He-X_2(X=Na、Li)体系的势能面积碰撞动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碰撞能量转移是物理、化学、生命科学和材料科学等领域的重要研究课题。本论文以X_2(X = Na、Li)分子的缓冲气(buffer gas,通常为He)载带冷却实验为背景,利用量子动力学理论系统地研究了He-Na_2和He-Li_2体系的势能面,碰撞动力学等。
     本论文共分四章。第一章简述了分子间弱相互作用的理论计算方法,以及X_2(X = Na、Li)体系动力学研究现状。第二章阐述了分子轨道从头算方法的基本原理和非弹性散射计算的基础理论。第三章,重点从理论上研究了He-Na_2体系势能面的特性及碰撞动力学。第四章,详细讨论了He- Li_2体系势能面的特性并与第三章的He-Na2体系进行了对比,重点比较了两者的异同点,总结出了He - X_2(X = Na、Li)体系势能面和碰撞动力学特点。主要工作体现在以下几个方面:
     (1)采用超分子耦合簇理论CCSD(T)方法,对He原子采用aug–cc- pVQZ(7s3p2d1f)/[s3p2d1f]、Na原子用cc-pCVQZ(19s,12p,3d, 2f,1g)/ [6s, 5p,3d,2f,1g]、Li原子用cc-pVQZ (12s6p3d2f1g) / [5s4p3d2f]的原子中心高斯函数,并加入{3s3p2d1f}集的键函数组成的大基组,计算得到了He-Na_2和He-Li_2体系的三维势能面。通过理论计算的结果确认这两个势能面上均存在两个势阱,分别对应于线型构型和T型构型,整个势能面均呈现弱的各向异性。其中He-Na_2体系对应于Na-Na-He线型构型的势阱在θ=0~0、R_m = 14a_0 ,阱深为1.58cm~(-1);T型构型势阱在θ=90~0、
Collisional energy transfer is an important topic in the fields of physics, chemistry, life sciences and material sciences. In this thesis, we have performed systematic studies on quantum dynamics of the He-Na_2 and He-Li_2 system, based on the background of Buffer-gas cooling experiment. It includes the theoretical investigation on the potential energy surfaces and collision dynamics.
     This paper is divided into four parts. In chapter one, the development of dynamical studies for the He-X_2(X=Na、He) system are briefly introduced. In chapter two, the basic principle of the molecular orbits ab initio and the theory of the inelastic scattering are presented. In chapter three, the potential energy surface for He-Na_2 system has been calculated. The quantum dynamics are introduced in detail. In chapter four, the potential energy surface for He-Li_2 system has been calculated. It also has two potential wells as the potential energy surface for He-Na2. The whole potential energy surface exhibits weak anisotropic. We discussed the similarities and differences between the two complexes. Our main work is presented as following:
     (1) The intermolecular interaction energies corresponding to different He-Na_2 and He-Li_2 configurations have been calculated by
引文
[1] Hobza P, Zahradnik R. Intermolecular interactions between medium-sized systems: Non-empirical and empirical calculation of interaction energies, Chem. Rev., 1988, 88: 871.
    [2] Kaplan I G. Theory of molecular interactions, Amsterdam: Elsevier, 1986.
    [3] Hatajczak H, Orville-Thomas W J (Eds), Molecular interactions (Vol. 1 and Vol.2), Bath: Pitman Press, 1980.
    [4] 周公度 , 段连运. 结构化学基础, 北京, 北京大学出版社, 1995.
    [5] Chalasinski G, Szczesniak M M. Origins of structure and energeties of van der Waals clusters from ab initio calculations, Chem. Rev., 1994, 94: 1723.
    [6] Dyke T R, Howard B J, Klemperer W. Radio frequency and microwave spectrum of the hydrogen fluoride dimmer: A nonrigid molecule, J. Chem. Phys., 1972, 56: 2442.
    [7] Ewing G E. The spectroscopy of van der Waals molecules, J. Phys.Chem., 1976, 54: 487.
    [8] Campbell E J, Buxton LW, Balle T J, Flygare W H. The theory of pulsed Fourier transform microwave spectroscopy carried out in a Fabry-Cavity: Static gas, J. Chem. Phys., 1981, 74: 813.
    [9] Pichard D G, Nandi R N, Muenter J S. Vibrational-rotation spectrum of the carbon diocide-acetylene van der Waals complex in the 3 μ region, J. Chem. Phys., 1988, 89: 1245.
    [10] Xu Y, McKellar A R W. Continuous slit-jet infrared spectrum of the CO-N2 complex, J. Chem. Phys., 1996, 104: 2488.
    [11] B?rnsen K O, Lin S H, Selzle H L, Schlag E W. Spectra of isotopically mixed benzene trimers, J Chem. Phys., 1989, 90: 1299.
    [12] Venturo V A, Felker P M. Intermolecular Raman band in the ground state of benzene dimmers, J. Chem. Phys., 1993, 99: 748.
    [13] Carrington A, Leach C A, Marr A L, Shaw A M, Viant M R, Hutson J M, Law M M. Microwave spectroscopy and interaction potential of the long-range He…Ar ion, J. Chem. Phys., 1995, 102: 2379.
    [14] Gerhards M, Schmitt M, Kleinermanns K, Stahl W. The structure of phenol (H2O) obtained by microwave spectroscopy, J. Chem. Phys., 1996, 104: 967.
    [15] Haines S R, Dessent C E H, Müller-Dethlefs K. Mass analyzed threshold ionization of phenol CO. Intermolecular binding energies of a hydrogen-bonded complex, J. Chem. Phys., 1999, 111: 1947.
    [16] Nagri M S, J?ger W. Fourier transform microwave rotational spectra of the Ne2-N2O and Ar2-N2O van der Waals trimers, J. Chem. Phys., 1999, 111: 3919.
    [17]GAUSSIAN 98, a package of ab initio programs written by M. J. Frisch, J. A. Pople, et al. Gaussian, Inc., Pittsburgh, PA, 1998.
    [18]GAMESS, "General Atomic and Molecular Electronic Structure System", J.H.Jensen, S.Koseki, J. Comput. Chem., 14, 1347-1363(1993).
    [19]MOLPRO, a package of ab initio programs written by Werner H.-J et al.
    [20] 金家骏.分子化学反应动态学, 上海, 上海交通大学出版社,1988,54.
    [21] 王一波, 陶福明, 潘毓刚. 氢键的精确从头计算方法及其用于NH3,H2O,和HF分子间氢键的研究, 中国科学(B 辑), 1995, 25: 1016.
    [22] 王一波. 高级量子化学计算法研究 H2S 和 H2O 分子间相互作用, 中国科学(B辑),1995,25:673.
    [23] Mayer I, Surjan P R. Improved intermolecular SCF theory and the BSSE problem, Inter. J. Quantum Chem., 1989, 36: 225.
    [24] Moszyński R, Jeziorski B, Szalewicz K. Many-body theory of exchange effects in intermolecular interaction results, J. Chem. Phys., 1994, 100: 1312.
    [25] V.S.Letokhov, et al. Laser cooling of atoms: a review.Quantum Semiclass Opt. 7, 1995, 5-40.
    [26] Boys S F, Bernadi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys., 1970, 19: 553.
    [27] C.S.Adams, E.Riis. Laser cooling and trapping of neutral atoms. Prog Quant Electr, 21.1997, 1-79.
    [28] 李师群.激光冷却和捕陷中性原子,大学物理,18 卷 1,2,3 期,1999,1-6.
    [29] H.Metcalf, et al. Cooling and trapping of neutral atoms. Phys Rep 244.1994, 203-286.
    [30] Kerman A J, Sage J M, Sainis S, Bergeman T, DeMille D. Production of Ultracold, Polar RbCs* Molecules via Photoassociation, Phys. Rev. Lett., 2004,92:033004
    [31] Kerman A J, Sage J M, Sainis S, Bergeman T, DeMille D. Production and State-Selective Detection of Ultracold RbCs Molecules, Phys. Rev. Lett., 2004,92:153001
    [32] Vanhaecke N, DeSouza Melo W, Laburthe B, Pillet P. Accumulation of Cold Cesium Molecules via Photoassociation in a Mixed Atomic and Molecular Trap, Phys. Rev. Lett., 2002, 89: 063001
    [33] Zemke W T, Stwalley W C. Radiative transition probabilities, lifetimes and dipole moments for the vibrational levels of the X 1Σ +ground state of 39K85Rb, J. Chem.Phys., 2004, 120: 88
    [34] Weinstein J, deCarvalho R, Guillet T, Doyle J M. Magnetic trapping of calcium monhydride molecules at millikelvin temperatures, Nature ,1998, 395:148
    [35] Junglen T, Rieger T, Rangwala S A, Pinksea P W H, Rempe G. Slow ammonia molecules in an electrostatic quadrupole guide, Eur. Phys. J. D, 2004,31: 365
    [36] Elio M S, Valentini J J, Chandler D W. Formation of molecules with sub-kelvin translational energy via molecular beam collisions with argon using the technique of molecular cooling by inelastic collisional energy-transfer, Eur. Phys. J. D, 2004, 31:385
    [37] Egorov D, Campbell W C, Friedrich B. Buffer-gas cooling of NH via the beam loaded buffer-gas method, Eur.Phys. J. D, 2004, 31: 307
    [38] Bethlem H L, Berden G, Meijer G. Decelerating Neutral Dipolar Molecules, Phys. Rev. Lett., 1999, 83:1558
    [39] Fioretti A, et al, Formation of Cold Cs2 Molecules through Photoassociation, Phys. Rev. Lett., 1998,80:4402
    [40] Donley E A, Claussen N R, Thompson S T, Wieman C E. Atom-molecule coherence in a Bose-Einstein condensate, Nature, 2002, 417:529
    [41] Weinstein J D, de Carvalho R, Guillet T, Friedrich B, Doyle J M. Magnetic trapping of calcium monhydride molecules at millikelvin temperatures, Nature, 1998, 395: 148
    [42] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag J, Grimm R. Bose-Einstein Condensation of Molecules, Science, 2003, 302: 2101
    [43] Greiner M, Regal C A, Jin D S. Emergence of a molecular Bose-Einstein condensate from a Fermi gas, Nature, 2003, 426: 537
    [44] Zoller P. Making it with molecules. Nature, 2002,417;493-494
    [45] Schwenke D W, Truhlar D G. The effect of Wigner singularities on low-temperature vibrational relaxation rates, J. Chem. Phys., 1985, 83: 3454
    [46] Balakrishnan N, Kharchenko V, Forrey R C, Dalgarno A. Complex scattering lengths in multi-channel atom-molecule collisions, Chem. Phys. Lett., 1997,280:5
    [47] Balakrishnan N, Forrey R C, Dalgarno A. Threshold phenomena in ultracold atom-molecule collisions, Chem.Phys.Lett., 1997,280:1
    [48] He+CO: Reid J P et al. Vibrational deactivation of CO (v=1) by inelastic collisions with 3He and 4He at low impact energies, Chem.Phys.Lett. 1995, 246: 562; Balakrishnan N et al. Vibrational relaxation of CO by collisions with 4He at ultracold temperatures, J.Chem.Phys.,2000, 113:621; Zhu Cet al. Vibrational relaxation of CO in ultracold 3He collisions, J.Chem.Phys.,2001, 115: 1335; Bodo E, et al. Quenching of vibrationally excited CO (v=2) molecules by ultra-cold collisions with 4He atoms, Chem.Phys.Lett., 2002, 353: 127; Florian P M, et al. Rotational relaxation in ultracold CO+He collisions, Phys. Rev. A,2004, 70: 032709;
    [49] He+H2: Forrey R C, et al. Feshbach resonances in ultracold atom-diatom scattering, Phys. Rev. A , 1998, 58: R2645; Balakrishnan N, et al. Quenching of H2 vibrations in ultra-cold 3He and 4He collisions, Phys. Rev. Lett., 1998,80: 3224; Forrey R C, et al . Quasiresonant energy transfer in ultracold atom-diatom collisions, Phys. Rev. Lett., 1999, 82: 2657; Forrey R C,et al. Phys. Rev.A, 1999, 59:2146; Flasher J C, et al. Phys. Rev.A, 1999,65:2146; Dashevskaya E I, et al. Phys. Rev. A ,2000, 63: 012711; Gianturco F A, et al. J.Chem.Phys.,2005, 122: 084308; Maté B, et al. J.Chem.Phys.,2005, 122: 064313; Teck-Ghee Lee, et al. J.Chem.Phys.,2005, 122: 024307.
    [50] Bohn, J L. Cold collisions of O_2 with helium, Phys. Rev.A, 2000, 62:032701
    [51] Stoecklin T, Voronin A, .Rayez J C. Vibrational quenching of ( )N_2 v = 1, jr ot= j by 3He: Surface and close-coupling calculations at very low energy, Phys.Rev.A, 2002, 66:042703
    [52] Stoecklin T, Voronin A, Rayez J C. Vibrational deactivation of ( )F_2 v = 1, j= 0 by 3He at very low energy: A comparative study with the He-N2 collision, Phys.Rev.A, 2003, 68:032716
    [53] Flasher J C, Forrey R C. Cold collisions between argon atoms and hydrogen molecules, Phys.Rev.A, 2002, 65:032710
    [54] Stoecklin T, Voronin A, Rayez J C. Vibrational quenching of HF (ν=1, j) molecules by 3He atoms at very low energy, Chem. Phys., 2003, 294: 117
    [55] Stoecklin T, Voronin A, Rayez J C. Vibrational deactivation of ( )F_2 v = 1, j= 0 by 3He at very low energy, Chem. Phys., 2004, 298: 175
    [1]波普尔 J A, 贝弗里奇 D L.分子轨道近似方法理论, 北京,科学出版社, 1976.
    [2]理查德 W G,古柏 D L.分子轨道从头计算法, 北京,科学出版社, 1987.
    [3]封继康, 基础量子化学原理, 高等教育出版社,1983.
    [4]唐敖庆, 杨忠志, 李前树.量子化学,科学出版社, 1982.
    [5]徐光宪, 黎乐民, 王德民.量子化学基本原理和从头计算法(中册), 北京, 科学出版社, 1985.
    [6]M .Born, R .Oppenheimer, Zur Quantentheorieder Molekeln Ann. Phsik (Quantum Theory of the Molecules Ann. Phys.)1927, 84, 457-484
    [7]D. Hartree, Calculations of Atomic Structure, Wiley1957.
    [8]W Pauli; Z. Phys., 1923, 31,765
    [9] GAUSSIAN 98, a package of ab initio programs written by M. J. Frisch, J. A. Pople, et al. Gaussian, Inc., Pittsburgh, PA, 1998.
    [10] Hehre W J, Radom L, Schleyer P V R, et al. Ab initio Molecular Orbital Theory, John Wiley &Sons, Inc., 1986.
    [11] Miller W H,et al.Dynamics of Molecular Collisions (Part A), Plenum Press, 1976.
    [12]周鲁,滕礼坚, 巫光汉.分子反应动力学基础, 成都, 成都科技大学出版社,1990
    [13]Manolopouls D E, Alexander M H. A stable linear reference potential algorithm for solution of the quantum close-coupled equations in molecular scattering theory. J. Chem.Phys., 1987, 86:2044.
    [1]Weinstein J,deCarvalho R,Guillet T,Doyle J M.Magnetic trapping of calcium monhydride molecules at millikelvin temperatures,Nature,1998,395:148.
    [2]Egorov D,Campbell W C,Friedrich B.Buffer-gas cooling of NH via the beam loaded buffer-gas method,Eur.Phys.J.D,2004,31:307.
    [3]Krauss M.Interaction Energy Curves of LiHe and NaHe ( X 2Σ +, A 2Π , B 2Σ + and X 1Σ + Ions[J].J.Chem.Phys.,1981,54:4944.
    [4]Reinhard Schinke.Theoretical investigation of rotational rainbow structures in X–Na2 collisions using CI potential surfaces Rigid-rotor X = He scattering and comparison with state-to-state experiments[J].J.Chem. Phys.,1981,74:7.
    [5]Rodney J. Bartlett.Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry [J] .J.Phys.Chem.,1989,93:1697
    [6]Gerrit, C. Groenenboom and lzabeka, M. Struniewicz. Three-dimensional ab initio potential energy surface for He-O [J]. J. Chem. Phys., 2000, 113:9562.
    [7]Pedersen T B, Koch H. Rovibrational structure of the Ar–CO complex based on a novel three-dimensional ab initio potential. J. Chem. Phys., 2002, 117:6562.
    [8]李绛,朱华,谢代前,鄢国森. Ne-HCl 势能面和振转光谱的理论研究[J].高等学校化学学报,2003,24:686.
    [9]黄武英,凤尔银,杨峰,董书宝. He-LiH 势能面的 ab initio 计算[J].安徽师范大学学报(自然科学版),2004, 27(1), 20:28
    [10]王一波,陶福明,潘毓刚.氢键的精确从头计算方法及其用于 NH3,H2O 和 HF分子间氢键的研究.中国科学(B 辑),1995,25:1016.
    [11]Nikita Matsunaga and Andreas A.Zavitsas.Comparison of spectroscopic potentials and an a priori analytical function.The potential energy curve of the ground state of the sodium dimmer, X 1 +gNa2∑ [J].J.Chem. Phys.,2004,120:5624.
    [12] MOLPRO, a package of ab initio programs written by Werner H.-J et al.
    [13]Boys S F , Bernardi F . The calculation of small molecular interactions by the differences of separate total energies.Some procedures with reduced errors [J].Mol.Phys.,1970,19:553~559.
    [14]Kenneth W.Chan,Trevor D.Power,Jaran Jai-nhuknan,S?awomir M.Cybulski.An ab initio study of He–F2 , Ne–F2 , and Ar–F2 vander Waals complexes [J]. J.Chem.Phys.,1998,2:110.
    [15]C. F. Curtiss and F.T.Adler, The scattering of atoms from diatomic molecules,J.Chem.Phys.,21,249-256(1952)
    [16]T.F.Ceorge and J.Ross, Quantum dynamical theory of molecules, Annu.Rev.phys.Chem.24, 379-406(1973)
    [17]Manolopouls D E, Alexander M H. A stable linear reference potential algorithm for solution of the quantum close-coupled equations in molecular scattering theory. J. Chem.Phys., 1987, 86:2044.
    [18]Kohguchi H,Suzuki T, Alexander M H .Fully State-Resolved Differential Cross Sections for the Inelastic Scattering of the Open-Shell NO and Argon system, Science ,2001,294:832
    [19]Lorenz K T,Chandler D W,Barr J W et al.Direct Measurement of the Preferred Sense of NO Rotation After Collision with Argon, Science, 2001,293 :2063
    [20]Reinhard Schinke, Wolfgang Muller and Wilfried Meyer et al . Theoretical investigation of rotational rainbow structures in X-Na2 collisions using CI potential surfaces.I.Rigid-rotor X=He scattering and comparison with state-to-state experiments. J. Chem.Phys. 74 (1981)3916.
    [21]Wolfgang Muller and Reinhard Schinke.Theoretical investigation of rotational rainbow structures in X-Na2 collisions using CI potential surfaces. II.Combined rotational -vibrational excitation for X=He scattering. J. Chem.Phys. 75(1981)1219.
    [22]周鲁,滕礼坚,巫光汉.分子反应动力学基础,成都,成都科技大学出版社,1990
    [23]Stoecklin T, Voronin A, .Rayez J C. Vibrational quenching of N2 ( = 1, jrot = j) by 3He: Surface and close-coupling calculations at very low energy. Phys.Rev.A, 2002, 66:042703
    [24]Stoecklin T, Voronin A, Rayez J C. Vibrational deactivation of F2 ( = 1, j = 0) by 3He at very low energy: A comparative study with the He-N2 collision. Phys.Rev.A, 2003, 68:032716
    [25]Flasher J C, Forrey R C, Cold collisions between argon atoms and hydrogen molecules. Phys.Rev.A, 2002, 65:032710
    [26]Stoecklin T, Voronin A, Rayez J C. Vibrational quenching of HF (ν=1, j) molecules by 3He atoms at very low energy. Chem., Phys., 2003, 294: 117
    [27]Stoecklin T, Voronin A, Rayez J C. Vibrational deactivation of F2 (ν=1, j=0) by 1H at very low energy. Chem. Phys., 2004, 298: 175
    [28]Krems R V, Sadeghpour H R, Dalgarno A, Zgid D. Low-temperature collisions of NH(X 3 –) molecules with He atoms in a magnetic field: An ab initiostudy.Phys.Rev.A, 2003,68: 051401; H. Cybulski, R. V. Krems, H. R. Sadeghpour, and A. Dalgarno. Interaction of NH(X 3 –) with He: Potential energy surface, bound states, and collisional Zeeman relaxation. J. Chem. Phys.,2005,122: 94307; N. Balakrishnan, G. C. Groenenboom, R. V. Krems and A. Dalgarno, The He–CaH(2 +) interaction. II. Collisions at cold and ultracold temperatures. J. Chem. Phys., 2003, 118:7386; A. Volpi and John L. Bohn, Magnetic-field effects in ultracold molecular collisions. Phys.Rev.A, 2002, 65: 052712; A. Volpi and John L. Bohn, Molecular vibration in cold-collision theory. hys.Rev.A, 2002, 65,064702
    [29]He+CO: Reid J P et al. Chem.Phys.Lett. 1995,246: 562; Balakrishnan N et al. J.Chem.Phys.,2000, 113:621; Zhu Cet al. J.Chem.Phys.,2001, 115: 1335; Bodo E, et al. Chem.Phys.Lett., 2002,353: 127; Florian P M,et al. Phys. Rev. A,2004,70: 032709;
    [1]M.Fuchs and J.Peter Toennies. Scattering of highly Vibrationally excited Li2 from He and Kr. J. Chem. Phys,1986,85:7062.
    [2]E. Bodo, F. Sebastianelli. Ab initio quantum dynamics with very weak van der Waals interactions: Structure and stability of small Li2–(He)n clusters,2004,120:9260
    [3]T.H.Dunning, Jr., Gaussian basis sets for use in correlated molecular calculations. The atoms boron through neon and hydrogen [J]. J. Chem. Phys., 1989, 90:1007.
    [4]D.E.Woon and T.H.Dunning, Jr. Gaussian basis sets for use in correlated molecular calculations.Ⅳ.Calculation of static electrical response properties [J]. J. Chem. Phys., 1994, 100: 2975.
    [5]李绛,朱华,谢代前,鄢国森. Ne-HCl 势能面和振转光谱的理论研究[J].高等学校化学学报,2003,24:686.
    [6]E. Bodo, F. A. Gianturco1.Rotational cooling of Li_2(1 g+∑ )molecules by ultracold collisions with a helium gas buffer. Theor Chem Acc (2004) 112: 263–269.
    [7]MOLPRO, a package of ab initio programs written by Werner H.-J et al.
    [8]Boys S F,Bernardi F.The calculation of small molecular interactions by the differences of separate total energies . Some procedures with reduced errors [J].Mol.Phys.,1970,19:553~559.
    [9]KennethW.Chan, TrevorD.Power, Jaran Jai-nhuknan, and S?awomir M.Cybulski. An ab initio study of He–F2, Ne–F2, and Ar–F2 vander Waals complexes, J.Chem.Phys. , 1998, 2:110.
    [10]凤尔银,张陟,郑贤锋.Newton Raphson 方法优化势函数参数[J].安徽师范大学学报(自然科学版),2001,24(3): 222-224.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.