C_4液化气中丁烯在纳米ZSM-5沸石上芳构化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁烯芳构化反应是提高炼油副产C4液化气资源附加值的一条重要途径。然而,积炭失活快是传统沸石芳构化催化剂的主要难题。因此,本文重点研究了芳构化催化剂在C4液化气低温芳构化反应中的抗积炭失活性能。着重考察了ZSM-5沸石催化剂的晶粒度、酸度和微孔扩散性对其积炭失活速度的影响。主要研究结果如下:
     (1)研究了酸度相近,而晶粒度不同的ZSM-5沸石催化剂对C4液化气芳构化反应的影响,发现这些样品表现出了相同的初始活性和不同的稳定性。不同沸石催化剂的反应稳定性顺序为:微米沸石催化剂<小晶粒沸石催化剂<纳米沸石催化剂。纳米ZSM-5沸石催化剂优异的抗积炭失活性能归结为孔道短,外表面积大,丰富的晶间孔以及较多的孔口减少了积炭堵孔的机会。
     (2)用高温水汽钝化与酸扩孔处理制备了四组催化剂样品,通过XRD、NH3-TPD、Py-IR以及正己烷和环己烷的吸附量表征,研究了C4液化气低温芳构化反应中纳米ZSM-5沸石催化剂的酸度、微孔扩散性与积炭失活的关系。发现酸度较强的纳米ZSM-5沸石催化剂表现出了更快的积炭失活速度。同时,沸石的微孔扩散性能也对催化剂的积炭失活速度有显著影响。微孔约束力(即正己烷和环己烷的吸附量之比,用n-h/c-h表示)越大,积炭失活越严重。纳米HZSM-5沸石催化剂经500-550℃水蒸气处理,以及钝化前后都经过稀硝酸溶液处理后,制得的改性催化剂具有适宜的酸度和良好的微孔扩散性能,因此也表现出优异的抗积炭失活能力。
     (3)通过综合改性调变了沸石的酸度和微孔扩散性能,研制出一种以纳米ZSM-5沸石为催化剂母体的DLG-1催化剂,表现出了良好的抗积炭失活性能以及C4液化气中丁烯的低温芳构化性能。研究了反应条件、C4液化气原料组成、杂质含量以及反应气氛对DLG-1催化剂上C4液化气低温芳构化反应的影响。发现除了催化剂外,适宜的反应条件、清洁的原料(例如,较低的二烯烃和硫化物含量以及无碱性氮化物)以及临氢反应都对进一步提高催化剂的抗积炭失活性能起到了重要作用。在优化的反应条件下(T=420-450℃、P=2.0-3.0 MPa、WHSVLPG=0.8-0.9 h-1和VH2/VLPG=260), DLG-1催化剂在1104h的长运转过程中丁烯转化率和芳构化活性始终分别保持在99%和60%以上,积炭量和积炭的碳氢摩尔比分别为20.8%和1.32。
     (4)DLG-1催化剂表现出了优异的再生性能。其经历十次体内烧炭再生后,在1000余小时的长运转过程中芳构化活性仍能保持在60%,丁烯转化率始终稳定在99%。并在放大装置(催化剂装填量200m1)上验证了DLG-1催化剂的芳构化性能:在T=410℃,P=2.0 MPa, WHSVLPG=1.2 h-1和VH2/VLPG=260的条件下反应600 h(运转时间限于C4LPG的供应),丁烯转化率大于99%,芳构化活性稳定在48%左右,干气及焦炭低于2%,氢气消耗低于0.6(wt%)。产物分析表明,放大实验中汽油收率达到76%(以进料丁烯计),上述汽油产品因烯烃含量(1.6%)低、苯含量(1.3%)低以及硫含量(1 ppm)低,而辛烷值(RON>97.8)高,成为理想的汽油调和组分。反应同时联产大量烯烃含量小于1.0%的优质丙、丁烷液化气,可作为乙烯裂解原料。可以预期改性纳米HZSM-5沸石催化剂-DLG-1用于C4液化气低温芳构化反应,具有很好的工业化前景。
The aromatization of butenes is an important route to the value-added use of C4 LPG by-product sources. However, the fast coking deactivation of conventional zeolite aromatization catalyst has been a major obstacle to be overcomed. Therefore, this dissertation is focused on the anti-coking deactivation of aromatization catalyst during the low-temperature aromatization of C4 LPG. Emphasis was given to the effects of crystal size, acidity, and micropore diffusivity of ZSM-5 zeolite catalyst on its coking-deactivation rate. Following main results are obtained:
     (1) The aromatization of C4 LPG over different crystal size ZSM-5 zeolite catalysts with similar acidity was studied. Results show that these catalysts exhibit similar initial activity but different stability. The order of reaction stability of different zeolites is:micro-sized ZSM-5< small crystal sized ZSM-5< nano-sized ZSM-5 zeolite catalyst. The nano-sized ZSM-5 zeolite catalyst possesses unique coke deactivation resisting ability, which is attributed to its short channels, large external surface area, abundant intercrystal pores, and much more pore mouths which decrease the chance of coke blockage.
     (2) Four series of zeolite catalysts are prepared by high-temperature steaming and acid leaching combination. XRD, NH3-TPD, pyridine-FT-IR, adsorptions of n-hexane and c-hexane are used to study the relationships between the zeolitic acidity and micropore diffusivity with the coking deactivation of nano-sized ZSM-5 zeolite catalyst in the low-temperature aromatization of C4 LPG. It is found that, nano-sized ZSM-5 zeolite catalyst with stronger acidity generally shows faster coke deactivation speed. Meanwhile, the diffusivity of the zeolitic micropores also has remarkable influence on the coking deactivation of the catalyst. The stronger the micropore diffusion constraint (the adsorption capacity ratio of n-hexane to c-hexane, denoted by n-h/c-h), the more serious coke deactivation is. By subjecting the nano-sized HZSM-5 zeolite catalyst to steaming treatment under 500-550℃, and leaching the catalyst with dilute HNO3 before and after steaming, the modified catalyst shows proper acidity and micropore diffusibility, and thus possesses satisfactory anti-coking deactivation ability.
     (3) By optimizing zeolitic acidity and micropore diffusivity with modification combination, DLG-1 catalyst was successfully developed by the nano-sized HZSM-5 zeolite, which exhibits satisfactory performances in both anti-coking deactivation and low-temperature aromatization of butene when fed with C4 LPG. Effects of reaction conditions, C4 LPG feedstock composition and purity, and with or without carrier gas on the low-temperature aromatization of C4 LPG was investigated over this catalyst. It is found that, beyond catalyst, the suitable reaction conditions, high purity feedstock (i.e., low diene and S-compounds content and alkaline N-compounds free) and the use of hydrogen as carrier gas are all very important to further enhance the catalyst's anti-coking deactivation ability. Under the optimal range of reaction conditions (T=420-450℃, P=2.0-3.0 MPa, WHSVLPG=0.8-0.9 h-1 and VH2/VLPG=260), the conversion of butene and aromatization activity over DLG-1 catalyst, in the low-temperature aromatization, can keep above 99% and 60% after 1104 h time-on-stream, and the coke amount and C/H mole ratio of coke are 20.8% and 1.32 separately.
     (4) DLG-1 catalyst exhibits excellent regeneration performance. It can keep aromatization activity and butene conversion 60% and 99%, respectively, during more than 1000 hours time on stream after ten times repeated in-situ coke-burning regeneration. The catalyst was also subjected to a scale up reactor (200 ml catalyst loading) evaluation, which was carried out at the conditions of T=410℃, P=2.0 Mpa, WHSVLPG=1.2 h-1, and VH2/VLPG=260 for 600 h (operation was limited by C4 LPG supply), results obtained including butene conversion above 99%, aromatization activity around 48%, the percentage of dry gas and coke are below 2, hydrogen loss no more than 0.6 (wt%). Products study indicated that this scaled up test gave 76% gasoline fraction yield (calculated on butene), said gasoline product is most desired gasoline blending cut for low contents of olefin (1.6%), benzene (1.3%) and sulfur (1 ppm), and high octane number (RON> 97). The low-temperature aromatization also produced large amount of high quality Propane-butane LPG in which olefins content is less than 1%. Such LPG can be used as ethylene cracking feedstock. It is believed that the low-temperature aromatization of C4 LPG over modified nano-sized HZSM-5 zeolite catalyst, DLG-1, has very bright commercialization prospect.
引文
[1]何奕工.绿色石化技术的科学与工程基础.北京:中国石油化工出版社,2001.
    [2]山红红,李春义,赵博艺等.FCC汽油中硫分布和催化脱硫研究.石油大学学报(自然科学版),2001,25(6):78-80.
    [3]陈焕章,李永丹,赵地顺.催化裂化汽油脱硫技术进展.化工科技,2004,12(3):46-51.
    [4]张晓静,秦如意,刘金龙.FCC汽油吸附脱硫工艺技术-LADS工艺.天然气与汽油,2003,21(1):39-42.
    [5]许明德,达志坚,田辉平GOR-DQ降低汽油烯烃含量催化剂研究开发和工业试生产报告.北京:中国石油化工股份有限公司石油化工科学研究院,2000.
    [6]闫宏.LAP降烯烃助剂的工业应用.天然气与石油,2001,19(2):14-17.
    [7]陈爱忠,李学平.LGO-A高辛烷值型降烯烃助剂的开发与应用.炼油技术与工程,2006,36(2):45-46
    [8]李明辉.碳四烃的综合利用.石油化工,2003,32(9):808-814.
    [9]Randolph B B, Hovis K W. REVAP:Reduced volatility alkylation forproduction of high value alkylate blendstock:year 4[C]//NationalPetrochemical & Refiners Association Annual Meeting, Washington D.C.,2002.
    [10]Frank H J, Robert M L. NPRA 2003 Annual Meeting,2003.
    [11]Wood C B, Vander J, Shoemaker L W. Consider improved liquid alkylation catalysts. Hydrocarbon Processing,2001,80(2):79-83.
    [12]Anders B J, Sven I H. NPRA 2003 Annual Meeting,2003.
    [13]Gieseman J C, Amico V D, Broekhoven E V. The alkyclean alkylation:new technology elimainates liquid acids[C]//NationalPetrochemical & Refiners Association Annual Meeting, Salt Lake City,2006.
    [14]Http://uop.com/objects/alkyleneprocess.pdf (accessed may 24,2007).
    [15]Chellappa A S, Miller R C, Thomson W J. Supercritical alkylation and butene dimerization over sulfated zirconia and iron-manganese promoted sulfated zirconia catalysts. Applied Catalysis A: General,2001,209:359-347.
    [16]黄崇品,刘植昌,史权等.离子液体中异丁烷与丁烯的烷基化反应.石油大学学报(自然科学版),2003,27(4):120-122.
    [17]温朗友,吴巍,刘晓欣.间接烷基化技术进展.当代石油化工,2004,12(4):36-40.
    [18]UOP LLC. UOP Indirect Alkylation(InAlkyTM) Process for Refinery MTBE Unit Conversion, 2000.
    [19]Hairston D. Chemical Engineering,2001,1:27-33.
    [20]Trotta R.用油田丁烷生产高率烷值烷基化油.见:NPRA年会报告译文集,北京:石油化工科学研究院信息中心,1997,301-308.
    [21]Nocca J L满足汽油质量的炼油工艺之间的多米诺骨牌,见:AM-00-61. NPRA年会报告译文集,北京:中国石油化工集团公司经济技术研究院、石油化工科学研究院,2000,345-353.
    [22]金照生,赵志利,任相坤.碳四两段齐聚-加氢联产异辛烷和车用LPG.工业催化,2001,9(4):25-30.
    [23]Marsh S K. Catalytic Conversion System for Oligomerizaing Olefinic Feedstock to Produce Heavier Hydrocarbons.US Patent 4456781,1984.
    [24]Owen H. Olefin Fractionation and Catalytic Conversion System.US Patent 4471147,1984
    [25]戴逸云.炼厂气烯烃齐聚MOGD新工艺.石油炼制,1986,12:14-18.
    [26]Ipatieff V N, Corson B B, Egloff G. Industrial and Engineering Chemistry,1935,27:1077-1081.
    [27]Chauvin Y, Hennico A, Leger G, et al. Erdol, Erdgas, Kohle.1990,106:309-313.
    [28]姚亚平,袁梅卿,张庆等.T-49催化剂丙烯齐聚研究.石油学报(石油加工),1999,15(2):39-45.
    [29]姚亚平,袁梅卿,徐菁等.T-49新型固体磷酸催化剂及应用.石油炼制与化工,2000,31(1):10-14.
    [30]Low-cost conversion of MTBE units to make alternative gasoline blending components, World Refining,2002,12(7):34-40.
    [31]2005年世界主要国家和地区炼油能力.当代石油化工,2006,14(3):45.
    [32]曹湘洪.21世纪中国石化工业展望.当代石油化工,2001,9(1):7-11.
    [33]Johnson J A, Weiszmann J A, Hilder G K. Presented at NPRA annual meeting, San Autonio, 1984,25-27.
    [34]Doolan P C, Pujado P R. Make aromatics from LPG. Hydrocarbon Processing,1989,68(9):72-76.
    [35]Nagamori Y, Kawase M. Converting light hydrocarbons containing olefins to aromatics (Alpha Process). Microporous and Mesoporous Materials,1998,21(4-6):439-445.
    [36]Roosen G N, Orieux A, Andrews J. Dewitt's Houston Conference,1989.
    [37]Saito S, Hirabayashi K, Shibata S. Paper presented at 1992 NPRA annual meeting, New Orleans,1992.
    [38]Chen N Y, Yan T Y. M2-forming-a process for aromatization of light hydrocarbons. Industrial and Engineering Chemistry Process Design and Development,1986,1:150-155.
    [39]吴指南,伍肇炯,葛旭丹等.C4烃类在ZSM-5分子筛催化剂上的芳构化.石油化工,1983,3:131-136.
    [40]佘励勤,刘兴云,李宣文.抗锌流失的烃类芳构化含锌催化剂.CN 105746A,1992.
    [41]孙兆林,程志林,李宏洋等.液化石油气在Zn Ni/HZSM-5催化剂上的芳构化.石油化工,2000,29(9):650-654.
    [42]郝代军,朱建华,王国良等.液化石油气制芳烃工艺技术的研究开发.化工进展,2005,24(11):1287-1291.
    [43]叶娜,孙琳,郭洪臣等.用纳米ZSM-5沸石催化碳四烯烃芳构化反应.化工学报,2007,50(4):913-918.
    [44]Anderson R F, Johnson J A, Mowry J R. Cyclar, one step processing of LPG to aromatics and hydrogen, Proc. AICHE Meeting in Houston Texas,24-28 March,1985.
    [45]Choudhary V R, Kinage A K, Sivadinarayana C,et al. Pulse Reaction Studies on Variations of Initial Activity/Selectivity of O2 and H2 Pretreated Ga-Modified ZSM-5 Type Zeolite Catalysts in Propane Aromatization.Journal of Catalysis,1996,158(l):23-33.
    [46]宋月芹.液化中气烯烃芳构化制取高辛烷值汽油的研究:(博士学位论文).大连:中国科学院大连化学物理研究所,2005.
    [47]Kumar N, Byggningsbacka R,Korpi M,et al.Synthesis and characterization of Pd_MCM_22 and Pt_SAPO_11 catalysts for transformation of n-butane to aromatic hydrocarbons. Applied Catalysis A:General,2002,227:97-103.
    [48]Seddon D. Paraffin oligomerisation to Aromatics. Catalysis Today Review,1990:351-372.
    [49]Guisnet M, Gnep N S, Alario F. Aromatization of short chain alkanes on zeolite catalysts. Applied Catalysis A:General,1992,89:1-30.
    [50]Csicsery M S. Dehydrocyclodimerization of butanes over supported platinum catalysts. Journal of Catalysis,1970,2:207-215.
    [51]Csicsery M S. Dehydrocyclodimerization V The mechanism of the reaction. Journal of Catalysis,1970,1:30-32.
    [52]Ruseppe G, Reinaldo M. Transformation of LPG into Aromatic Hydrocarbons and Hydrogen over Zeolites Catalysts. Catalysis Reviews-Science and Engineering,1994,36(2):271-304.
    [53]Cattanach J, Camberly. US 3756942,1973.
    [54]Kumar N, Lindfors L E. Synthesis and characterization and application of H-MCM-22、 Ga-MCM-22 and Zn-MCM-22 zeolite catalysts in the aromation of n-butane. Applied Catalysis A:General,1996,147:175-187.
    [55]Byggningsbacka R, Kumar N, Lindfors L E. Synthesis and characterization of H-ZSM-22, Zn-H-ZSM-22 and Ga-H-ZSM-22 zeolite catalysts and their catalytic activity in the aromatization of n-butane. Applied Catalysis A:General,1996,139(1-2):189-199.
    [56]Davis E, Kolombos A J. GB Pat 53012,1976.
    [57]Chert N Y. US Pat,27563,1970.
    [58]Cattanach J. US Pat,253942,1972.
    [59]Inui T, Okazumi F. Propane conversion to aromatic hydrocarbons on Pt/HZSM-5 catalysts. Journal of Catalysis,1984,90:366-367.
    [60]Gnep N S, Doyemet J Y, Seco A M, et al. Conversion of light alkanes into aromatic hydrocarbons: dehydrocyclodimerization of propane on PtHZSM-5 catalysts. Applied Catalysis A: General,1987,35:93-108.
    [61]Nakamura I, Fujimoto K. On the role of gallium for the aromatization of lower paraffins with Ga-promoted ZSM-5 catalysts. Catalysis Today,1996,31:335-344.
    [62]Le Van Mao R, Dufresne L. Enhancement of the aromatizing activity of ZSM-5 zeolite induced by hydrogen back-spillover:Aromatizing the outstream gases of a propane steam-cracker. Applied Catalysis A:General,1989,52:1-18.
    [63]Mole T, Anderson J R, Greer G. The reaction of propane over HZSM-5 and Zn-ZSM-5 zeolite catalysts. Applied Catalysis,1985,17:141-154.
    [64]Barri S A, Young D. Process for producing crystalline gallosilicates. US Patent 4585641,1986.
    [65]Lubango L M, Scurrell M S. Light alkanes aromatization to BTX over Zn-ZSM-5 catalysts: Enhancements in BTX selectivity by means of a second transition metal ion. Applied Catalysis A: General,2002,235:265-272.
    [66]Shibata M, Kitagawa H, Sendoda Y, et al. Transformation of propene into aromatic hydrocarbons over ZSM-5 zeolite. Studies in Surface Science and Catalysis,1986:717-724.
    [67]Choudhary V R, Panjala D, Banerjee S. Aromatization of propene and n-butene over H-galloaluminosilicate(ZSM-5 type)zeolite. Applied Catalysis A:General,2002,231:243-251.
    [68]王学勤,王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究Ⅰ.不同晶粒大小沸石的合成及HZSM-5沸石的积炭过程.石油学报(石油加工),1994,10(2):38-43.
    [69]王殿中,何鸣元.稀乙烯在ZSM-5沸石上转化为异丁烯与汽油的反应.石油炼制与化工,1995,26:59-63.
    [70]Guisnet M, Magnoux P. Coking and deactivation of zeolites influence of the pore structure. Applied Catalysis A:General review,1989,54:1-27.
    [71]侯焕娣.丙烷芳构化催化剂的研究:(硕士学位论文).北京:北京化工大学硕士论文,2005
    [72]曾昭槐编著.择形催化.北京:中国石化出版社,1994.
    [73]Rollmann L D, Walsh D E. Shape selectivity and carbon formation in zeolites. Jounal of Catalysis, 1979,56:139-140.
    [74]Dejaifve P, Auroux A, Gravelle P C, et al. Methanol conversion on acidic ZSM-5, offretite, and mordenite zeolites:A comparative study of the formation and stability of coke deposits. Journal of catalysis,1981,70:123-136.
    [75]Parker G D, Bibby D M. Effects of coke formation on the acidity of ZSM-5. Journal of Catalysis, 1986,99:486-491.
    [76]Camblora M A, Corma A, Martinez A, et al. Catalytic cracking of gasoil:Benefits in activity and selectivity of small Y zeolite crystallites stabilized by a higher silicon-to-aluminium ratio by synthesis. Applied Catalysis,1989,55(1):65-74.
    [77]Rajagopalank, Peters A W, Edwards G C. Influence of zeolite particle size on selectivity during fluid catalytic cracking. Applied Catalysis,1986,23(1):69-80.
    [78]滕加伟,赵国良,谢在库等.ZSM-5分子筛晶粒尺寸对C4烯烃催化裂解制丙烯的影响.催化学报,2004,25(8):602-606.
    [79]Sahoo S K, Viswanadhan N, Ray N, et al. Study on acidity, activity and coke deactivation of ZSM-5 during n-heptane aromatization. Applied Catalysis A:General,2001,205:1-10.
    [80]Scherzer J. Catalytic materials:relationship between structure and reactivity. ACS Symp. Ser. 248 Am. Chem. Soc.,Washington, D. C.,1984.
    [81]Lago R M, Haag W O, Mikowsky R J, et al. In Proceedings of the 7th International Zeolite Conference; Y. Murakami, et al., Eds.; Kondansha:Tokyo,1986.
    [82]Datka J, Marschmeyer S, Neubauer T, et al. Physicochemical and catalytic properties of HZSM-5 zeolites dealuminated by the treatment with steam.Journal of Physical Chemistry, 1996,100(34):14451-14456.
    [83]Biaglow A I, Gorte R J, Kokotailo G T, et al. A study of dealuminated Faujasites. Journal of Catalysis,1994,148(1):213-223.
    [84]Zholobenko V L, Kustov L M, Kazansky V B, et al. On the possible nature of sites responsible for the enhancement of cracking activity of HZSM-5 zeolites dealuminated under mild steaming conditions. Zeolites,1990,10(4):304-306.
    [85]解红娟,王军威,冯月兰等.水热处理Zn/HZSM-5催化剂对丙烷芳构化反应的影响.分子催化,2000,14(4):289-293.
    [86]Suzuki T, Okuhara T.Change in pore structure of MFI zeolite by treatment with NaOH acqueous solution. Microporous and Mesoporous Materials,2001,43:83-89.
    [87]Groen J C, Peffer L A A, Moulijn J A, et al.On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Microporous and Mesoporous Materials,2004,69:29-34.
    [88]刘中民,陈国权,王清遐等.分子筛催化剂的失活与积碳.催化学报,1994,12(5):14-17.
    [89]梁相程,王继锋,喻正南等.几种加氢裂化催化剂的失活与再生研究.石油化工高等学校学报,2002,15(4):9-33.
    [90]马萨古托夫等,石油加工和石油化学中催化剂再生.中国石化出版社,1992年第1版.
    [91]李宝根,朱瑞明,杨宝珍等.ZSM-5分子筛的热稳定性.石油炼制,1985,12:53-56.
    [92]杨刚,王妍,周丹红等.La/ZSM-5分子筛热稳定性及镧存在形态研究.物理化学学报,2004,20(1):60-64.
    [93]王岚,孟霜鹤,谭志诚等.纳米分子筛ZSM-5的热稳定性研究.催化学报,2001,22(5):491-493.
    [94]Zhang W, Han X, Liu X, et al.The stability of nanosized HZSM-5 zeolite:a high-resolution solid-state NMR study.Microporous and Mesoporous Materials,2001,50:13-23.
    [95]张艳侠.高硅铝比的纳米ZSM-5沸石分子筛的合成:硕士学位论文.大连:大连理工大学,2005.
    [96]吴指南,伍肇炯,葛旭丹等.C4烃类在H-ZSM-5分子筛催化剂上的芳构化.华东化工学院学报,1981,4:1-12.
    [97]程昌瑞,谭长瑜等.碳四烃的利用-在Ga-HZSM-5催化剂上转化为芳烃.石油与天然气化工,1994,23(1):8-11.
    [98]李宏洋,程志林,归建舟等.轻烃芳构化的系统研究(Ⅱ)-ZnNi/ZSM-5催化剂的再生工艺考察.石油化工高等学校学报,1999,12(3):11-15.
    [99]陈军,丁富新等.Zn/HZSM-5丙烷芳构化催化剂反应与再生过程的稳定性.清华大学学报,2000,40(10):36-39.
    [100]Yanmamura M, et al. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization.Zeolites,1994,14(8):643-649.
    [101]Serrano D P, Aguado J, Escola J M, et al. Influence of nanocrystalline HZSM-5 external surface on the catalytic cracking of polyolefins. Journal of Analytical and Applied Pyrolysis,2005,74:353-360.
    [102]Zhang W, Bao X, Guo X, et al. A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite.Catalysis Letter,1999,69(1-2):89-94.
    [103]Lin X, Fan Y, Liu Z, et al. A novel method for enhancing on-stream stability of fluid catalytic cracking (FCC) gasoline hydro-upgrading catalyst:Post-treatment of HZSM-5 zeolite by combined steaming and citric acid leaching. Catalysis Today,2007,125:185-191.
    [104]孙慧勇,王建国,胡津仙等.正十六烷在小晶粒FeZSM-5上的裂化.石油炼制与化工,2001,32(5):55-59.
    [105]Pu S B, Inui T. Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2,7-dimethylphthalene isomerization. Zeolites,1996,17(4):334-339.
    [106]张贺,李钢,王祥生等.不同晶粒大小HZSM-5载体对甲烷无氧芳构化反应的影响.分子催化,2003,17(1):70-74.
    [107]张建祥,关乃佳,李伟等Zn/ZSM-5分子筛晶粒大小和预处理条件对丙烷芳构化性能的影响.石油化工,2000(1):11-15.
    [108]Sugimoto M, Katsuno H, Takatsu K, et al. Correlation between the crystal size and catalytic properties of ZSM-5 zeolites.Zeolites,1987,7(6):503-507.
    [109]王基铭,袁晴棠主编.石油化工技术进展.北京:中国石化出版社,2002.
    [110]王岳,李凤艳,赵天波等.纳米ZSM-5分子筛的合成、表征及甲苯歧化催化性能.石油化工高等学校学报,2005,18(4):20-23.
    [111]郭洪臣.大连理工大学博士论文,1998.
    [112]孙琳,叶娜,王祥生等.晶粒度对ZSM-5沸石上C4液化气低温芳构化反应的影响.化学通报,2007,8:633-636.
    [113]郭洪臣,赵凌雁,叶娜等.一种碳四液化石油气芳构化的催化剂及其制备方法.CN200410050202.3,2005.
    [114]Camblor M A, Corma A, Valencia S. Microporous and Mesoporous Materials,1998,25:59-74.
    [115]Froment G F. Studies in Sruface Science and Catalysis, Vol.6, Catalyst Deactivation, Elsevier, Amsterdam,1980.
    [116]Lucas A D, Canizares P, Duran, Carrero A. Dealumination of HZSM-5 zeolites:Effect of steaming on acidity and aromatization activity. Applied Catalysis A: Genernal,1997,154(1-2):221-240.
    [117]Kumar S, Sinha A K, Hegde S G, et al. Influence of mild dealumination on physicochemical, acidic and catalytic properties of H-ZSM-5. Journal of Molecular Catalysis A:Chemistry, 2000,154(1-2):115-120.
    [118]Omegna A, Haouas M, Kogelbauer A, et al. Realumination of dealuminated HZSM-5 zeolites by acid treatment:a reexamination. Microporous and Mesoporous Materials, 2001,46(2-3):177-184.
    [119]Ding C H, Wang X S, Guo X W, et al. Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst. Catalysis Communication, 2007,9:487-493.
    [120]Masuda T, Fujikata Y, Mukai S R, et al. Changes in catalytic activity of MFI-type zeolites caused by dealumination in a steam atmosphere. Applied Catalysis A:Genernal,1998, 172(1):73-83.
    [121]Sendoda Y, Ono Y. Effect of the pretreatment temperature on the catalytic activity of ZSM-5 zeolites.Zeolites,1988,8(2):101-105.
    [122]Lukyanov B D, Gnep N S, Guisnet M R. Kinetic modeling of ethane and propene aromatization over HZSM-5 and GaHZSM-5. Industrial and Engineering Chemistry Research,1994, 33:223-234.
    [123]刘中民,陈国权,王清遐等.石油化工,1994,23(9):584-587.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.