纳米ZSM-5沸石上C_4液化气低温芳构化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油炼制和石油化工过程中副产大量富含丁烯的C_4液化气。长期以来液化气主要作为城市燃气使用,化工利用率低。将液化气进一步优化利用转化成高附加值产品不仅能带来经济效益而且具有重要的社会意义。C_4液化气低温芳构化,目的是将液化气中的烯烃转化成高辛烷值汽油组分,剩余的烷烃可作为蒸汽裂解原料用于生产乙烯、丙烯,或作为车用液化气,是一条非常有意义的液化气综合利用途径。
     纳米ZSM-5沸石因具有优异的芳构化、异构化、烷基化以及抗积炭性能,已应用在催化裂化汽油降烯烃的OTA工艺中。本文选取不同晶粒大小ZSM-5沸石制成催化剂,在相对低的反应温度下对比研究了其C_4液化气芳构化反应的性能。ZSM-5沸石的颗粒大小是影响催化剂性能的一个重要参数。与微米HZSM-5催化剂相比,纳米HZSM-5催化剂因其粒度小、孔道短、孔口多等优点,在C_4液化气芳构化反应中表现出较强的容炭能力和良好的芳构化性能。
     在此基础上考察了原料中微量杂质及反应条件对C_4液化气在纳米HZSM-5催化剂上芳构化性能的影响。原料中的二烯烃和碱性氮化物都能加速催化剂失活,其中碱性氮化物的失活作用比二烯烃大。反应过程中氢气的存在有利于抑制催化剂上积炭的形成,从而提高芳构化反应稳定性。反应温度、压力和进料重量空速都对催化剂性能有显著影响,最佳反应条件是450℃、2.0 MPa和WHSV_(LPG)=0.83h~(-1)。反应温度、反应压力和进料空速过高都导致催化剂积炭失活速度加快。
     在相对优化反应条件下,纳米HZSM-5催化剂连续运转1100h,丁烯转化率基本保持在99%左右,同时C_5~+液体产物中的芳烃含量保持在60%以上,表现出高稳定性和优异的芳构化性能。不同再生方法对三次再生纳米HZSM-5催化剂芳构化性能的影响不明显,表明纳米HZSM-5催化剂具有良好的烧炭再生性能。
C_4 liquefied petroleum(C_4 LPG) gas rich in butylenes is mainly by-produced from the petrolume refining and petrochemical industries. For a long time, the majority of C_4 LPG has been consumed as fuel and the utilization of it for chemical purpose is quite low. Optimization utilization of C_4 LPG for products with high additional value is not only an important way to improve economic benefit, but also has profound social significance. In this study, we focuse on the utilization of C_4 LPG to produce high octane number gasoline via the low-temperture aromatization of butylenes.After the complete conversion of butylenes,the residual alkanes can be used to produce propylene and ethylene by steaming cracking or used as fuel for motors.Nano-sized ZSM-5 zeolite has been applied in OTA process for FCC gasoline upgrade duo to its excellent performance for aromatization, isomerization , alkylation and stronge ability to resist coking. In this paper, the aromatization of the butylenes of C_4 LPG is comparatively studied with HZSM-5 catalysts with different crystal size under mild temperature. The crystal size of zeolite is an important factor that affects the properties of the catalyst. Results show that nano-sized HZSM-5 catalyst possesses high tolerance ability for coke and favorable aromatization performance due to its small size and shorter channel of micropore.On the basis, the effects of feeding impurities and reaction conditions on the aromatization of the butylenes of C_4 LPG over nano-sized HZSM-5 catalyst are investigated. Results show that, both diene and alkaline nitrogen-containing compounds all have negative influences on the aromatization stability of the catalyst under mild temperature. Comparatively, the negative influence of the alkaline nitrogen-containing compounds is much stronger than that of diene.The aromatization stability is obviously improved under the hydrogen ambience duo to coking prohibition during the reaction.Reaction temperature, pressure and WHSV_(LPG) also show significant influences on the performance of the catalyst. The optimum reaction conditions are centered around 450℃, 2.0 MPa and WHSV_(LPG)=0.83 h~(-1). High coking speed of the catalyst is seen when high temperature, pressure and WHSVlpg conditions are used.Under the optimum conditions of V (H_2) / V (LPG,liquid)= 260 ,WHSV = 0.83 h~(-1), pressure=3.0 MPa and temperature= 450 ℃, the catalytic performance of nano-sized
    HZSM-5 catalyst keeps stable at least within 1100 hour continuous operation. The percentage of aromatics (mainly C6~Cc>) in the product maintain 60.0 %.The conversion of butylenes is as high as 99%. The catalytic performance of nano-sized HZSM-5 catalyst can be kept after three times deactivation-regeneration.
引文
[1] 李亚军,华贲,李国庆.我国液化石油气资源的优化利用.石油炼制与工,2005,36(3):46-50
    [2] 李明辉.碳四烃的综合利用.石油化工,2003,32(9):808-814
    [3] 陆军.提高C4资源的利用价值.化工技术经济,2004,22(7):6-10
    [4] Johnson J A, Weiszmann J A , Hilder G K. In : Presented at NPRA annual meeting, San Autonio, 1984, 25-27
    [5] Doolan P C, Pujado P R. Make aromatics from LPG. Hydrocarbon Processing, 1989, 68 (9) : 72-76
    [6] 郝代军,刘丹禾.轻烃芳构化工业技术进展.天然气与石油,2001,19 (3):17-21
    [7] Chen N Y, Yan T Y. M2_forming-a process for aromatization of light hydrocarbons. Ind. Eng. Chem. Process Des. Dev. , 1986, 1: 150-155
    [8] Mank L, Minkkinen A, Shaddick J. Hydrocarbon Tech. Int. , 1992, 69
    [9] Nagamori Y, Kawase M. Converting light hydrocarbon containing olefins to aromatics(Alpha Process). Microporous and Mesoporous Materials, 1998, 21 (4-6) : 439-445
    [10] Harandi M N, Johnson D L, Kushnerick J D, et al. Light olefin upgrading to gasoline using the mobil olefins-to-gasoline(MOG) process. AICHE spring national meeting, 1991, 7-11
    [11] 郝代军,朱建华,王国良等.液化石油气制芳烃工艺技术的研究开发.化工进展,2005,24 (11):1287-1291
    [12] Csicsery S M. Dehyrocyclodimerization of butanes over supported platinum catalysts J. Carol. 1970, 2: 207-215
    [13] Kumar N, Lindfors L E. Synthesis, characterization and application of HMCM-22, Ga-MCM-22, and Zn-MCM-22 zeolite catalysts in the aromatization of n-butane. Applied Catalysis A: General, 1996, 147: 175-187
    [14] Kumar N, Byggningsbacka R, Korpi M, et al. Synthesis and characterization of Pd_MCM_22 and Pt_SAPO_11 catalysts for transformation of n-butane to aromatic hydrocarbons. Applied Catalysis A: General, 2002, 227: 97-103
    [15] 侯焕娣.丙烷芳构化催化剂的研究:(硕士学位论文).北京:北京化工大学硕士论文,2005
    [16] 舒玉瑛,马丁,徐龙伢等.不同环大小分子筛对钼基分子筛催化剂上甲烷无氧芳构化反应的影响.催化学报,2002,23(1):24-28
    [17] 宋月芹.液化中气烯烃芳构化制取高辛烷值汽油的研究:(博士学位论文).大连:中国科学院大连化学物理研究所,2005
    [18] 侯玉翠,王定珠,卢学栋.Cd-ZSM-5沸石催化剂的制备、表征和芳构化催化性能.石油化工,1993,22(7):431-436.
    [19] 王军威,张志新,王心葵.Mo/HZSM-5催化剂上丙烷的芳构化反应.催化学报,2000,21(2):123-137
    [20] Choudhary V R. , Devadas P. , Banerjee S, et al. Aromatization of dilute ethylene over Ga-modified ZSM-5 type zeolite catalysts. Microporous and Mesoporous Materials. 2001, 47 (2-3) : 253-267
    [21] Choudhary V R, Kinage A K, Sivadinarayana C, et al. Pulse Reaction Studies on Variations of Initial Activity/Selectivity of O_2 and H_2 Pretreated Ga-Modified ZSM-5 Type Zeolite Catalysts in Propane Aromatization. Journal of Catalysis. 1996, 158 (1) : 23-33.
    [22] Robin J Nassh, Mark E Dry, Cyril T O'Connor. Aromatization of 1-Hexane and 1-Octene by Gallium /H-ZSM-5 Catalysts. Applied Catalysis A: Gneral, 1996, 134 (2) : 285-297
    [23] 舒玉瑛,田丙伦,马丁等.不同方法制备的Mo/HZSM-5催化剂上甲烷的芳构化反应.催化学报,2001,22 (2):109-112
    [24] 朱光中.用于烃类转化的某些改性沸石催化剂.石油化工,1993,22(1):61-66.
    [25] 尚崇礼,宋丽娟,朱万玲.轻烃在金属改性HZSM-5分子筛上的芳构化.石油化工,1991,20(7):445-449.
    [26] 蒋毅,梁娟,赵素琴.ZnHZSM-5芳构化催化剂积炭影响因素的研究.催化学报,1994,15(6):463-467
    [27] 戴跃玲,陈连璋.硅烷化改性[B]ZSM-5沸石表面酸性及催化性能的研究.抚顺石油学院学报,1994,14(3):2-7
    [28] 王红霞,谭大力,徐奕德等.硅烷化处理对Mo/HZSM-5催化剂上甲烷脱氢芳构化活性的影响.催化学报,2004,25(6):445-449
    [29] Sahoo S K, Viswanadham N, Ray N, et al. Study on acidity, activity and coke deactivation of ZSM-5 during n-heptane aromatization. Appl Catal, 2001, 205: 1-10
    [30] 解红娟,王军威,冯月兰等.水热处理Zn/HZSM-5催化剂对丙烷芳构化反应的影响.分子催化,2000.14(4):289-293
    [31] 张培青,王祥生,郭洪臣.水热处理对纳米HZSM-5沸石酸性质及其降低汽油烯烃性能的影响.催化学报,2003,24 (12):900-904
    [32] 朱向学,张士博,钱新华等.水蒸气处理对ZSM-5酸性及其催化丁烯裂解性能的影响.催化学报,2004,25 (7):571-576
    [33] Suzuki T, Okuhara T. Change in pore structure of MFI zeolite by treatment with NaOH acqueous solution. Micropor Mesopor Mater, 2001, 43: 83-89
    [34] Groen J C, Peffer L A A, Moulijn J A, et al. On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Micropor Mesopor Mater, 2004, 69: 29-34
    [35] Groen J C, Peffer L A A, Moulijn J A, et al. Mesoporesity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium. Colloids and Surfaces, A: 2004, 241: 53-58
    [36] Ogura M, Shinomiya S Y, Tateno J, et al. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl Catal, 2001, 219: 33-43
    [37] 吴指南.C4烃类在ZSM-5分子筛催化剂上的芳构化(Ⅰ).石油化工,1981,12 (3)
    [38] 王正宝博士论文.在Zn(Ga)ZSM-5双功能催化剂上乙烯芳构化—双功能的匹配与芳构化活性和选择性的关联:(博士学位论文).大连:中国科学院大连化学物理研究所,1993
    [39] Vedrine J C, Dejaifve P, Naccahe C, et al. Aromatizatics formation from methanol and light olefins conversions on H-ZSM-5 zeolite: mechanism and intermediate species. Stud Surf Sci Catal. , 1980, 7: 29-37
    [40] Akimoto M, Echigoya E, Okada M, et al. Dual functional catalyst in dehydroaromatization of isobutene to xylene. Proc. 6th Intern. Congr. Catal. 1976, 872-880
    [41] Isaguliants G V, Gitis K M, Kondratjev D A, et al. On the formation of hydrocarbon chains in the aromatization of aliphatic olefins and dienes over high-silica zeolites. Stud Surf Sci Catal, 1984, 18: 225-232
    [42] Ono Y, Kitagawa H, Sendoda Y. Transformation of butene into aromatic hydrocarbons over ZSM-5 zeolites. J. Chem. Soc. Faraday. Trans. , 1987, 83: 2913-2923
    [43] Buter, Stephen Allan (East Windsor, NJ). Selective Production of Para-xylene. US Patent 4007231, 1977
    [44] Chen N Y. Selective Production of Para-xylene. US Patent 4002697, 1977
    [45] 曾昭槐编著.择形催化.北京:中国石化出版社,1994
    [46] Chen N Y, Garwood W E. Some catalytic properties of ZSM-5, a new shape selective zeolite. J Catal, 1978, 52 (2) : 453-458
    [47] Weitkamp J, Jacobs P A, Martens J A. Isomerization and hydrocracking of C_9 through C_(16) n-alkanes on platinum/HZSM-5 zeolite. Appl Catal, 1983, 8 (1) : 123-141
    [48] 白妮,王水利,孟桂花.纳米ZSM-5沸石合成方法及应用.纳米科技,2005,2(6):53-56
    [49] 古阶祥.沸石.北京:中国建筑工业出版社,1980.
    [50] 王基铭,袁晴棠主编.石油化工技术进展.北京:中国石化出版社,2002
    [51] 颜桂炀,王绪绪,付贤智.ZSM_5分子筛光催化活性的初步研究.高等化学学报,2004,25(5):942-944
    [52] 薛英,吴宇,万家义.M-ZSM-5分子筛的结构及催化性能研究进展.绵阳师范学院学报,2005,24(5):1-4
    [53] 姚建峰,张利雄,徐南平.沸石分子筛及其复合材料的新型合成方法进展.石油化工,2003,32(12),1082-1086
    [54] 张永春,薛全民,谭大志.钴离子改性的ZSM-5对低浓度NO吸附性能研究.大连理工大学学报,2005,45(4):487-491
    [55] Vedrine J C. In "Mass transport in Heterogeneous" , Beniere F and Cotlow C R. A (Eds.), Plenum Pub Corp, New York, 1983, 505-536
    [56]Ducarme V, Vedrine J C. ZSM-5 and ZSM-11 zeolites: Influence of morphological and chemical parameters on catalytic selectivity and deactivation. Appl Catal, 1985, 17(1): 175-184
    [57]Rajagopalan K, Peters A W and Edwards G C. Influence of zeolite particle size on selectivity during fluid catalytic cracking. Appl Catal, 1986, 23(1):69-80 [58]Wojciechowski B W and Corma A. Catalytic Cracking:Catalysts, Chemistry and Kinetics, Marcel Dekker, New York, 1986
    [59]Herrmann C, Haas J and Fetting F. Effect of the crystal size on the activity of ZSM-5 catalysts in various reactions. Appl Catal, 1987, 35(2):299-310
    [60]Voogd P and Van Bekkum H. Limitation of n-hexane and 3-methylpentane conversion over zeolite ZSM-5 by intracrystalline diffusion. Appl Catal, 1990, 59 (2):311-331 [6l]Volter J, Caro J, Bulow M, Fahlke B, Karge J and Hunger M. Diffusion, cracking and coking on HZSM-5 of various morphologies. Appl Catal, 1988, 42(1-2):15-27
    [62]Sugimoto M, Katsuno H, Takatsu K and Kawata N. Correlation between the crystal size and catalytic properties of ZSM-5 zeolites. Zeolites, 1987, 7(6) : 503-507 [63]Behrsing T, Jaeger H and Sanders J V. Coke deposits on HZSM-5 zeolite. Appl Catal, 1989, 54(3):289-302
    [64]Santacesaria E, Dzserio M and Ciambelli P. Catalytic alkylation of phenol with methanol: Factors influencing activities and selectivities. II. Effect of intracrystalline diffusion and shape selectivity on HZSM-5 zeolite.Appl Catal, 1990, 64(1-2):101-118 [65]0'connor C T, Schwarz S and Kojima M. Catalysis and Adsorption by Zeolites, 1991, 491 [66]Miller S J. Oligomerization of gaseous olefins.US Patent 4423269, 1983 [67]Yanmamura M, et al. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization. Zeolites, 1994, 14(8):643-649 [68]Hagg W O, Lago R M and Weisz P B. Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite. Faraday Discuss Chem Soc, 1982, 72:317-330 [69]Ratnesamy P, Babu G P, Chandwadkar A J and Kulkarni S B. Influence of crystal size of HZSM-5 on activity and shape selectivity in xylene isomerization. Zeolites,1986,6(2): 98-100
    [70]Breck D W. Zeolite Molecular Sieves, Wiley, New York, 1974,304
    [7l]Debras G, Gourgue A, Napy J B and Declippeleir G. Physico-chemical charactization of pentasil type materials. Zeolites,1985,5(6):369-376
    [72]Ballmoos R V and Meier W M. Zoned aluminum distribution in synthetic zeolites ZSM-5. Nature (London), 1981, 289 (5800):782-783
    [73]Ballmoos R V, Gubser R and Meier W M. Three-dimensional mapping of the zoned aluminum distribution in ZSM-5. In: 6th IZC, 1984, 803-811
    [74] Chon H. Shape-selectivity of ZSM-5 and ZSM-8 type zeolites catalysts. In: 8th int conger catal. 1984, 4: 555-564
    [75] Wei J. A mathematical theory of enhanced para-xylene selectivity in molecular sieve catalysts. J Catal, 1982, 76 (2) : 433-439
    [76] Theodore D and Wei J. Diffusion and reaction in blocked and high occupancy zeolite catalysts. J Catal, 1984, 83 (1) : 205-224
    [77] Chen N Y, Kaeding W W and Dwyer F G. Para-directed aromatic reaction over shape-selective molecular sieve zeolite catalysts. J Am Chem Soc, 1979, 101 (22) : 6783-6784
    [78] Dejaifive P, Auroux A, Gravelle P C and Vedrine J C. Methanol conversion on acidic ZSM-5, offretite, and mordenite: A comparative study of the formation and stability of deposits. J Catal, 1981, 70 (1) : 123-136
    [79] Kaeding W W, Chu C, Young L B and Butter S H. Shape-selective reaction with zeolite catalysts. J Catal, 1981, 69 (2) : 392-398
    [80] Caesar P D and Morrison K A. Process for manufacturing ethylene. US Patent 4083 889, 1978
    [81] Zhang W, Bao X, Guo X, et al. A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite. Catal Lett, 1999, 69 (1-2) : 89-94
    [82] 王学勤.王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究Ⅰ.不同晶粒大小沸石的合成及HZSM-5沸石的积炭过程.石油学报(石油加工),1994,10(2):38-43
    [83] Pu S B, Inui T. Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2,7-dimethylphthalene isomerization. Zeolites, 1996, 17 (4) : 334-339
    [84] Zhang Weiping, Han Xiuwen, Liu Xiumei. et al. The stability of nanosized HZSM-5 zeolite: a high-resolution solid-state NMR study. Microporous and Mesoporous Materials, 2001, 50: 13-23
    [85] 王岚,孟霜鹤,谭志诚等.纳米分子筛ZSM-5的热稳定性研究.催化学报,2001,22 (5):491-493
    [86] 郭洪臣.大连理工大学博士论文,1998
    [87] 王岳,李凤艳,赵天波等.纳米ZSM-5分子筛的合成、表征及甲苯歧化催化性能.石油化工高等学校学报,2005,18 (4):20-23
    [88] 张培青,徐金光,王祥生等.纳米HZSM-5催化剂催化C8直链烃转化的性能.催化学报,2005,26(3):216-222
    [89] 张培青,王祥生,郭洪臣等.改性纳米ZSM-5催化剂脱除汽油中烯烃的性能.催化学报,2003,24(8):585-589
    [90] Tauster S T, Vaughan David E W, Steger J. Zeolite Catalyst and preparation thereof, US Patent, 4552856, 1985
    [91] Isaguliants G V, Gitis K M, Kondratjev D A, et al. On the formation of hydrocarbon chains in the aromatization of aliphatic olefins and dienes over high-silica zeolites. Stud Surf Sci Catal, 1984, 18: 225-232
    [92] Guisnet M, Gnep N S. Mechanism of short-chain alkane transformation over protonic zeolites. Alkylation, disporportionation and aromatization. Applied Catalysis A: General,1996, 146: 33-64
    [93] Bartholomew C H. Mechanisms of catalyst deactivation. Applied Catalysis A: General, 2001, 212 (1-2) : 17-60
    [94] 王桂茹主编.催化剂与催化作用.大连:大连理工大学出版社,2004
    [95] 刘丹禾,郝代军,王龙延等.加氢焦化汽油芳构化改质提高辛烷值的研究.石油炼制与化工,1999,30(4):21-24
    [96] Lukyanov B D, Gnep N S, Guisnet M R. Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5. Ind. Eng. Chem. Res. , 1994, 33: 223-234
    [97] 钟莉,王亚明.分子筛催化剂的再生.工业催化,2005,13 (2):7-11
    [98] Hughes R. Deactivation of Catalysts. New York: Academic Press, 1984
    [99] Mobil Oil Corporation (NY). Catalyst pretreatment for re-generated noble metal on zeolite catalyst. US: 4752595, 1988-06-21.
    [100] 韩新竹,达建文,周忠国等.非临氢降凝ZSM-5分子筛催化剂的失活原因探讨.石油与天然气化工,2006,34 (4):229-233
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.