the high-cost and high melting point of metal ruthenium.Thus,supported ruthenium catalyst with high dispersion was prepared through surfactant-protection Ru colloid method.Hydrogenation of m-dinitrobenzene was chosen as the model reaction,and it was found that the Ru/C showed the highest selectivity to m-nitroanilines among several supported catalysts.The selective hydrogenation of m-dinitrobenzene over Ru/C was investigated and effects of reaction conditions such as temperature,pressure,substrate concentration,and Ru load amount and catalyst amount as well as catalyst lifetime were studied during circulation use.The reaction course showed that the hydrogenation of m-dinitrobenzene was a typical tandem reaction including m-dinitrobenzene to m-nitroaniline and m-nitroaniline to m-phenyldiamine,and the second step only occurred when the m-dinitrobenzene was converted completely;Ru/C also showed high selectivity to o-,p-nitroaniline in hydrogenation of o,p-dinitrobenzene.Similar to Skeletal RuNiC systerm
     Ru/C catalyst was also suitable for chernoselective hydrogenation of other substituted dinitrobenzenes.The selectivity of 2,4-dinitrotoluene,1,3-dinitrotoluene,2,5-dinitro-p-xylene, to partially hydrogenated products was 98%,92%and 100%respectively,when the conversion of substrate was 98%,100%,95%;the selectivity to partially reduced product was 100%,100%and 95%when 2,4-dinitrophenol,2,4-dinitrobenzamine,2,4-dinitroanisole converted completely;the selectivity of partial hydrogenation of 3,5-dimtrobenzoic acid, 3,5-dinitrosalicylic acid and 2,4-dinitrofluorobenzene was 97%,100%and 97%when substrate converted completely.All these results are higher than the selectivity published in literature.
     Similar to Skeletal RuNIC systerm,substited group played important role in the selective hydrogenation.The dinitrobenzene with electron-withdrawing group can be hydrogenated much easier than the dinitrobenzene with electron-donating group.The relative position of substituted group to two nitro groups can lead to foramation of isomers,when the group was -NH_2,-OH,-OCH_3,the reaction showed strong ortho effect,that is,the -NO_2 at the otho position of substituted group could be reduced easily.The hydrogenation of was not only step-wised,but also a two-stage reaction.At first stage,3,5-dinitrosalicylic acid partially hydrogenated to 3-amino-5-nitrosalicylic acid with high selectivity(100%),and the second-stage reaction,in which 3-amino-5-nitrosalicylic acid hydrogenated to 3,5-diaminosalicylic acid,occurred until the reaction conditions were increased.
引文
[1]徐克勋.精细有机化工原料及中间体手册.北京:化学工业出版社,1998.
    [2]魏文德.有机化工原料大全(下卷).北京:化学工业出版社,1999.
    [3]章思规,辛忠.精细有机化工制备手册.北京:科学技术文献出版社,1994.
    [4]贾志刚,李方实.液相催化加氢制取芳胺的研究进展.化工时刊.2004,18:1-3.
    [5]R.S.Dowing,P.J.Kunkeler,H.van Bekkum.Catalytic syntheses of aromatic amines.Catal.Today,1997,37:121-136.
    [6]A.Corma,P.Serna.Chemoselective hydrogenation of nitro compounds with supported gold catalysts.Science,2006,313:332-334.
    [7]C.Peter.Heterogeneously catalysed hydrogenation using gold catalysts.Appl.Catal.A:General,2005,291:222-229.
    [8]A.Corma,M.E.Domine.Gold supported on a mesoporous CeO2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid phase.Chem.Commun.2005,32:4042-4044.
    [9]A.Abad,P.Concepeio'n,A.Corma.A collaborative effect between gold and a support induces the selective oxidation of alcohols.Angew.Chem.Int.Ed.Engl.2005,44:4066-4069.
    [10]V.Mazzieri,N.Figoli,F.C.Pascual.Effect of the support on the selective hydrogenation of benzene over ruthenium catalysts.1.Al203 and Si02.Catal.Lett.2005,102:79-82.
    [11]P.Kluson,L.Cerveny.Selective hydrogenation over ruthenium catalysts,Appl.Catal.A:General.1995,128:13-31.
    [12]姚蒙正,程侣柏,王家儒.精细化工产品合成原理.北京:中国石化出版社.2000,430.
    [13]P.Concepcion,A.Corma,J.Silvestre-Albero,etal.Chemoselective Hydrogenation Catalysts:Pt on Mesostructured Ce02 Nanoparticles Embedded within Ultrathin Layers of SiO_2 Binder.J.Am.Chem.Soc.2004,126:5523-5532.
    [14]F.Zaera.Outstanding mechanistic questions in heterogeneous catalysis.J.Phys.Chem.B.2002,106:4043-4052.
    [15]B.Chen,U.Oingerdissen,J.G.E.Krauter,etal.New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals.Appl.Catal.A:general.2005,280:17-46.
    [16]U.Siegrist,P.Baumeister,H.U.Blaser.Catalysis of Organic Reactions,F.Herkes,Ed.,vol.75 of Chemical Industries(Dekker,New York,1998).
    [17]H.U.Blaser,U.Siegrist,H.Steiner.Aromatic Nitro Compounds:Fine Chemicals through Heterogeneous Catalysis,Sheldon R A,van Bekkum H,Eds.(Wiley-YCH,Weinheim,Germany,2001),389.
    [18]P.N.Rylander.Catalytic Hydrogenation inOrganic Synthesis,Academic Press,New York.1979.
    [19]M.Raney.U.S.patent 1,563,787.1925.
    [20]M.Raney.U.S.patent 1,628,190.1927.
    [21]M.Raney.U.S.patent 1,915.473.1933.
    [22]W.Gerhar,et al.Raney nickel catalysts,a method for producing said raney nickel catalysts and the use of the same for hydrogenating organic compounds.2002,US Patent 6395934.
    [23]A.B.史泰尔斯著,李大东,忠孝湘译.催化剂载体与负载型催化剂.北京:中国石化出版社.
    [24]T.M.Grishina,L.N.Nesterenko.Study of hydrogen adsorption on raneyruthenium,rhodium,and ruthenium-rhodium catalysts by potentiodynamic methods.Zhurnal Fizicheskoi Khimii(Russian),1979,53(5):1335-1336.
    [25]A.D.Semenova,K.I.Yankovskii,N.V.Kropotova,etal.Study of the structure of raney ruthenium,iridium,and iridium-ruthenium catalysts.Zhurnal Fizicheskoi Khimii(Russian),1981,55(2):488-490.
    [26]G.A.Kildibekova,A.B.Fasman,A.I.Lyashenko,etal.Structure and physicochemical properties of raney ruthenium catalysts.Zhurnal Prikladnoi Khimii(Russian).1982,55(1):72-76.
    [27]Y.Ogata,K.Aika,T.Onishi.Isotopic equilibration reation of dinitrogen over raney ruthenium with and without potassium.Chem.lett.1984,5:825-828.
    [28]Y.Ogata.K.Aika,T.Onishi.XPS studies of surface nitrogen dissociated from dinitrogen on raney ruthenium.Chem.lett.1985,2:207-210.
    [29]K.Urabe,T.Yoshioka,A.Ozaki.Ammoia synthesis activity of a raney ruthenium catalyst.J.Catal.1978,54(1):52-56.
    [30]A.Ozaki,K.Urabe,K.Kimura.Ammonia synthesis catalyst.JP:53103993.1978.
    [31]K.Morikawa,S.Hirayama,Y.Ishimura,etal.Metal raney catalysts and preparation of hydrogenated compounds therewith.US:6215030.2001.
    [32]K.Morika,S.Hirayama,Y.Ishimura,etal.Metal raney catalysts and preparation of hydrogenated compounds therewith.US:6245920.2001.
    [33]袁忠义.骨架钌基加氢催化剂的制备及应用.大连理工大学硕士论文.2005.
    [34]A.Ozaki.Development of alkali-promoted ruthenium as a novel catalyst for ammonia synthesis.Acc.Chem.Res.1981,14:16-21.
    [35]吕连海,胡爽,袁忠义等.一种高活性加氢催化剂骨架钌的制备和应用方法.CN:2005102004347,2005.
    [36]W.Obrowski,Uber Legierungen des Rutheniums mit Bor,Berylium und Aluminium(in Germany),Metallwiss.und Technik(Berlin),1963,17:108-112.
    [37]D.Shechtman,I.Blech,D.Gratias,J.W.Cahn.Metallic phase with long-range orientational order and No translational symmetry.Phys.Rev.Lett.1984,53:1951-1953.
    [38]S.M.Anlage,P.Nash,R.Ramachandram,R.B.Schwarz.Phase equilibria for the aluminium-rich region of the AI-Ru systerm.J.Less-Common Met.1988,136:237-247.
    [39]N.Ilic,R.Rein,M.Goken,etal.Properties of eutectic Ru-Al alloy produced by ingot metallurgy.Mater.Sci.Eng.A.2002,329-331:38-44.
    [40]米少波.含过渡金属的富Al三元合金相的形成规律.大连理工大学博士学位论文.2003.
    [41]吕仁江,吴红英,胡中爱.纳米材料催化剂的制备及应用.石化技术与应用.2003,21(6):448-452.
    [42]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社.2001.
    [43]崔作林,张志.纳米技术与纳米材料.北京:国防工业出版社.2000.
    [44]Y.W.Chen,H.T.Wang,J.R.Goodwin.Effect of preparation methods on the catalytic.properties of zeolite-supported ruthenium in the Fischer-Tropsch synthesis.J.Catal.1983,83:415-427.
    [45]B.L.Gustafson,J.H.Lunsford.The catalytic reactions of CO and H2O over ruthenium in a Y-type zeolite.J.Catal.1982,74:393-404.
    [46]B.J.Arena.Appl.Catal.A.Deactivation of ruthenium catalysts in continuous glucose hydrogenation.1992,87:219-229.
    [47]J.Wisniak,R.Simon.Hydrogenation of glucose,fructose and their mixtures.Ind.Eng.Chem.Prod.Res.Dev.1979,18:50.
    [48]B.J.Arena.Method for hydrogenating aqueous solutions of carbohydrates.US Patent 4380680,1983.
    [49]F.Pinna.Supported metal catalysts preparation.Catal.Today 1998,41:129-137.
    [50]J.T.Richardson.Principles of Catalyst Development.Plenum Press,New York,1989.
    [51]N.Pernicone.Scale-up catalyst production.Catal.Today.1997,34:535-547.
    [52]C.Perego,P.L.Villa.Catalyst preparation methods.Catal.Today.1997,34:281-305.
    [53]J.F.LePage,J.Cosyns,P.Courty etal.Applied heterogeneous catalysis:design,manufacture,use of solid catalysts.Technip.Paris.1987.
    [54]祝一锋,周春晖,高冬梅等.活性炭负载钌基氨合成催化剂浸渍机理及条件研究.浙江工业大学学报,2008,36(1):1-4.
    [55]P.Albers,R.Burmeister,K.Seibold.Investigations of Palladium Catalysts on Different Carbon Supports.J.catal.1999,181(1):145-154.
    [56]A.A.Eehan,M.A.Freitas,J.L.Figueiredo.Bimetallic Pt - Sn catalysts supported on activated carbon:I.The effects of support modification and impregnation strategy.Appl.Catal.A:General.2000,192:29-42.
    [57]M.V.Twigg.Catalyst Handbook,2nd ed..Wolfe,London,1989.
    [58]M.Che,O.Clause,Ch.Marcilly.Handbook of heterogeneous catalysis,vol.1.Wiley/VCH,New York/Weinheim.1997.
    [59]S.Bhatia.Zeolite catalysts:prindiples and applications.CRC Press,Boca Raton,FL.1990.
    [60]M.Campanati,G.Fornasari,A.Vaccari.Fundamentals in the preparation of heterogeneous catalysts.Catal.Today.2003,77:299-314.
    [61]A.Roucoux,J.Schulz,H.Patin.Reduced transition metal colloids:a novel family of reusable catalysts.Chem.Rev.2002,102(lO):3757-3778.
    [62]赵振国.吸附作用应用原理.北京:化学工业出版社.
    [63]M.Boutonnet,J.Kizling,P.Stenius,etal.Preparation of monodisperse colloidal metal particles from microemulsions.Colloids Surf.1982,5(3):209-225.
    [64]M.Boutonnet,J.Mizling,R.Touroude,etal.Monodispersed colloidal metal particles from non-aqueous solutions:catalytic behavious of the hydrogenation of butene of platinum particles in solution.Appl.Catal.1986,20(1-2):163-177.
    [65]H.Hirai,H.Wakabayashi,M.Komiyama.Polymer-protected copper colloids as catalysts for selective hydration of acrylonitrile.Chem Lett.1983,139(7):1047-1050.
    [66]王连鸳,程振兴,薛勇等.硝基苯加氢合成对氨基酚用负载铂催化剂的制备.催化学报,2002,23(1):19-21.
    [67]朱毅清,林西平,马延风.镍含量对超细粒子负载型催化剂性能的影响--镍含量调变对NiO/Si0_2-TiO_2性能的影响.分子催化,1998,12(6):417-423.
    [68]H.Hirai,H.Wakabayashi,M.Komiyama.Preparation of polymer-protected colloidal dispersions of copper.Bull.Chem.Soc.Jpn.1986,59(2):367-372.
    [69]H.Bonnemann,G.Braun,W.Brijoux,etal.Nanoscale colloidal metals and alloys stabilized by solvents and surfactants:preparation and use as catalyst precursors.J Orgnomet Chem,1996,520(1-2):143-162.
    [70]张高勇,王军.表面活性剂的绿色化学进展.化学通报.2002,2:73-78.
    [71]赵鹏,姚燕燕,田晓珍等.醇热还原法制备纳米金属钌颗粒.中国有色金属学报.2004。14(11):1953-1957.
    [72]刘汉范,钱连龙,陈新滋.纳米级金属胶体及催化,金属有机化学与催化.化学工业出版社.1997.
    [73]齐利民,马季铭.生物模拟合成有机-无机复合材料的研究.化学通报.1997,60(5):1-7.
    [74]Y.Nakao,K.J.Kaeriyama.Preparation of noble metal sols in the presence of surfactants and their properties.Colloid Interface Sci.1986,110(1):82-83.
    [75]A.Hrovath,A.Beck,Z.Koppany,etal.Sol-derived Pd/Si02 catalyst:characterization and activity in benzene hydrogenation.J.Mol.Catal.A:chemical.2002,182-183:295-302.
    [76]A.Horvath,A.Beck,A.Sarkany,etal.Effect of different treatments on aerosol silica-supported Pd nanoparticles produced by 'controlled colloidal synthesisi'Solid State Ionics.2001,141-142,147-152.
    [77]Aiken III JD, R.G. Finke. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J. Mol.Catal. A:chemical. 1999, 145: 1-44.
    [78]G.Viau, R. Brayner, L. Poul, etal. Ruthenium nanoparticles: size, shape and self-assemblies. Chem.Mater.2003,15:486-494.
    [79] J.Y. Lee, J.Yang, T. C. Deivaraj, etal. A novel synthesis route for ethylenediamine protected ruthenmium nanoparticles. J. Colloid and Inter Sci. 2003, 268:77-80.
    [80]S.Komarneni, D.Li, B. Newalkar, etal. Microwave polyol process for Pt and Ag nanoparticles. Langmuir, 2002, 18: 5959-5962.
    [81]W. Yu, M. Liu, H.Liu, etal. Preparation, characterization, and catalytic properties of polymer-stabilized ruthenium colloids. J. Colloid Interf. Sci. 1998, 208: 439-444.
    [82]W. Yu, M. Liu, H.Liu, etal Preparation of polymer-stabilized noble metal colloids. J. Colloid Interf. Sci. 1999, 210(1):218-221.
    [83]W. Yu, H. Liu. Singular modification effects of metal cations and metal complex ions on the catalytic properties of metal colloidal nanocatalysts. J.Mol.Catal. A:Chem. 2006, 243: 120-141.
    [84]I.Balint, A. Miyazaki, K. I. Aika. Methane reaction with NO over alumnia-supported Ru nanoparticles. J. Catal. 2002, 207:66-75.
    [85]A. Miyazaki, I. Balint, K. Aika. NO Reduction by CH_4 over Well-Structured Pt Nanocrystal Supported on γ-Al_2O_3. Chem. Lett. 2001,1024-1025.
    [86]A. Miyazaki, I. Balint, K. Aika. Preparation of Ru Nanoparticles Supported on γ-Al_2O_3 and Its Novel Catalytic Activity for Ammonia Synthesis. J. Catal. 2001, 204: 364-371.
    [87] I.Balint, A. Miyazaki, K. I. Aika. The catalytic activity of alumina supported Ru nanoparticles for NO/CH4 reaction. Chem. Commun. 2002,630-631.
    [88]W. Yu, Y. Wang, H. Liu, W. Zheng. Preparation of polymer-protected Pt/Co bimetallic colloid and its catalytic properties in selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Polym. Adv. Tech. 1996,7: 719-722.
    [89]W. Yu, H.Liu, Q. Tao. Modification of metal cations to metal cluster in liquid medium. Chem Commun. 1996, 1773-1774.
    [90]M.Liu, W. Yu, H.Liu, etal. Preparation and characterization of polymer-stabilized ruthenium-platinum and ruthenium-palladium bimetallic colloids and their catalytic properties for hydrogenation of o-chloronitrobenzene. J. Colloid Interf. Sci. 1999, 214: 231-237.
    [91]W. Yu, Y. Wang, H. Liu, W. Zheng. Preparation and characterization of ... in the selective hydrogenation of cinnamaldehyde. J. Mol. Catal. A:Chem. 1996, 112: 105-110.
    [92]Y. Wang, H. Liu. Preparation and immobilization of polymer-protected bimetallic colloids. Polym. Bull. 1991, 25: 139-144.
    [93]H.Hirai,H.Chawanya,N.Toahima.Colloidal palladium protected with poly(N-vinyl-2-pyrrolidone) for selective hydrogenation of cycopentadiene.React.Polym.1985,3(2):127-141.
    [94]H.Hirai,H.Chawanya,N.Toshima,etal.Selective hydrogenation of cyclooctadienes catalyzed by colloidal palladium in poly(N-vinyl-2-pyrrolidone).Makromol,Chem.Rapid Commun.1981,2:99-103.
    [95]H.C.Brown,C.A.Brown.A Simple Preparation of Highly Active Platinum Metal Catalysts for Catalytic Hydrogenation.J.AM.Chem.Soc.1962,84:1494-1495.
    [96]H.C.Brown,C.A.Brown.Reaction of Sodium Borohydride with Platinum Metal Salts in the Presence of Decolorizing Carbon-A Supported Platinum Catalyst of Markedly Enhanced Activity for Hydrogenations.J.AM.Chem.Soc.1962,84:2827-2827.
    [97]H.Hirai,N.Toshima.Tailored metal ctalysisi.Reidel.Dordrecht.1986.
    [98]姚蒙正,张若蘅.芳香族硝基化合物还原反应的若干进展.化工进展.1984,4:19-23.
    [99]姚蒙正,张若蘅.2,4-二硝基苯胺用硫化碱选择还原的研究.大连工学院学报.1985。24(2):71-76.
    [100]魏启华,梁燕波.2-氨基4-硝基苯酚的合成.徐州师范大学学报(自然科学版).1999,17(4):35-36.
    [101]龚绍英.2-氨基-5-硝基苯酚的制备方法评述.染料工业.1997,34(3):28-29.
    [102]S.E.Barrows,C.J.Cramer,D.G.Truhlar.Pactors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution.Environ.Sci.Technol.1996,30:3028-3038.
    [103]N.R.Ayyangar,U.R.Kalkote,A.G.Lugade.Partial reduction of dinitroarenes to nitroanilines with hydrazine hydrate.Bull.Chem.Soc.Jpn.1983,56:3159-3164.
    [104]刘晓智,陆世维.硒催化C0/H_20选择性还原间二硝基苯之间硝基苯胺.催化学报.2005。26(1):74-78.
    [105]A.M.Tafesh,J.Weiguny.A Review of the Selective Catalytic Reduction of Aromatic Nitro Compounds into AromaticAmines,Isocyanates,Carbamates,and Ureas Using CO.Chem Rev,1996,96(6):2035-2052.
    [106]张天永,付强,张友兰.纳米Ti02光催化还原间二硝基苯.天津大学学报.2005,38(11):946-949.
    [107]J.L.Ferry,W.H.Glaze.Photocatalytic reduction of nitro organics over illustratrated titanium dioxide:role of the TiO_2 surface.Langmur,1998,14(13):3551-3555.
    [108]T.Miyata,K.Kondo,S.Murai,etal.Photoreduction of Ketones and Aldehydes to Alcohols with Hydrogen Selenide.Angew.Chem.Int.Ed.Engl.1980,19(12):1008-1009.
    [109]J.F.Knifton.Homogeneous catalyzed reduction of nitro compounds.Ⅳ.Selective and sequential hydrogenation of nitroaromatics.J.Org.Chem.1976,41(7):1200-1205.
    [110]J. F. Knifton JF. Homogeneous catalyzed reduction of nitro compounds. III. Synthesis of alphatic amines. J. Org. Chem.1975, 40: 519-520.
    [111]A. Benedetti, G. Fagherazzi, F. Pinna. The influence of a second metal componet (Cu, Sn, Fe) on Pd/SiO2 activity in the hydrogenation of 2, 4-dinitrotoluene. Catal. Lett. 1991, 10: 215-224.
    [112]M.S. Elovltz, E.J.Weber. Abstracts of the 209th national meeting of the American chemical society, American chemical society: Washington DC, 1995.
    [113]W. J. Weber, R. L. Adams. Chemical and sediment-mediated reduction of the azo dye disperse blue. Environ. Sci. Technol. 1995, 29: 1163-1170.
    [114]M.O. Terpko, R. F. Heck. Palladium-catalyzed triethylammonium formate reductions. 3. Selective reduction of dinitroaromatic compounds. J. Org. Chem. 1980, 45: 4992-4993.
    [115]W. W. Hartman, H. L. Silloway. Organic syntheses collective volume 3: Horning EC, Ed.: John Wiley & Sons: New York, 1955, 82-84.
    [116]H. J. Janssen, A. J. Kruithof, G. J. Steghuis, etal. Kinetics of catalytic hydrogenation of 2,4-dinitrotoluene. 1. Experiments, reaction scheme, and catalyst activity. Ind. Eng. Chem. Res. 1990, 29(5):754-766.
    [117]N. W.Gregory, E. N. Lassettre. The crystal structure of m-dinitrobenzene. J. Am. Chem. Soc. 1947,69:102-108.
    [118]G. Neri, M. G. Musolino, C. Milone, etal. Mechanism of 2, 4-dinitrotoluene hydrogenation over Pd/C. J. Mol. Catal. A: Chem. 1995, 95: 235-241.
    [119]M. M. Telkar, J. M. Nadgeri, C. V. Rode, etal. Role of a co-metal in bimetallic Ni-Pt catalyst for hydrogenation of m-dinitrobenzene to m-phenylenediamine. Appl. Catal. A, 2005, 295: 23-30.
    [120]I. Eswarmoorthy, N. Lingappan. Ni-Pt load silicoaluminophosphate molecular for hydroisomerization of n-heptane. J. Mol. Catal. A: Chem. 2004, 218: 229-239.
    [121]F. Y. Zhao, Y. Ikushima, M. Ariai. Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: effects of pressure, solvent and metal particle size. J. catal. 2004, 224: 479-483.
    [122]V. L. Khilnani, S. B. Chandalia. Selective hydrogenation. II. m-dinitrobenzene to m-nitroaniline using palladium on carbon as catalyst. Org. Pro. Res. Dev. 2001, 5: 263-266.
    [123]F. S. Dovell, W. E. Ferguson, H. Greenfield. Kinetic study of hydrogenationo of dinitrotoluene and m-dinitrobenzene. Ind. Eng. Chem. Process Des. Dev. 1970, 9 (2) : 224-229.
    [124]S. L. Zhao, H.Liang, Y. F. Zhou. Selective hydrogenation of m-dinitrobenzene to m-nitroaniline catalyzed by PVP-Ru/Al_2O_3. Catal. Commun. 2007, 8:1305-1309.
    [125]M.G. Musolino, C. Milone, S. Galvagno. Kinetic modeling of 2,4-dinitrotoluene hydrogenation over Pd/C. Ind.Eng. Chem. Res. 1985, 34: 2226-2231.
    [126]D.J.Suh,T.J.Park,S.Ihm.Characteristics of carbon supported palladium catalysts for liquid phase hydrogenation of nitroaromatics.Ind.Eng.Chem.Res.1992,31:1849-1856.
    [127]A.M.Stratz.The hydrogention of aromatic nitrocompounds to aromatic amines.Catalysis of organic reactions kosak,New York,1984:335.
    [128]O.M.Kut,F.Yuculen,G.Gut.Selective liquid phase hydrogenation of 2,6-dinitrotoluene with platinum catalysts.J.Chem.Technol.Biotechnol.1987,39:107-114.
    [129]O.M.Kut,T.Buehlmann,F.Mayer.Kinetics of liquid phase reduction of 2,4-dimethylnitrobenzene to 2,4-dimethylaniline by hydrogen with Pd/C as catalyst.Ind.Eng.Chem.Process Des.Dev.1984,23:335-337.
    [130]吕连海,郭方,辛俊娜.一种高活性加氢催化剂纳米Ru/C的制备方法.CN200610047701.6.2006.
    [131]S.Ghosh,S.P.Moulik.Interfacial and micellization behavious of binary and ternary mixtures of amphiphiles(Tween-20,Brij-35,and Sodium Dodecyl Sulfate) in aqueous medium.J.Colloid Interf.Sci.1998,208:357-366.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.