甲酸脱氢催化剂的设计、制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢气被人们认为是能满足不断增长的高效、清洁的能源需求的最佳载体。氢气在聚合物电解质膜燃料电池(PEM)技术中应用时可以有效地转变为电能。然而,由于氢气具有很低的体积能量密度和质量能量密度,安全、高效地储存和运输氢气成为实现氢能社会的一大挑战。为了解决这一难题,可以使用甲酸作为储氢材料,因为它是无毒的、具有很高的质量能量密度,而且在室温下呈液态,可以安全地储存和运输。更重要的是,甲酸可以通过光催化二氧化碳加氢得到。发展高效和经济的催化剂以进一步提高甲酸的脱氢动力学和热力学性质是应用甲酸作为储氢材料的关键。本论文的研究内容包括以下三个方面:
     1.目前,所有用于甲酸脱氢反应的固体催化剂都是由贵金属组成的。由于资源稀缺、价格昂贵,这些催化剂不适合大规模实际应用。为了减少贵金属的使用以及进一步提高催化剂的活性,我们引入非贵金属Co与AuPd结构组成CoAuPd合金结构。通过共还原法,在不使用表面活性剂的条件下制备了CoAuPd/C催化剂。由于电子从Co原子转移到Au和Pd原子,CoAuPd/C在室温下对甲酸脱氢反应具有优异的活性和100%的氢气选择性。此外,通过使用DNA功能化氧化石墨烯(GO)并进一步引导CoAuPd纳米粒子(NPs)在DNA-GO表面生长,我们发现,DNA不仅可以有效地控制CoAuPd NPs的生长和分布,而且还能提高CoAuPd/DNA-rGO复合物在水中的分散性。研究结果表明,在室温、没有添加剂的条件下,CoAuPd/DNA-rGO复合物的初始转化频率(TOF)达到85.0mol H2mol催化剂-1h-1,分别是CoAuPd/rGO、CoAuPd NPs和CoAuPd/C的1.9、6.4和2.3倍。另一方面,为了进一步减少贵金属的使用,我们通过共还原法,在不使用表面活性剂的条件下设计和制备了新型的NiAuPd/C催化剂。结果表明,Ni与Au和Pd的合金化改变了催化剂表面的电子结构,使它们在甲酸脱氢反应中的活性得到大幅度提高。
     2.为了提高催化剂的活性和简化催化剂的制备过程,我们使用柠檬酸(CA)作为分散剂,通过原位合成法制备了Pd/C-CA催化剂并发展了一个高效的甲酸/甲酸钠放氢系统。我们发现,在该系统中,甲酸钠既可以作为氢源又可以作为还原剂,柠檬酸可以极大地提高Pd/C-CA在甲酸脱氢反应中的活性。研究结果表明,在室温下,Pd/C-CA的TOF和转化率在160分钟内可以分别达到64mol H2mol催化剂-1h-1和85%。
     3.利用氨水作为N源,我们在较低的温度下合成了新型的AuPd-CeO2/N-rGO复合物。我们发现,还原的氧化石墨烯(rGO)中的N原子可以有效地控制AuPd-CeO2纳米复合物(NC)的生长和分布,使得AuPd-CeO2NC具有超细的尺寸和良好的分散性。因此,使用N掺杂石墨烯(N-rGO)可以大幅度提高AuPd-CeO2NC在甲酸脱氢反应中的活性。在室温、没有添加剂的条件下,AuPd-CeO2/N-rGO复合物的初始TOF达到52.9mol H2mol催化剂-1h-1。另外,通过Au3+、Pd2+与GO之间的氧化还原反应,我们发展了一种简易的、绿色的方法合成了Au@Pd/N-mrGO复合物。结果表明,在室温、不使用添加剂的条件下,Au@Pd/N-rGO复合物比它的合金结构和Pd/N-rGO复合物在甲酸脱氢中具有更高的活性,其初始TOF达到89.1mol H2mol催化剂-1h-1。
Hydrogen has been considered as one of the best alternative energy carriers to satisfythe increasing demands for an efficient and clean energy supply. Hydrogen can be convertedefficiently to produce electricity when it is combined with polymer electrolyte membrane(PEM) fuel cell technology. However, the safe and efficient storage and transfer of hydrogenis a challenge because of its low volumetric and weight energy densities. To solve thisproblem, formic acid can be used as a material for the storage of hydrogen, because it offershigh energy density, is non-toxic and can be safely handled at room temperature. Moreimportantly, formic acid can be produced from photocatalytic CO2hydrogenation. One of thekeys to the practical application of this system is to develop efficient and economicalcatalysts for further improving the kinetic and thermodynamic properties. In this thesis, themain results are divided into three parts as following:
     1. All catalysts previously synthesized for the dehydrogenation of formic acid arecomposed of noble metals, hindering their large-scale practical applications due to high costsand scarcity. In order to reduce the usage of noble metals and further improve the activity ofthe catalyst, we introduced non-noble metal Co into AuPd alloys. CoAuPd/C is synthesizedthrough a surfactant-free co-reduction method. Due to the electron transfer from Co atoms toAu and Pd atoms, the CoAuPd/C shows the superior activity and100%hydrogen selectivitytoward hydrogen generation from formic acid at room temperature. In addition, DNA wasused to functionalize graphene oxide (GO) and further to guide the growth of CoAuPd alloynanoparticles (NPs) on DNA-GO surface. We found that DNA can not only efficientlycontrol the growth of CoAuPd NPs, but also promote the good dispersion of theCoAuPd/DNA-rGO composite in water. As a result, the initial turnover frequency (TOF)over the CoAuPd/DNA-rGO composite is measured to be85.0mol H2mol catalyst-1h-1atroom temperature without any additives, which is almost1.9,6.4, and2.3times higher thanthose of CoAuPd/rGO composite, CoAuPd NPs, and CoAuPd/C under the same conditions,respectively. On the other hand, in order to further reduce noble metal usage, we designedand prepared a new catalyst, NiAuPd/C, using a co-reduction method without surfactant. Wefound that alloying of Ni with Au and Pd can modify the catalyst surface, resulting in anenhanced activity for formic acid dehydrogenation.
     2. In order to improve the activity of atalyst and simplify the catalyst preparationprocesses, we developed the highly efficient hydrogen generation from formic acid/sodiumformate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid. We foundthat sodium formate plays the role of both reducing agent and hydrogen source in our systemand citric acid can dramatically improve the activity of Pd/C for the dehydrogenation offormic acid. As a result, the conversion and TOF for decomposition of formic acid/sodiumformate system can reach the highest values ever reported of85%within160min and64mol H2mol catalyst-1h-1, respectively, at room temperature.
     3. Using ammonia solution as the N source, we successfully prepared a new N-dopedgraphene based catalyst, AuPd-CeO2/N-rGO hybrid at low temperature. We found that theincorporation of N atoms into reduced graphene oxide (rGO) is the key to the formation ofthe ultrafine and well-dispersed AuPd-CeO2nanocomposites (NC). As a result, theapplication of N-rGO dramatically improves the activity of AuPd-CeO2NC for hydrogengeneration from formic acid. The intial TOF over AuPd-CeO2/N-rGO hybrid is measured tobe52.9mol H2mol catalyst-1h-1without any additives at298K. On the other hand, wedevelop a green and facile sequential reduction route to prepare Au@Pd core-shell NPsgrowing on nitrogen-doped reduced graphene oxide (Au@Pd/N-rGO) by redox reactionsbetween Au3+, Pd2+and GO. As a result, the Au@Pd/N-rGO hybrid shows much higheractivity for formic acid dehydrogenation than that of the AuPd alloy nanoparticles/N-rGOand Pd/N-rGO hybrid. Its initial TOF is89.1mol H2mol catalyst-1h-1at room temperaturewithout any additives.
引文
[1] TURNER J A. Sustainable hydrogen production [J]. Science,2004,305:972-974.
    [2] SCHLAPBACH L and ZüTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature,2001,414:353-358.
    [3] GRAETZ J. New approaches to hydrogen storage [J]. Chemical Society Reviews,2009,38:73-82.
    [4] MURRAY L J, DINC M and LONG J R. Hydrogen storage in metal–organicframeworks [J]. Chemical Society Reviews,2009,38:1294-1314.
    [5] SUH M P, PARK H J, PRASAD T K and LIM D-W. Hydrogen storage in metal–organicframeworks [J]. Chemical Reviews,2011,112:782-835.
    [6] JENA P. Materials for hydrogen storage: past, present, and future [J]. J. Phys. Chem. Lett,2011,2:206-211.
    [7] YADAV M and XU Q. Liquid-phase chemical hydrogen storage materials [J]. Energy&Environmental Science,2012,5:9698-9725.
    [8] XIONG Z, YONG C K, WU G, CHEN P, SHAW W, KARKAMKAR A, AUTREY T,JONES M O, JOHNSON S R and EDWARDS P P. High-capacity hydrogen storage inlithium and sodium amidoboranes [J]. Nature Materials,2008,7:138-141.
    [9] NIELSEN M, ALBERICO E, BAUMANN W, DREXLER H-J, JUNGE H, GLADIALI Sand BELLER M. Low-temperature aqueous-phase methanol dehydrogenation to hydrogenand carbon dioxide [J]. Nature,2013,495:85-89.
    [10] JIANG H L, SINGH S K, YAN J M, ZHANG X B and XU Q. Liquid‐Phase ChemicalHydrogen Storage: Catalytic Hydrogen Generation under Ambient Conditions [J].ChemSusChem,2010,3:541-549.
    [11] HAMILTON C W, BAKER R T, STAUBITZ A and MANNERS I. B–N compounds forchemical hydrogen storage [J]. Chemical Society Reviews,2009,38:279-293.
    [12] UMEGAKI T, YAN J-M, ZHANG X-B, SHIOYAMA H, KURIYAMA N and XU Q.Boron-and nitrogen-based chemical hydrogen storage materials [J]. International Journal ofHydrogen Energy,2009,34:2303-2311.
    [13] SAITO Y, ARAMAKI K, HODOSHIMA S, SAITO M, SHONO A, KUWANO J andOTAKE K. Efficient hydrogen generation from organic chemical hydrides by using catalyticreactor on the basis of superheated liquid-film concept [J]. Chemical Engineering Science,2008,63:4935-4941.
    [14] OKADA Y, SASAKI E, WATANABE E, HYODO S and NISHIJIMA H. Developmentof dehydrogenation catalyst for hydrogen generation in organic chemical hydride method [J].International Journal of Hydrogen Energy,2006,31:1348-1356.
    [15] SHUKLA A, KARMAKAR S and BINIWALE R B. Hydrogen delivery through liquidorganic hydrides: considerations for a potential technology [J]. International Journal ofHydrogen Energy,2012,37:3719-3726.
    [16] MARRERO-ALFONSO E Y, BEAIRD A M, DAVIS T A and MATTHEWS M A.Hydrogen generation from chemical hydrides [J]. Industrial&Engineering ChemistryResearch,2009,48:3703-3712.
    [17] LIU B and LI Z. A review: hydrogen generation from borohydride hydrolysis reaction[J]. Journal of Power Sources,2009,187:527-534.
    [18] NAKAMORI Y, LI H-W, MATSUO M, MIWA K, TOWATA S and ORIMO S.Development of metal borohydrides for hydrogen storage [J]. Journal of Physics andChemistry of Solids,2008,69:2292-2296.
    [19] AMENDOLA S C, SHARP-GOLDMAN S L, JANJUA M S, SPENCER N C, KELLYM T, PETILLO P J and BINDER M. A safe, portable, hydrogen gas generator using aqueousborohydride solution and Ru catalyst [J]. International Journal of Hydrogen Energy,2000,25:969-975.
    [20] AMENDOLA S C, SHARP-GOLDMAN S L, JANJUA M S, KELLY M T, PETILLO PJ and BINDER M. An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutionsand Ru catalyst [J]. Journal of Power Sources,2000,85:186-189.
    [21] DEMIRCI U B and MIELE P. Chemical hydrogen storage: material‘gravimetriccapacity versus system‘gravimetric capacity [J]. Energy&Environmental Science,2011,4:3334-3341.
    [22] BROWN H C and BROWN C A. New, highly active metal catalysts for the hydrolysisof borohydride [J]. Journal of the American Chemical Society,1962,84:1493-1494.
    [23] KOJIMA Y, SUZUKI K-I, FUKUMOTO K, SASAKI M, YAMAMOTO T, KAWAI Yand HAYASHI H. Hydrogen generation using sodium borohydride solution and metalcatalyst coated on metal oxide [J]. International Journal of Hydrogen Energy,2002,27:1029-1034.
    [24] SCHLESINGER H I, BROWN H C, FINHOLT A E, GILBREATH J R, HOEKSTRA HR and HYDE E K. Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent andin the Generation of Hydrogen1[J]. Journal of the American Chemical Society,1953,75:215-219.
    [25] MURUGESAN S and SUBRAMANIAN V R. Effects of acid accelerators on hydrogengeneration from solid sodium borohydride using small scale devices [J]. Journal of PowerSources,2009,187:216-223.
    [26] HUNG T-F, KUO H-C, TSAI C-W, CHEN H M, LIU R-S, WENG B-J and LEE J-F. Analternative cobalt oxide-supported platinum catalyst for efficient hydrolysis of sodiumborohydride [J]. Journal of Materials Chemistry,2011,21:11754-11759.
    [27] DEMIRCI U B, AKDIM O, ANDRIEUX J, HANNAUER J, CHAMOUN R andMIELE P. Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art andapplicability upstream from a fuel cell [J]. Fuel Cells,2010,10:335-350.
    [28] TSAI C, CHEN H, LIU R, LEE J-F, CHANG S and WENG B. Magnetically recyclableFe@Co core-shell catalysts for dehydrogenation of sodium borohydride in fuel cells [J].International Journal of Hydrogen Energy,2012,37:3338-3343.
    [29] JEONG S, KIM R, CHO E, KIM H-J, NAM S-W, OH I-H, HONG S-A and KIM S. Astudy on hydrogen generation from NaBH4solution using the high-performance Co-Bcatalyst [J]. Journal of Power Sources,2005,144:129-134.
    [30] WU C, ZHANG H and YI B. Hydrogen generation from catalytic hydrolysis of sodiumborohydride for proton exchange membrane fuel cells [J]. Catalysis Today,2004,93:477-483.
    [31] PATEL N, PATTON B, ZANCHETTA C, FERNANDES R, GUELLA G, KALE A andMIOTELLO A. Pd-C powder and thin film catalysts for hydrogen production by hydrolysisof sodium borohydride [J]. International Journal of Hhydrogen Energy,2008,33:287-292.
    [32] LEE J, KONG K Y, JUNG C R, CHO E, YOON S P, HAN J, LEE T-G and NAM S W.A structured Co–B catalyst for hydrogen extraction from NaBH4solution [J]. CatalysisToday,2007,120:305-310.
    [33] EOM K, CHO K and KWON H. Effects of electroless deposition conditions onmicrostructures of cobalt–phosphorous catalysts and their hydrogen generation properties inalkaline sodium borohydride solution [J]. Journal of Power Sources,2008,180:484-490.
    [34] DAI H-B, LIANG Y, WANG P and CHENG H-M. Amorphous cobalt–boron/nickelfoam as an effective catalyst for hydrogen generation from alkaline sodium borohydridesolution [J]. Journal of Power Sources,2008,177:17-23.
    [35] FERNANDES R, PATEL N and MIOTELLO A. Hydrogen generation by hydrolysis ofalkaline NaBH4solution with Cr-promoted Co–B amorphous catalyst [J]. Applied CatalysisB: Environmental,2009,92:68-74.
    [36] CENTO C, GISLON P and PROSINI P. Hydrogen generation by hydrolysis of NaBH4[J]. International Journal of Hydrogen Energy,2009,34:4551-4554.
    [37] KIM D-R, CHO K-W, CHOI Y-I and PARK C-J. Fabrication of porous Co–Ni–Pcatalysts by electrodeposition and their catalytic characteristics for the generation ofhydrogen from an alkaline NaBH4solution [J]. International Journal of Hydrogen Energy,2009,34:2622-2630.
    [38] CHANDRA M and XU Q. A high-performance hydrogen generation system: transitionmetal-catalyzed dissociation and hydrolysis of ammonia–borane [J]. Journal of PowerSources,2006,156:190-194.
    [39] STEPHENS F H, PONS V and BAKER R T. Ammonia–borane: the hydrogen sourcepar excellence?[J]. Dalton Transactions,2007:2613-2626.
    [40] WANG P and KANG X-D. Hydrogen-rich boron-containing materials for hydrogenstorage [J]. Dalton Transactions,2008:5400-5413.
    [41] GUTOWSKA A, LI L, SHIN Y, WANG C M, LI X S, LINEHAN J C, SMITH R S,KAY B D, SCHMID B and SHAW W. Nanoscaffold mediates hydrogen release and thereactivity of ammonia borane [J]. Angewandte Chemie International Edition,2005,44:3578-3582.
    [42] LI Z, ZHU G, LU G, QIU S and YAO X. Ammonia borane confined by a metal organicframework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia [J].Journal of the American Chemical Society,2010,132:1490-1491.
    [43] BLUHM M E, BRADLEY M G, BUTTERICK R, KUSARI U and SNEDDON L G.Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenationin ionic liquids [J]. Journal of the American Chemical Society,2006,128:7748-7749.
    [44] METIN O N, MAZUMDER V, OZKAR S and SUN S. Monodisperse nickelnanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane [J].Journal of the American Chemical Society,2010,132:1468-1469.
    [45] BAITALOW F, BAUMANN J, WOLF G, JAENICKE-R LER K and LEITNER G.Thermal decomposition of B–N–H compounds investigated by using combinedthermoanalytical methods [J]. Thermochimica Acta,2002,391:159-168.
    [46] WOLF G, BAUMANN J, BAITALOW F and HOFFMANN F. Calorimetric processmonitoring of thermal decomposition of B–N–H compounds [J]. Thermochimica Acta,2000,343:19-25.
    [47] LI P Z, AIJAZ A and XU Q. Highly Dispersed Surfactant‐Free Nickel Nanoparticlesand Their Remarkable Catalytic Activity in the Hydrolysis of Ammonia Borane forHydrogen Generation [J]. Angewandte Chemie International Edition,2012,51:6753-6756.
    [48] SUN D, MAZUMDER V, METIN O and SUN S. Catalytic hydrolysis of ammoniaborane via cobalt palladium nanoparticles [J]. ACS Nano,2011,5:6458-6464.
    [49] YAN J-M, ZHANG X-B, AKITA T, HARUTA M and XU Q. One-step seeding growthof magnetically recyclable Au@Co core shell nanoparticles: highly efficient catalyst forhydrolytic dehydrogenation of ammonia borane [J]. Journal of the American ChemicalSociety,2010,132:5326-5327.
    [50] YAN J M, ZHANG X B, HAN S, SHIOYAMA H and XU Q. Iron‐Nanoparticle‐Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane for Chemical Hydrogen Storage[J]. Angewandte Chemie International Edition,2008,47:2287-2289.
    [51] HE T, XIONG Z, WU G, CHU H, WU C, ZHANG T and CHEN P. Nanosized Co-andNi-catalyzed ammonia borane for hydrogen storage [J]. Chemistry of Materials,2009,21:2315-2318.
    [52] ZAHMAK RAN M and ZKAR S. Zeolite framework stabilized rhodium (0)nanoclusters catalyst for the hydrolysis of ammonia-borane in air: outstanding catalyticactivity, reusability and lifetime [J]. Applied Catalysis B: Environmental,2009,89:104-110.
    [53] DURAP F, ZAHMAK RAN M and ZKAR S. Water soluble laurate-stabilizedruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis ofammonia-borane: high activity and long lifetime [J]. International Journal of HydrogenEnergy,2009,34:7223-7230.
    [54] XU Q and CHANDRA M. Catalytic activities of non-noble metals for hydrogengeneration from aqueous ammonia–borane at room temperature [J]. Journal of PowerSources,2006,163:364-370.
    [55] YAN J-M, ZHANG X-B, SHIOYAMA H and XU Q. Room temperature hydrolyticdehydrogenation of ammonia borane catalyzed by Co nanoparticles [J]. Journal of PowerSources,2010,195:1091-1094.
    [56] YAN J-M, ZHANG X-B, HAN S, SHIOYAMA H and XU Q. Synthesis of longtimewater/air-stable Ni nanoparticles and their high catalytic activity for hydrolysis of ammoniaborane for hydrogen generation [J]. Inorganic Chemistry,2009,48:7389-7393.
    [57] YAN J-M, ZHANG X-B, HAN S, SHIOYAMA H and XU Q. Magnetically recyclableFe–Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution underambient atmosphere [J]. Journal of Power Sources,2009,194:478-481.
    [58] HE L, HUANG Y, WANG A, WANG X, CHEN X, DELGADO J J and ZHANG T. ANoble‐Metal‐Free Catalyst Derived from Ni‐Al Hydrotalcite for Hydrogen Generationfrom N2H4H2O Decomposition [J]. Angewandte Chemie,2012,124:6295-6298.
    [59] SINGH S K, ZHANG X-B and XU Q. Room-temperature hydrogen generation fromhydrous hydrazine for chemical hydrogen storage [J]. Journal of the American ChemicalSociety,2009,131:9894-9895.
    [60] CHO S J, LEE J, LEE Y S and KIM D P. Characterization of iridium catalyst fordecomposition of hydrazine hydrate for hydrogen generation [J]. Catalysis Letters,2006,109:181-186.
    [61] CAO A and VESER G. Exceptional high-temperature stability through distillation-likeself-stabilization in bimetallic nanoparticles [J]. Nature Materials,2010,9:75-81.
    [62] FERRANDO R, JELLINEK J and JOHNSTON R L. Nanoalloys: from theory toapplications of alloy clusters and nanoparticles [J]. Chemical Reviews,2008,108:845-910.
    [63] SINGH S K and XU Q. Complete conversion of hydrous hydrazine to hydrogen at roomtemperature for chemical hydrogen storage [J]. Journal of the American Chemical Society,2009,131:18032-18033.
    [64] SINGH S K and XU Q. Bimetallic Ni Pt nanocatalysts for selective decomposition ofhydrazine in aqueous solution to hydrogen at room temperature for chemical hydrogenstorage [J]. Inorganic Chemistry,2010,49:6148-6152.
    [65] SINGH S K and XU Q. Bimetallic nickel-iridium nanocatalysts for hydrogen generationby decomposition of hydrous hydrazine [J]. Chemical Communications,2010,46:6545-6547.
    [66] SINGH S K, IIZUKA Y and XU Q. Nickel-palladium nanoparticle catalyzed hydrogengeneration from hydrous hydrazine for chemical hydrogen storage [J]. International Journalof Hydrogen Energy,2011,36:11794-11801.
    [67] WANG J, ZHANG X-B, WANG Z-L, WANG L-M and ZHANG Y. Rhodium–nickelnanoparticles grown on graphene as highly efficient catalyst for complete decomposition ofhydrous hydrazine at room temperature for chemical hydrogen storage [J]. Energy&Environmental Science,2012,5:6885-6888.
    [68] SINGH S K, SINGH A K, ARANISHI K and XU Q. Noble-metal-free bimetallicnanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemicalhydrogen storage [J]. Journal of the American Chemical Society,2011,133:19638-19641.
    [69] HANNAUER J, AKDIM O, DEMIRCI U B, GEANTET C, HERRMANN J-M, MIELEP and XU Q. High-extent dehydrogenation of hydrazine borane N2H4BH3by hydrolysis ofBH3and decomposition of N2H4[J]. Energy&Environmental Science,2011,4:3355-3358.
    [70] MOURY R, MOUSSA G, DEMIRCI U B, HANNAUER J, BERNARD S, PETIT E,VAN DER LEE A and MIELE P. Hydrazine borane: synthesis, characterization, andapplication prospects in chemical hydrogen storage [J]. Physical Chemistry ChemicalPhysics,2012,14:1768-1777.
    [71] HU GLE T, KU HNEL M F and LENTZ D. Hydrazine borane: a promising hydrogenstorage material [J]. Journal of the American Chemical Society,2009,131:7444-7446.
    [72] KARAHAN S, ZAHMAK RAN M and ZKAR S. Catalytic hydrolysis of hydrazineborane for chemical hydrogen storage: highly efficient and fast hydrogen generation systemat room temperature [J]. International Journal of Hydrogen Energy,2011,36:4958-4966.
    [73] ELIK D, KARAHAN S, ZAHMAK RAN M and ZKAR S. Hydrogen generationfrom the hydrolysis of hydrazine-borane catalyzed by rhodium (0) nanoparticles supportedon hydroxyapatite [J]. International Journal of Hydrogen Energy,2012,37:5143-5151.
    [74] AKANY LD R M, DEMIRCI U B, ENER T, XU Q and MIELE P. Nickel-basedbimetallic nanocatalysts in high-extent dehydrogenation of hydrazine borane [J].International Journal of Hydrogen Energy,2012,37:9722-9729.
    [75] JOHNSON T C, MORRIS D J and WILLS M. Hydrogen generation from formic acidand alcohols using homogeneous catalysts [J]. Chemical Society Reviews,2010,39:81-88.
    [76] GRASEMANN M and LAURENCZY G. Formic acid as a hydrogen source–recentdevelopments and future trends [J]. Energy&Environmental Science,2012,5:8171-8181.
    [77] LOGES B, BODDIEN A, G RTNER F, JUNGE H and BELLER M. Catalyticgeneration of hydrogen from formic acid and its derivatives: useful hydrogen storagematerials [J]. Topics in Catalysis,2010,53:902-914.
    [78] ENTHALER S, VON LANGERMANN J and SCHMIDT T. Carbon dioxide and formicacid—the couple for environmental-friendly hydrogen storage?[J]. Energy&EnvironmentalScience,2010,3:1207-1217.
    [79] RICHARDSON R D, HOLLAND E J and CARPENTER B K. A renewable amine forphotochemical reduction of CO2[J]. Nature Chemistry,2011,3:301-303.
    [80] HULL J F, HIMEDA Y, WANG W-H, HASHIGUCHI B, PERIANA R, SZALDA D J,MUCKERMAN J T and FUJITA E. Reversible hydrogen storage using CO2and aproton-switchable iridium catalyst in aqueous media under mild temperatures and pressures[J]. Nature Chemistry,2012,4:383-388.
    [81] BODDIEN A, G RTNER F, JACKSTELL R, JUNGE H, SPANNENBERG A,BAUMANN W, LUDWIG R and BELLER M. ortho‐Metalation of Iron (0)Tribenzylphosphine Complexes: Homogeneous Catalysts for the Generation of Hydrogenfrom Formic Acid [J]. Angewandte Chemie International Edition,2010,49:8993-8996.
    [82] BODDIEN A and JUNGE H. Catalysis: Acidic ideas for hydrogen storage [J]. NatureNanotechnology,2011,6:265-266.
    [83] OTT S. Ironing out hydrogen storage [J]. Science,2011,333:1714-1715.
    [84] HU C, TING S-W, TSUI J and CHAN K-Y. Formic acid dehydrogenation overPtRuBiOx/C catalyst for generation of CO-free hydrogen in a continuous-flow reactor [J].International Journal of Hydrogen Energy,2012,37:6372-6380.
    [85] PARK S, XIE Y and WEAVER M J. Electrocatalytic pathways on carbon-supportedplatinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid,and formaldehyde electrooxidation [J]. Langmuir,2002,18:5792-5798.
    [86] JI X, LEE K T, HOLDEN R, ZHANG L, ZHANG J, BOTTON G A, COUILLARD Mand NAZAR L F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acidfuel cell anodes [J]. Nature Chemistry,2010,2:286-293.
    [87] COFFEY R. The decomposition of formic acid catalysed by soluble metal complexes[J]. Chemical Communications (London),1967:923b-924.
    [88] YOSHIDA T, UEDA Y and OTSUKA S. Activation of water molecule.1. Intermediatesbearing on the water gas shift reaction catalyzed by platinum (0) complexes [J]. Journal ofthe American Chemical Society,1978,100:3941-3942.
    [89] PAONESSA R S and TROGLER W C. Solvent-dependent reactions of carbon dioxidewith a platinum (II) dihydride. Reversible formation of a platinum (II) formatohydride and acationic platinum (II) dimer,[Pt2H3(PEt3)4][HCO2][J]. Journal of the American ChemicalSociety,1982,104:3529-3530.
    [90] STRAUSS S, WHITMIRE K and SHRIVER D. Rhodium (I) catalyzed decompositionof formic acid [J]. Journal of Organometallic Chemistry,1979,174: C59-C62.
    [91] J SZAI I and JO F. Hydrogenation of aqueous mixtures of calcium carbonate andcarbon dioxide using a water-soluble rhodium (I)–tertiary phosphine complex catalyst [J].Journal of Molecular Catalysis A: Chemical,2004,224:87-91.
    [92] LEITNER W, DINJUS E and GA NER F. Activation of carbon dioxide: IV.Rhodium-catalysed hydrogenation of carbon dioxide to formic acid [J]. Journal ofOrganometallic Chemistry,1994,475:257-266.
    [93] HIMEDA Y, ONOZAWA-KOMATSUZAKI N, SUGIHARA H, ARAKAWA H andKASUGA K. Half-sandwich complexes with4,7-dihydroxy-1,10-phenanthroline:water-soluble, highly efficient catalysts for hydrogenation of bicarbonate attributable to thegeneration of an oxyanion on the catalyst ligand [J]. Organometallics,2004,23:1480-1483.
    [94] KING R and BHATTACHARYYA N. Catalytic reactions of formate4. Anitrite-promoted rhodium (III) catalyst for hydrogen generation from formic acid in aqueoussolution [J]. Inorganica Chimica Acta,1995,237:65-69.
    [95] SHIN J H, CHURCHILL D G and PARKIN G. Carbonyl abstraction reactions ofCp*Mo(PMe3)3H with CO2,(CH2O)n, HCO2H, and MeOH: the synthesis ofCp*Mo(PMe3)2(CO)H and the catalytic decarboxylation of formic acid [J]. Journal ofOrganometallic Chemistry,2002,642:9-15.
    [96] FUKUZUMI S, KOBAYASHI T and SUENOBU T. Efficient Catalytic Decompositionof Formic Acid for the Selective Generation of H2and H/D Exchange with a Water‐SolubleRhodium Complex in Aqueous Solution [J]. ChemSusChem,2008,1:827-834.
    [97] BODDIEN A, LOGES B, JUNGE H and BELLER M. Hydrogen generation at ambientconditions: application in fuel cells [J]. ChemSusChem,2008,1:751-758.
    [98] FELLAY C, DYSON P J and LAURENCZY G. A Viable Hydrogen-Storage SystemBased On Selective Formic Acid Decomposition with a Ruthenium Catalyst [J]. AngewandteChemie,2008,120:4030-4032.
    [99] LOGES B, BODDIEN A, JUNGE H and BELLER M. Controlled Generation ofHydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H2/O2Fuel Cells [J]. Angewandte Chemie International Edition,2008,47:3962-3965.
    [100] JUNGE H, BODDIEN A, CAPITTA F, LOGES B, NOYES J R, GLADIALI S andBELLER M. Improved hydrogen generation from formic acid [J]. Tetrahedron Letters,2009,50:1603-1606.
    [101] FELLAY C, YAN N, DYSON P J and LAURENCZY G. Selective Formic AcidDecomposition for High-Pressure Hydrogen Generation: A Mechanistic Study [J]. Chemistry–AEuropean Journal,2009,15:3752-3760.
    [102] BODDIEN A, LOGES B, JUNGE H, G RTNER F, NOYES J R and BELLER M.Continuous Hydrogen Generation from Formic Acid: Highly Active and Stable RutheniumCatalysts [J]. Advanced Synthesis&Catalysis,2009,351:2517-2520.
    [103] LOGES B, BODDIEN A, JUNGE H, NOYES J R, BAUMANN W and BELLER M.Hydrogen generation: catalytic acceleration and control by light [J]. ChemicalCommunications,2009:4185-4187.
    [104] BODDIEN A, MELLMANN D, G RTNER F, JACKSTELL R, JUNGE H, DYSON PJ, LAURENCZY G, LUDWIG R and BELLER M. Efficient dehydrogenation of formic acidusing an iron catalyst [J]. Science,2011,333:1733-1736.
    [105] BI Q-Y, DU X-L, LIU Y-M, CAO Y, HE H-Y and FAN K-N. Efficient subnanometricgold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions[J]. Journal of the American Chemical Society,2012,134:8926-8933.
    [106] SOLYMOSI F, KO S á, LILIOM N and UGRAI I. Production of CO-free H2fromformic acid. A comparative study of the catalytic behavior of Pt metals on a carbon support[J]. Journal of Catalysis,2011,279:213-219.
    [107] JIA L, BULUSHEV D A, PODYACHEVA O Y, BORONIN A I, KIBIS L S,GERASIMOV E Y, BELOSHAPKIN S, SERYAK I A, ISMAGILOV Z R and ROSS J R. Ptnanoclusters stabilized by N-doped carbon nanofibers for hydrogen production from formicacid [J]. Journal of Catalysis,2013,307:94-102.
    [108] BULUSHEV D A, JIA L, BELOSHAPKIN S and ROSS J R. Improved hydrogenproduction from formic acid on a Pd/C catalyst doped by potassium [J]. ChemicalCommunications,2012,48:4184-4186.
    [109] MORI K, DOJO M and YAMASHITA H. Pd and Pd–Ag Nanoparticles within aMacroreticular Basic Resin: An Efficient Catalyst for Hydrogen Production from FormicAcid Decomposition [J]. ACS Catalysis,2013,3:1114-1119.
    [110] HU C, PULLERI J K, TING S-W and CHAN K-Y. Activity of Pd/C for hydrogengeneration in aqueous formic acid solution [J]. International Journal of Hydrogen Energy,2014,39:381-390.
    [111] SABATIER P and MAILHE A. Catalytic decomposition of formic acid [J]. ComptesRendus de l‘Academie des Sciences,1911,152:1212-1215.
    [112] HIROTA K, KUWATA K and NAKAI Y. Infrared study of the adsorption of formicacid on copper, nickel and zinc [J]. Bull. Chem. Soc. Jpn,1958,31:861-864.
    [113] SUN Y-K, VAJO J, CHAN C-Y and WEINBERG W. Kinetics and mechanism offormic acid decomposition on Ru (001)[J]. Journal of Vacuum Science and Technology A,1988,6:854-855.
    [114] YING D H and ROBERT J M. Thermal desorption study of formic acid decompositionon a clean cu (110) surface [J]. Journal of catalysis,1980,61:48-56.
    [115] DILARA P and VOHS J. TPD and HREELS investigation of the reaction of formicacid on zirconium dioxide (100)[J]. The Journal of Physical Chemistry,1993,97:12919-12923.
    [116] GERCHER V A and COX D F. Formic acid decomposition on SnO2(110)[J]. SurfaceScience,1994,312:106-114.
    [117] LARSSON R, JAMR Z M H and BOROWIAK M A. On the catalytic decompositionof formic acid. I. The activation energies for oxide catalysis [J]. Journal of MolecularCatalysis A: Chemical,1998,129:41-51.
    [118] BANDARA A, KUBOTA J, WADA A, DOMEN K and HIROSE C. Adsorption andReactions of Formic Acid on (2×2)-NiO(111)/Ni(111) Surface.2. IRAS Study underCatalytic Steady-State Conditions [J]. The Journal of Physical Chemistry B,1997,101:361-368.
    [119] SHIDO T and IWASAWA Y. Reactant-Promoted Reaction Mechanism for Water-GasShift Reaction on Rh-Doped CeO2[J]. Journal of Catalysis,1993,141:71-81.
    [120] JACOBS G, PATTERSON P M, GRAHAM U M, CRAWFORD A C and DAVIS B H.Low temperature water gas shift: the link between the catalysis of WGS and formic aciddecomposition over Pt/ceria [J]. International Journal of Hydrogen Energy,2005,30:1265-1276.
    [121] WILLIAMS R, CRANDALL R S and BLOOM A. Use of carbon dioxide in energystorage [J]. Applied Physics Letters,1978,33:381-383.
    [122] WIENER H, SASSON Y and BLUM J. Palladium-catalyzed decomposition ofaqueous alkali metal formate solutions [J]. Journal of Molecular Catalysis,1986,35:277-284.
    [123] ZHOU X, HUANG Y, XING W, LIU C, LIAO J and LU T. High-quality hydrogenfrom the catalyzed decomposition of formic acid by Pd–Au/C and Pd–Ag/C [J]. ChemicalCommunications,2008:3540-3542.
    [124] ZHOU X, HUANG Y, LIU C, LIAO J, LU T and XING W. Available hydrogen fromformic acid decomposed by rare earth elements promoted Pd‐Au/C catalysts at lowtemperature [J]. ChemSusChem,2010,3:1379-1382.
    [125] HUANG Y, ZHOU X, YIN M, LIU C and XING W. Novel PdAu@Au/C core shellcatalyst: Superior activity and selectivity in formic acid decomposition for hydrogengeneration [J]. Chemistry of Materials,2010,22:5122-5128.
    [126] TING S-W, CHENG S, TSANG K-Y, VAN DER LAAK N and CHAN K-Y. Lowactivation energy dehydrogenation of aqueous formic acid on platinum–ruthenium–bismuthoxide at near ambient temperature and pressure [J]. Chemical Communications,2009:7333-7335.
    [127] TEDSREE K, LI T, JONES S, CHAN C W A, YU K M K, BAGOT P A, MARQUIS EA, SMITH G D and TSANG S C E. Hydrogen production from formic acid decompositionat room temperature using a Ag-Pd core-shell nanocatalyst [J]. Nature Nanotechnology,2011,6:302-307.
    [128] GU X, LU Z-H, JIANG H-L, AKITA T and XU Q. Synergistic catalysis ofmetal–organic framework-immobilized Au–Pd nanoparticles in dehydrogenation of formicacid for chemical hydrogen storage [J]. Journal of the American Chemical Society,2011,133:11822-11825.
    [129] YADAV M, AKITA T, TSUMORI N and XU Q. Strong metal–molecular supportinteraction (SMMSI): Amine-functionalized gold nanoparticles encapsulated in silicananospheres highly active for catalytic decomposition of formic acid [J]. Journal ofMaterials Chemistry,2012,22:12582-12586.
    [130] YADAV M, SINGH A K, TSUMORI N and XU Q. Palladium silicananosphere-catalyzed decomposition of formic acid for chemical hydrogen storage [J].Journal of Materials Chemistry,2012,22:19146-19150.
    [131] ZHU Q-L, TSUMORI N and XU Q. Sodium hydroxide-assisted growth of uniform Pdnanoparticles on nanoporous carbon MSC-30for efficient and complete dehydrogenation offormic acid under ambient conditions [J]. Chemical Science,2014,5:195-199.
    [132] JIANG H-L and XU Q. Recent progress in synergistic catalysis over heterometallicnanoparticles [J]. Journal of Materials Chemistry,2011,21:13705-13725.
    [133] ZHANG S, GUO S, ZHU H, SU D and SUN S. Structure-induced enhancement inelectrooxidation of trimetallic FePtAu nanoparticles [J]. Journal of the American ChemicalSociety,2012,134:5060-5063.
    [134] ZHU H, ZHANG S, GUO S, SU D and SUN S. Synthetic Control of FePtM Nanorods(M=Cu, Ni) To Enhance the Oxygen Reduction Reaction [J]. Journal of the AmericanChemical Society,2013,135:7130-7133.
    [135] WANG D, XIN H L, YU Y, WANG H, RUS E, MULLER D A and ABRUNA H D.Pt-decorated PdCo@Pd/C core shell nanoparticles with enhanced stability andelectrocatalytic activity for the oxygen reduction reaction [J]. Journal of the AmericanChemical Society,2010,132:17664-17666.
    [136] ZHU C, GUO S and DONG S. Facile synthesis of trimetallic AuPtPd alloy nanowiresand their catalysis for ethanol electrooxidation [J]. Journal of Materials Chemistry,2012,22:14851-14855.
    [137] TOSHIMA N and YONEZAWA T. Bimetallic nanoparticles—novel materials forchemical and physical applications [J]. New Journal of Chemistry,1998,22:1179-1201.
    [138] HOU W, DEHM N A and SCOTT R W. Alcohol oxidations in aqueous solutions usingAu, Pd, and bimetallic AuPd nanoparticle catalysts [J]. Journal of catalysis,2008,253:22-27.
    [139] WANG D and LI Y. Bimetallic Nanocrystals: Liquid‐Phase Synthesis and CatalyticApplications [J]. Advanced Materials,2011,23:1044-1060.
    [140] LIM B, JIANG M, CAMARGO P H, CHO E C, TAO J, LU X, ZHU Y and XIA Y.Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction [J]. Science,2009,324:1302-1305.
    [141] HONG J W, KIM D, LEE Y W, KIM M, KANG S W and HAN S W. Atomic‐Distribution‐Dependent Electrocatalytic Activity of Au–Pd Bimetallic Nanocrystals [J].Angewandte Chemie,2011,123:9038-9042.
    [142] GUO S, ZHANG S, SUN X and SUN S. Synthesis of Ultrathin FePtPd Nanowires andTheir Use as Catalysts for Methanol Oxidation Reaction [J]. Journal of the AmericanChemical Society,2011,133:15354-15357.
    [143] NOVOSELOV K S, GEIM A K, MOROZOV S, JIANG D, ZHANG Y, DUBONOS S,GRIGORIEVA I and FIRSOV A. Electric field effect in atomically thin carbon films [J].Science,2004,306:666-669.
    [144] GEIM A K and NOVOSELOV K S. The rise of graphene [J]. Nature Materials,2007,6:183-191.
    [145] NOVOSELOV K, GEIM A K, MOROZOV S, JIANG D, KATSNELSON M,GRIGORIEVA I, DUBONOS S and FIRSOV A. Two-dimensional gas of massless Diracfermions in graphene [J]. Nature,2005,438:197-200.
    [146] LI X, CAI W, AN J, KIM S, NAH J, YANG D, PINER R, VELAMAKANNI A, JUNGI and TUTUC E. Large-area synthesis of high-quality and uniform graphene films on copperfoils [J]. Science,2009,324:1312-1314.
    [147] NETO A C, GUINEA F, PERES N, NOVOSELOV K S and GEIM A K. The electronicproperties of graphene [J]. Reviews of Modern Physics,2009,81:109.
    [148] GEIM A K. Graphene: status and prospects [J]. Science,2009,324:1530-1534.
    [149] STANKOVICH S, DIKIN D A, DOMMETT G H, KOHLHAAS K M, ZIMNEY E J,STACH E A, PINER R D, NGUYEN S T and RUOFF R S. Graphene-based compositematerials [J]. Nature,2006,442:282-286.
    [150] STANKOVICH S, DIKIN D A, PINER R D, KOHLHAAS K A, KLEINHAMMES A,JIA Y, WU Y, NGUYEN S T and RUOFF R S. Synthesis of graphene-based nanosheets viachemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45:1558-1565.
    [151] GUO S, WEN D, ZHAI Y, DONG S and WANG E. Platinum nanoparticleensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrodematerial for electrochemical sensing [J]. ACS Nano,2010,4:3959-3968.
    [152] HUANG X, YIN Z, WU S, QI X, HE Q, ZHANG Q, YAN Q, BOEY F and ZHANG H.Graphene‐Based Materials: Synthesis, Characterization, Properties, and Applications [J].Small,2011,7:1876-1902.
    [153] HUANG X, QI X, BOEY F and ZHANG H. Graphene-based composites [J]. ChemicalSociety Reviews,2012,41:666-686.
    [154] XIANG Q, YU J and JARONIEC M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews,2012,41:782-796.
    [155] SUN Y, WU Q and SHI G. Graphene based new energy materials [J]. Energy&Environmental Science,2011,4:1113-1132.
    [156] LI Y, GAO W, CI L, WANG C and AJAYAN P M. Catalytic performance of Ptnanoparticles on reduced graphene oxide for methanol electro-oxidation [J]. Carbon,2010,48:1124-1130.
    [157] KOU R, SHAO Y, WANG D, ENGELHARD M H, KWAK J H, WANG J,VISWANATHAN V V, WANG C, LIN Y and WANG Y. Enhanced activity and stability of Ptcatalysts on functionalized graphene sheets for electrocatalytic oxygen reduction [J].Electrochemistry Communications,2009,11:954-957.
    [158] ZHANG H, LV X, LI Y, WANG Y and LI J. P25-graphene composite as a highperformance photocatalyst [J]. ACS Nano,2009,4:380-386.
    [159] GUO S and SUN S. FePt nanoparticles assembled on graphene as enhanced catalystfor oxygen reduction reaction [J]. Journal of the American Chemical Society,2012,134:2492-2495.
    [160] LI Y, FAN X, QI J, JI J, WANG S, ZHANG G and ZHANG F. Palladiumnanoparticle-graphene hybrids as active catalysts for the Suzuki reaction [J]. Nano Research,2010,3:429-437.
    [161] LI Y, WANG H, XIE L, LIANG Y, HONG G and DAI H. MoS2nanoparticles grownon graphene: an advanced catalyst for the hydrogen evolution reaction [J]. Journal of theAmerican Chemical Society,2011,133:7296-7299.
    [162] LIANG Y, LI Y, WANG H, ZHOU J, WANG J, REGIER T and DAI H. Co3O4nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction [J]. NatureMaterials,2011,10:780-786.
    [163] CHEN X, WU G, CHEN J, CHEN X, XIE Z and WANG X. Synthesis of―clean‖andwell-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide[J]. Journal of the American Chemical Society,2011,133:3693-3695.
    [164] OJEDA M and IGLESIA E. Formic Acid Dehydrogenation on Au‐Based Catalysts atNear‐Ambient Temperatures [J]. Angewandte Chemie,2009,121:4894-4897.
    [165] DU P and EISENBERG R. Catalysts made of earth-abundant elements (Co, Ni, Fe) forwater splitting: Recent progress and future challenges [J]. Energy&Environmental Science,2012,5:6012-6021.
    [166] MA D-L, CAO Z-Y, WANG H-G, HUANG X-L, WANG L-M and ZHANG X-B.Three-dimensionally ordered macroporous FeF3and its in situ homogenous polymerizationcoating for high energy and power density lithium ion batteries [J]. Energy&EnvironmentalScience,2012,5:8538-8542.
    [167] WATANABE M, TSURUMI K, MIZUKAMI T, NAKAMURA T and STONEHART P.Activity and Stability of Ordered and Disordered Co‐Pt Alloys for Phosphoric Acid FuelCells [J]. Journal of the Electrochemical Society,1994,141:2659-2668.
    [168] ANTOLINI E, SALGADO J R and GONZALEZ E R. The stability of Pt–M (M=firstrow transition metal) alloy catalysts and its effect on the activity in low temperature fuelcells: a literature review and tests on a Pt–Co catalyst [J]. Journal of Power Sources,2006,160:957-968.
    [169] MAZUMDER V, CHI M, MANKIN M N, LIU Y, METIN, SUN D, MORE K L andSUN S. A Facile Synthesis of MPd (M=Co, Cu) Nanoparticles and Their Catalysis forFormic Acid Oxidation [J]. Nano Letters,2012,12:1102-1106.
    [170] WANG C, CHI M, LI D, VAN DER VLIET D, WANG G, LIN Q, F. MITCHELL J,MORE K L, MARKOVIC N M and STAMENKOVIC V R. Synthesis of HomogeneousPt-Bimetallic Nanoparticles as Highly Efficient Electrocatalysts [J]. ACS Catalysis,2011,1:1355-1359.
    [171] WANG D and LI Y. One-Pot Protocol for Au-Based Hybrid Magnetic Nanostructuresvia a Noble-Metal-Induced Reduction Process [J]. Journal of the American Chemical Society,2010,132:6280-6281.
    [172] SENKOV O N and MIRACLE D B. Effect of the atomic size distribution on glassforming ability of amorphous metallic alloys [J]. Materials Research Bulletin,2001,36:2183-2198.
    [173] TSAI A P. A test of Hume-Rothery rules for stable quasicrystals [J]. Journal ofNon-Crystalline Solids,2004,334–335:317-322.
    [174] JONES S, QU J, TEDSREE K, GONG X Q and TSANG S C E. Prominent electronicand geometric modifications of palladium nanoparticles by polymer stabilizers for hydrogenproduction under ambient conditions [J]. Angewandte Chemie,2012,124:11437-11440.
    [175] METIN O and OZKAR S. Hydrogen generation from the hydrolysis ofammonia-borane and sodium borohydride using water-soluble polymer-stabilized cobalt (0)nanoclusters catalyst [J]. Energy&Fuels,2009,23:3517-3526.
    [176] TEDSREE K, CHAN C W A, JONES S, CUAN Q, LI W-K, GONG X-Q and TSANGS C E.13C NMR Guides Rational Design of Nanocatalysts via Chemisorption Evaluation inLiquid Phase [J]. Science,2011,332:224-228.
    [177] GUO C X, ZHANG L Y, MIAO J, ZHANG J and LI C M. DNA‐FunctionalizedGraphene to Guide Growth of Highly Active Pd Nanocrystals as Efficient Electrocatalyst forDirect Formic Acid Fuel Cells [J]. Advanced Energy Materials,2013,3:167-171.
    [178] TIWARI J N, NATH K, KUMAR S, TIWARI R N, KEMP K C, LE N H, YOUN D H,LEE J S and KIM K S. Stable platinum nanoclusters on genomic DNA–graphene oxide witha high oxygen reduction reaction activity [J]. Nature Communications,2013,4.
    [179] OCSOY I, PARET M L, OCSOY M A, KUNWAR S, CHEN T, YOU M and TAN W.Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles onGraphene Oxide as an Antibacterial against Xanthomonas perforans [J]. ACS Nano,2013,7:8972-8980.
    [180] WANG L-B, WANG Y-C, HE R, ZHUANG A, WANG X, ZENG J and HOU J. A NewNanobiocatalytic System Based on Allosteric Effect with Dramatically Enhanced EnzymaticPerformance [J]. Journal of the American Chemical Society,2013,135:1272-1275.
    [181] HUMMERS JR W S and OFFEMAN R E. Preparation of graphitic oxide [J]. Journalof the American Chemical Society,1958,80:1339-1339.
    [182] XIONG Y, MCLELLAN J M, YIN Y and XIA Y. Synthesis of palladium icosahedrawith twinned structure by blocking oxidative etching with citric acid or citrate ions [J].Angewandte Chemie,2007,119:804-808.
    [183] ZHANG S, METIN, SU D and SUN S. Monodisperse AgPd alloy nanoparticles andtheir superior catalysis for the dehydrogenation of formic acid [J]. Angewandte ChemieInternational Edition,2013,52:3681-3684.
    [184] CAI Y Y, LI X H, ZHANG Y N, WEI X, WANG K X and CHEN J S. Highly EfficientDehydrogenation of Formic Acid over a Palladium‐Nanoparticle‐Based Mott–SchottkyPhotocatalyst [J]. Angewandte Chemie,2013,125:12038-12041.
    [185] QIN Y-L, WANG J, MENG F-Z, WANG L-M and ZHANG X-B. Efficient PdNi andPdNi@Pd-catalyzed hydrogen generation via formic acid decomposition at roomtemperature [J]. Chemical Communications,2013,49:10028-10030.
    [186] LI P-Z, AIJAZ A and XU Q. Highly Dispersed Surfactant-Free Nickel Nanoparticlesand Their Remarkable Catalytic Activity in the Hydrolysis of Ammonia Borane forHydrogen Generation [J]. Angewandte Chemie International Edition,2012,51:6753-6756.
    [187] HILL S and WINTERBOTTOM J. The conversion of polysaccharides to hydrogen gas.Part I: The palladium catalysed decomposition of formic acid/sodium formate solutions [J].Journal of Chemical Technology and Biotechnology,1988,41:121-133.
    [188] BODDIEN A, G RTNER F, FEDERSEL C, SPONHOLZ P, MELLMANN D,JACKSTELL R, JUNGE H and BELLER M. CO2‐“Neutral” Hydrogen Storage Based onBicarbonates and Formates [J]. Angewandte Chemie International Edition,2011,50:6411-6414.
    [189] LIM B, JIANG M, TAO J, CAMARGO P H, ZHU Y and XIA Y. Shape‐controlledsynthesis of Pd nanocrystals in aqueous solutions [J]. Advanced Functional Materials,2009,19:189-200.
    [190] YU R, CHEN L, LIU Q, LIN J, TAN K-L, NG S C, CHAN H S, XU G-Q and HOR TA. Platinum deposition on carbon nanotubes via chemical modification [J]. Chemistry ofMaterials,1998,10:718-722.
    [191] CHEN J P, WU S and CHONG K-H. Surface modification of a granular activatedcarbon by citric acid for enhancement of copper adsorption [J]. Carbon,2003,41:1979-1986.
    [192] HENGLEIN A and GIERSIG M. Formation of colloidal silver nanoparticles: cappingaction of citrate [J]. The Journal of Physical Chemistry B,1999,103:9533-9539.
    [193] GUO J, ZHAO T, PRABHURAM J and WONG C. Preparation and thephysical/electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid forpolymer electrolyte fuel cells [J]. Electrochimica Acta,2005,50:1973-1983.
    [194] PEREZ‐ALONSO F J, MCCARTHY D N, NIERHOFF A, HERNANDEZ‐FERNANDEZ P, STREBEL C, STEPHENS I E, NIELSEN J H and CHORKENDORFF I.The Effect of Size on the Oxygen Electroreduction Activity of Mass‐Selected PlatinumNanoparticles [J]. Angewandte Chemie International Edition,2012,51:4641-4643.
    [195] ZHANG H, JIN M, LIU H, WANG J, KIM M J, YANG D, XIE Z, LIU J and XIA Y.Facile synthesis of Pd–Pt alloy nanocages and their enhanced performance for preferentialoxidation of CO in excess hydrogen [J]. ACS Nano,2011,5:8212-8222.
    [196] SHAO M, PELES A and SHOEMAKER K. Electrocatalysis on platinum nanoparticles:particle size effect on oxygen reduction reaction activity [J]. Nano Letters,2011,11:3714-3719.
    [197] BURDA C, CHEN X, NARAYANAN R and EL-SAYED M A. Chemistry andproperties of nanocrystals of different shapes [J]. Chemical Reviews,2005,105:1025-1102.
    [198] WHITE R J, LUQUE R, BUDARIN V L, CLARK J H and MACQUARRIE D J.Supported metal nanoparticles on porous materials. Methods and applications [J]. ChemicalSociety Reviews,2009,38:481-494.
    [199] ASTRUC D, LU F and ARANZAES J R. Nanoparticles as recyclable catalysts: thefrontier between homogeneous and heterogeneous catalysis [J]. Angewandte ChemieInternational Edition,2005,44:7852-7872.
    [200] PILENI M-P. The role of soft colloidal templates in controlling the size and shape ofinorganic nanocrystals [J]. Nature Materials,2003,2:145-150.
    [201] GUGLIOTTI L A, FELDHEIM D L and EATON B E. RNA-mediated metal-metalbond formation in the synthesis of hexagonal palladium nanoparticles [J]. Science,2004,304:850-852.
    [202] MAZUMDER V and SUN S. Oleylamine-mediated synthesis of Pd nanoparticles forcatalytic formic acid oxidation [J]. Journal of the American Chemical Society,2009,131:4588-4589.
    [203] YIN H, TANG H, WANG D, GAO Y and TANG Z. Facile synthesis of surfactant-freeAu cluster/graphene hybrids for high-performance oxygen reduction reaction [J]. ACS Nano,2012,6:8288-8297.
    [204] ZHANG Y, TANG Z-R, FU X and XU Y-J. Engineering the unique2D mat ofgraphene to achieve graphene-TiO2nanocomposite for photocatalytic selectivetransformation: what advantage does graphene have over its forebear carbon nanotube?[J].ACS Nano,2011,5:7426-7435.
    [205] ZHANG N, ZHANG Y and XU Y-J. Recent progress on graphene-basedphotocatalysts: current status and future perspectives [J]. Nanoscale,2012,4:5792-5813.
    [206] YANG M-Q and XU Y-J. Selective photoredox using graphene-based compositephotocatalysts [J]. Physical Chemistry Chemical Physics,2013,15:19102-19118.
    [207] LI Y, ZHAO Y, CHENG H, HU Y, SHI G, DAI L and QU L. Nitrogen-doped graphenequantum dots with oxygen-rich functional groups [J]. Journal of the American ChemicalSociety,2011,134:15-18.
    [208] WANG H, MAIYALAGAN T and WANG X. Review on recent progress innitrogen-doped graphene: synthesis, characterization, and its potential applications [J]. ACSCatalysis,2012,2:781-794.
    [209] LIANG J, JIAO Y, JARONIEC M and QIAO S Z. Sulfur and Nitrogen Dual‐DopedMesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically EnhancedPerformance [J]. Angewandte Chemie International Edition,2012,51:11496-11500.
    [210] WEI D, LIU Y, WANG Y, ZHANG H, HUANG L and YU G. Synthesis of N-DopedGraphene by Chemical Vapor Deposition and Its Electrical Properties [J]. Nano Letters,2009,9:1752-1758.
    [211] CHU Y Y, WANG Z B, JIANG Z Z, GU D M and YIN G P. A Novel Structural Designof a Pt/C‐CeO2Catalyst with Improved Performance for Methanol Electro‐Oxidation byβ‐Cyclodextrin Carbonization [J]. Advanced Materials,2011,23:3100-3104.
    [212] WU Z-S, YANG S, SUN Y, PARVEZ K, FENG X and MU LLEN K.3Dnitrogen-doped graphene aerogel-supported Fe3O4nanoparticles as efficient electrocatalystsfor the oxygen reduction reaction [J]. Journal of the American Chemical Society,2012,134:9082-9085.
    [213] WU G, LI D, DAI C, WANG D and LI N. Well-dispersed high-loading Pt nanoparticlessupported by shell-core nanostructured carbon for methanol electrooxidation [J]. Langmuir,2008,24:3566-3575.
    [214] VINAYAN B P, NAGAR R, RAJALAKSHMI N and RAMAPRABHU S. NovelPlatinum–Cobalt Alloy Nanoparticles Dispersed on Nitrogen‐Doped Graphene as aCathode Electrocatalyst for PEMFC Applications [J]. Advanced Functional Materials,2012,22:3519-3526.
    [215] METIN, SUN X and SUN S. Monodisperse gold–palladium alloy nanoparticles andtheir composition-controlled catalysis in formic acid dehydrogenation under mild conditions[J]. Nanoscale,2013,5:910-912.
    [216] LI D, M LLER M B, GILJE S, KANER R B and WALLACE G G. Processableaqueous dispersions of graphene nanosheets [J]. Nature Nanotechnology,2008,3:101-105.
    [217] PARK S, AN J, JUNG I, PINER R D, AN S J, LI X, VELAMAKANNI A and RUOFFR S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organicsolvents [J]. Nano Letters,2009,9:1593-1597.
    [218] YIN Z, ZHOU W, GAO Y, MA D, KIELY C J and BAO X. Supported Pd–Cubimetallic nanoparticles that have high activity for the electrochemical oxidation of methanol[J]. Chemistry-A European Journal,2012,18:4887-4893.
    [219] YIN Z, CHI M, ZHU Q, MA D, SUN J and BAO X. Supported bimetallic PdAunanoparticles with superior electrocatalytic activity towards methanol oxidation [J]. Journalof Materials Chemistry A,2013,1:9157-9163.
    [220] YIN Z, ZHENG H, MA D and BAO X. Porous Palladium Nanoflowers that HaveEnhanced Methanol Electro-Oxidation Activity [J]. The Journal of Physical Chemistry C,2008,113:1001-1005.
    [221] WANG X, YANG J, YIN H, SONG R and TANG Z.“Raisin Bun”‐LikeNanocomposites of Palladium Clusters and Porphyrin for Superior Formic Acid Oxidation[J]. Advanced Materials,2013,25:2728-2732.
    [222] LEE Y W, KIM M, KIM Z H and HAN S W. One-step synthesis of Au@Pd core shellnanooctahedron [J]. Journal of the American Chemical Society,2009,131:17036-17037.
    [223] BURTON P D, BOYLE T J and DATYE A K. Facile, surfactant-free synthesis of Pdnanoparticles for heterogeneous catalysts [J]. Journal of Catalysis,2011,280:145-149.
    [224] ZHOU W and LEE J Y. Highly active core–shell Au@Pd catalyst for formic acidelectrooxidation [J]. Electrochemistry Communications,2007,9:1725-1729.
    [225] ALAYOGLU S, NILEKAR A U, MAVRIKAKIS M and EICHHORN B. Ru–Ptcore–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen [J].Nature Materials,2008,7:333-338.
    [226] WANG G, WU H, WEXLER D, LIU H and SAVADOGO O. Ni@Pt core–shellnanoparticles with enhanced catalytic activity for oxygen reduction reaction [J]. Journal ofAlloys and Compounds,2010,503: L1-L4.
    [227] JOSE D and JAGIRDAR B R. Au@Pd core shell nanoparticles through digestiveripening [J]. The Journal of Physical Chemistry C,2008,112:10089-10094.
    [228] ZHANG N, QIU H, LIU Y, WANG W, LI Y, WANG X and GAO J. Fabrication of goldnanoparticle/graphene oxide nanocomposites and their excellent catalytic performance [J].Journal of Materials Chemistry,2011,21:11080-11083.
    [229] QIN Y, KONG Y, XU Y, CHU F, TAO Y and LI S. In situ synthesis of highly loadedand ultrafine Pd nanoparticles-decorated graphene oxide for glucose biosensor application[J]. Journal of Materials Chemistry,2012,22:24821-24826.
    [230] ZHANG X-B, YAN J-M, HAN S, SHIOYAMA H and XU Q. Magnetically recyclableFe@Pt core shell nanoparticles and their use as electrocatalysts for ammonia boraneoxidation: the role of crystallinity of the core [J]. Journal of the American Chemical Society,2009,131:2778-2779.
    [231] CHEN P, XIAO T-Y, LI H-H, YANG J-J, WANG Z, YAO H-B and YU S-H.Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhancedelectrochemical and photocatalytic activities [J]. ACS Nano,2011,6:712-719.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.