华南地区晚埃迪卡拉纪—早寒武世海水分层的有机碳同位素证据
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
埃迪卡拉纪记录了地球历史上最显著的无机碳同位素负异常,其变化幅度从≥+5‰降到≤-12‰。这种巨大的碳同位素波动很显然代表了异常的埃迪卡拉纪海洋地球化学环境。传统上认为碳同位素负异常可以作为埃迪卡拉纪地层对比的有利工具,尤其是对于这些缺乏生物地层控制和精确同位素定年的地区。但是全球埃迪卡拉纪地层已有的同位素数据资料表明:碳同位素异常不仅在数量上而且在变化幅度上都存在着显著的变化(Jiang et al., 2007, 2008)。例如,在华南和印度北部地区Marinoan冰期盖帽碳酸岩之上至少发现了两个δ~(13)C_(carb)负异常(Jiang et al., 2002; Kaufman et al., 2006; Zhu et al., 2007; Jiang et al., 2007);在美国西部加利福尼亚地区Johnnie组和Stirling石英岩中也曾报道过两个δ~(13)C_(carb)同位素负异常(Corsetti and Kaufman, 2003; Kaufman et al., 2007),但它们的时限与华南及印度有明显不同;纳米比亚北部和南部的埃迪卡拉纪地层分别记录了一个变化幅度较小的δ~(13)C_(carb)异常,但两者之间的对比关系以及不整合面所造成的地层缺失仍待厘定(Saylor et al., 1998; Halverson et al., 2005);与上述地层不同的是,在阿曼的埃迪卡拉系中仅发现了一个变化幅度达17‰的δ~(13)C_(carb)负异常,且这个负异常所代表的时间可能长达12~50 Ma(Fike et al., 2006; Le Guerroue et al. 2006; Bowring et al., 2007);在澳大利亚南部也发现了一个与阿曼变化幅度相似的δ~(13)C_(carb)异常,但其持续时间还不能确定(Calver, 2000)。造成这种差异的很大一部分原因可能是目前对于碳同位素异常的原因目前还存在着很大的争论。现有的几种模型如:“雪球地球”假说(Hoffman et al., 1998; Hoffman and Schrag, 2002),甲烷渗漏(Kennedy et al., 2001; Jiang et al., 2003a),海水翻转(Kaufman et al., 1991; Grotzinger and Knoll, 1995; Knoll et al., 1996)及“plumeworld”(Shields, 2005)都是针对盖帽碳酸盐中的碳同位素异常提出来的,它们对于解释盖帽碳酸盐之上发现的碳同位素异常在理论上均存在着困难。最近有人提出在埃迪卡拉纪深海中存在一个巨大的有机碳溶解库(DOC),这个有机碳溶解库(DOC)可能相当于现代海洋的10-100倍(Rothman et al., 2003; Fike et al., 2006)。当时的海洋处于分层状态,上部是有氧环境,而下部为缺氧环境,中间被一个氧化界面所分开,并且认为埃迪卡拉纪大多数无机碳同位素异常均与这个有机碳溶解库(DOC)的氧化有关。尽管其中详细的氧化过程还不是很清楚,但是这个模型却得到两方面证据的支持:1)在阿曼和华南地区的埃迪卡拉纪地层中先后发现了有机碳和无机碳同位素的不协调变化(Fike et al., 2006; Mcfadden et al. 2008);2)华南埃迪卡拉纪陡山沱盆地不同沉积环境中存在着巨大的无机碳同位素梯度(Jiang et al., 2007;Wang and Shi, 2009)。如果这个推测巨大的有机碳溶解库(DOC)确实存在的话,那么一个很关键的问题是,什么时候它才最终消失的?一种观点认为其结束的时间大概在551 Ma左右,这种解释的主要依据是有机碳和无机碳同位素在陡山沱顶部和Shuram末期逐渐趋于一致变化的趋势(Fike et al., 2006; Mcfadden et al., 2008),然而其最大的局限在于同位素数据的不完整性。最近的研究发现,在华南地区的早寒武世的某些剖面,有机碳和无机碳同位素依然呈不协调的变化关系(Guo et al., 2005),其它的一些地球化学数据如Fe,Mo和S同位素的研究也表明早寒武世的海洋也处于强烈的分层状态(Goldberg et al., 2005, 2007; Lehmann et al., 2007; Canfield et al., 2007; Wille et al., 2008)。究竟这种特点是继承于早埃迪卡拉纪还是寒武纪重新形成的?要回答这一问题就需要对晚埃迪卡拉纪(551 Ma之后)的碳同位素做详细的研究,而这一块正是目前研究所比较缺乏的。
     华南地区是世界上埃迪卡拉纪地层剖面保存最好的地区之一,它保存了台地相至盆地相区一系列连续的剖面,是解决埃迪卡拉纪许多重大科学问题的理想地区之一。过去华南地区埃迪卡拉纪碳同位素化学地层曾做过大量的工作,但是这些研究存在着以下三个方面的问题:1)过去的研究多强调碳同位素时间上的变化,而对空间上的变化研究相对较少;2)研究的时限多集中在陡山沱时期,灯影期研究很少,而这也是认为DOC是在551 Ma消失的重要原因之一;3)有机碳同位素的研究相对比较缺乏。最近的研究恰恰表明有机碳和无机碳同位素的变化关系可能是解决碳同位素异常及海洋环境变化的关键(Fike et al., 2006; Mcfadden et al., 2008; Ader et al., 2009)。为了验证DOC模型的合理性及海洋分层的持续时间,本文选择了华南地区两条保存于不同沉积环境的晚埃迪卡拉-早寒武剖面进行了高分辨率的有机碳及无机碳同位素分析。一条是九龙湾-计家坡剖面,位于湖北省西部扬子三峡地区。剖面的主体部分为灯影组,厚度约340 m,总体上为一套厚层的碳酸盐岩沉积,代表了明显的浅水沉积环境。从下向上依次可以分为蛤蟆井段,石板滩段和白马沱段。其中蛤蟆井段和白马沱段以厚层状、浅灰色白云岩、粉砂质白云岩为主,沉积水深相对较浅;而石板滩段为深灰色、纹层状泥晶灰岩为主,富含沥青质,沉积环境相对较深。灯影组下伏地层为陡山沱组四段富含有机质的黑色泥岩沉积,其上被早寒武世岩家河组硅质白云岩,泥质白云岩和泥灰岩所覆盖。另一条是龙鼻嘴剖面,位于湖南省西部吉首地区。剖面总厚度从陡山沱顶部到早寒武世牛蹄塘组下部约50 m,主要沉积是一套黑色硅质岩、黑色泥岩和硅质泥岩的沉积组合,见大量的黄铁矿,为典型的深水缺氧环境沉积。
     同位素分析结果显示,在浅水台地相剖面(图1),δ~(13)C_(carb)在整个灯影期均为正值,其波动范围在0‰和+6‰之间。可以识别出三个明显的变化阶段,在下部的蛤蟆井段,δ~(13)C_(carb)数值相对比较分散,但均落在0‰和+3‰之间,很少超过+4‰;而在中部的石板滩段,δ~(13)C_(carb)值总体上有个明显上升,多数数值在+4‰和+5‰之间变化;到了白马沱段,δ~(13)C_(carb)又小幅回落到+2‰左右并且向上保持相对比较稳定。δ~(13)C_(org)的变化趋势正好与δ~(13)C_(carb)相反,在下部的蛤蟆井段及上部的白马沱段,δ~(13)C_(org)值相对较大,其变化范围在-24‰和-27‰之间,平均值约-25‰;而在中部的石板滩段,其值相对较小,平均值在-28‰左右。总体上δ~(13)C_(org)与δ~(13)C_(carb)呈不协调的变化。值得注意的是在台地相剖面上同时发现了两次重大的有机碳和无机碳同位素负异常,变化幅度均超过了8‰,其分别位于陡山沱组与灯影组界线之交以及前寒武纪/寒武纪界线附近,其中陡山沱灯影之家的两次同位素异常和前寒武寒武界线附近的无机碳同位素负异常在以前都有广泛的报道,而前寒武/寒武界线附近的有机碳异常是首次发现。从变化特点来看,无机碳同位素的异常变化相对比较缓和,往往持续了一段相对较长的时间,而有机碳同位素的变化比较突然,似乎代表了瞬时事件。在盆地相剖面(图2),由于其沉积组合以黑色硅质岩和黑色泥岩为主,很难用来做无机碳同位素的分析,因此,我们只作了有机碳同位素的测试。在整个剖面上,δ~(13)C_(org)都相对比较稳定,大部分数据均落在-32‰至-35‰这个区间,与台地相比较一个很重要的特点是并没有发现明显的δ~(13)C_(org)负异常。在与灯影组相当的留茶坡组,δ~(13)C_(org)的平均值在-34‰左右,这与以前相邻地区研究的结果十分相似,而在台地相区,同时期的δ~(13)C_(org)平均值约为-27‰,二者存在着高达7‰的δ~(13)C_(org)差异(图3)。
     以上几个显著的特点在以前的研究中很少报道。如果有机碳和无机碳的不协调变化确实反映了海洋中巨大有机碳溶解库(DOC)的氧化,那么这个推测的巨大有机碳溶解库(DOC)并没有如以前报道的在551 Ma左右被完全消耗掉,它可能持续了整个埃迪卡拉纪,区域上甚至持续了更长的时间,早寒武世的海洋分层很可能是继承了埃迪卡拉纪的特点。对于前寒武纪/寒武纪附近的有机碳和无机碳的变化,我们给出了如下解释(图4):(A)在埃迪卡拉纪末期,由于大量的有机质埋藏和高的生物生产力导致了重的δ~(13)C值。海洋环境继承了早期埃迪卡拉纪海水分层的特点;(B)海平面上升把大量的贫~(13)C的海水带到相对浅水地区,导致δ~(13)C_(carb)开始向负向变化以及不稳定的δ~(13)C_(org)值(CN1a);(C)全球变暖及高生物生产力造成了大量的氧气消耗和持续的缺氧状态,有机质通过硫酸盐还原(SO_2~(4-) +2CH_2O→2HCO_3- +H_2S)导致δ~(13)C_(carb)进一步向负向漂移(CN1b),而光和作用对重碳酸盐的吸收(2HCO-3 +Ca2+→CaCO3+CO2+H2O)将必然降低有机碳和无机碳同位素的分异以及相对稳定的δ~(13)C_(org)值;(D)持续的缺氧环境导致磷的释放和营养物质堆积,进一步促进生物生产力和对氧气的需要,硫酸盐还原造成硫化物的大量堆积(Kump et al., 2005; Meyer and Kump, 2008,使得透光带也处于缺氧状态,从而导致非常负的δ~(13)C_(org)(CN1c)。灯影期巨大的δ~(13)C_(org)梯度很可能反应了在氧化还原界面之下缺氧环境中有强烈的化能自养生物的活动,因为化能自养生物过程产生的有机质往往会比初始生产者的光和作用产生的有机质贫~(13)C,最高可达15‰。
     本文在前人对华南埃迪卡拉纪碳同位素研究的基础上,结合自己的研究成果,系统总结了碳同位素(包括有机碳和无机碳)在埃迪卡拉纪的变化,在浅水台地相区,目前华南共发现了四次δ~(13)C_(carb)负异常和2次δ~(13)C_(org)负异常,这些异常(盖帽除外)均与DOC库有很大的关系;而在盆地相区,研究的分辨率很低,现有的结果发现无机碳同位素在陡山沱组中部有一个很大的跳跃,有机碳整体上比较稳定。另外,华南埃迪卡拉纪保存了该时期最丰富的化石,大部分化石都是来自浅水台地剖面,本文对台地相无机碳同位素的变化与生物的演化关系作了详细的探讨,进一步发现该时期重要生物类型与生态变化的出现几乎总是在碳同位素负异常之后(图5),从而提出他们可能代表了两种截然不同的环境条件:前者代表有氧环境而后者代表缺氧环境。同时,重要的生物类型出现之前往往伴随有大量黄铁矿的析出,首次提出硫化环境的消除可能是驱动生物演化的一个重要环境因素。
The Ediacaran period is characterized by the extremely negative carbon isotope anomalies with magnitude from≥+5‰down to≤-12‰which have been documented almost all over the world. It is traditionally argued that the carbon isotope records can be used as a useful tool for global correlation of Ediacaran strata, particularly for those sections lacking age-diagnostic biostratigraphic markers and/or precise radiometric age determinations. However, published Ediacaranδ~(13)C_(carb) curves from different continents show major inconsistencies not only in age but also in number and magnitude, this is partially because the origin of these anomalies remains largely controversial. South China is one of the most well-preserved location for the Ediacaran succession, it contains relatively conformable carbonate/shale sections along a platform-to-basin transect and can sever as an ideal place to solve a series key questions in this period. During the past two decades, numerous studies have been done on the Ediacaran carbon isotope chemostratigraphy in South China, however, most of the previous researches only emphasize the carbon isotope temporal variation but ignored the spatial variation, and put much energy on the Doushantuo period but overlook the late Ediacaran. Moreover, there is a generally lack of paired carbonate and organic carbon isotope research in South China. Here we present high-resolution carbon isotope records from the late Ediacaran to the early Cambrian in two different sedimentary environments. Our results show that: 1) theδ~(13)C_(org) profile from the platform section overall displays an obvious decoupling relationship with that ofδ~(13)C_(carb); 2) two negativeδ~(13)C_(org) excursions associated with two negativeδ~(13)C_(carb) anomalies are recognized at the uppermost Doushantuo Formation and Precambrian/Cambrian(P(?)/C) boundary respectively in the platform section, during which theδ~(13)C_(org) excursion at P(?)/C boundary was rarely reported; and 3) an up to 7‰δ~(13)C_(org) gradient exists between shallow water platform and deep water basin during the Dengying period. These three characters were barely reported in the previous studies. If the decoupling ofδ~(13)C_(carb) andδ~(13)C_(org) did result from the remineralization of a large DOC reservoir just as suggested, then the DOC reservoir may not have been completely consumed at 551 Ma, it may last to at least early Cambrian, or even longer. We argue that the carbon isotope excursions of both carbonate and organic carbon at P/C boundary were caused by the sustained anoxic deep ocean formed by the ocean stratification. Theδ~(13)C_(org) gradient in the Dengying period indicate perhaps strong chemoautotrophic recycling of organic carbon in anoxic/euxinic conditions below the chemocline because chemoautotrophic organisms including sulfur oxidizing bacteria use recycled carbon during carbon fixation and their biomass is up to 15‰depleted in ~(13)C relative to primary photosynthate.
引文
Ader M,Macouin M,Trindade R I F,et al. A multilayered water column in the Ediacaran Yangtze platform? Insights from carbonate and organic matter paired delta C-13. Earth and Planetary Science Letters, 2009, 288: 213-227.
    Amthor J E,Grotzinger J P,Schroder S,et al. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 2003, 31: 431-434.
    Anbar A D,Knoll A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 2002, 297: 1137-1142.
    Barfod G H,Albarede F,Knoll A H,et al. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth and Planetary Science Letters, 2002, 201: 203-212.
    Bartley J K,Pope M,Knoll A H,et al. A Vendian-Cambrian boundary succession from the Northwestern margin of the Siberian Platform: stratigraphy, palaeontology, chemostratigraphy and correlation. Geological Magazine, 1998, 135: 473-494.
    Bekker A,Holland H D,Wang P L,et al. Dating the rise of atmospheric oxygen. Geochimica et Cosmochimica Acta, 2004, 68: A780-A780.
    Berner R A,Canfield D E. A new model for atmospheric oxygen over Phanerozoic time. American Journal of Science, 1989, 289: 333-361.
    Berner R A. Atmospheric oxygen over Phanerozoic time. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 10955-10957.
    Berner R A. The rise of trees and their effects on Paleozoic atmospheric CO2 and O-2. Comptes Rendus Geoscience, 2003, 335: 1173-1177.
    Bowring S A, Erwin D H. A new look at evolutionary rates in deep time;uniting paleontology and high-precision geochronology. GSA Today, 1998, 89: 1–8.
    Bowring S A , Grotzinger J P , Condon D J,et al. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science, 2007, 307: 1097-1145.
    Brasier M D,Lindsay J F. A billion years of environmental stability and the emergence of eukaryotes: New data from Northern Australia. Geology, 1998, 26: 555-558.
    Brasier M D,Magaritz M,Corfield R,et al. The carbon-isotope and oxygen-isotope record of the Precambrian Cambrian boundary interval in China and Iran and their correlation. Geological Magazine, 1990, 127: 319-332.
    Bristow T F,Kennedy M J. Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology, 2008, 36: 863-866.
    Butler I B,Rickard D. Framboidal pyrite formation via the oxidation of iron (II) monosulfide byhydrogen sulphide. Geochimica et Cosmochimica Acta, 2000, 64: 2665-2672.
    Butterfield N J. Paleobiology of the late Mesoproterozoic (ca. 1200 Ma) Hunting Formation, Somerset Island, Arctic Canada. Precambrian Research, 2001, 111: 235-256.
    Calver C R. Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambrian Research, 2000, 100: 121-150.
    Canfield D E , Poulton S W , Knoll A H,et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 2008, 321: 949-952.
    Canfield D E,Poulton S W,Narbonne G M. Late Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 2007, 315: 92-95.
    Canfield D E,Teske A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 1996, 382: 127-132.
    Canfield D E. A new model for Proterozoic ocean chemistry. Nature, 1998, 396: 450-453.
    Catling D C,Claire M W. How Earth's atmosphere evolved to an oxic state: A status report. Earth and Planetary Science Letters, 2005, 237: 1-20.
    Chen J Y,Bottjer D J,Oliveri P,et al. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science, 2004, 305: 218-222.
    Chen J Y,Oliveri P,Gao F,et al. Precambrian animal life: Probable developmental and adult Cnidarian forms from Southwest China. Developmental Biology, 2002, 248: 182-196.
    Chen P. Discovery of Lower Cambrian small shelly fossils from Jijiapo, Yichang, West Hubei and its significance. Professional Papers of Stratigraphy and Palaeontology, 1984,13:49–66.
    Chu X L,Zang Q R,Zhang T G,et al. Sulfur and carbon isotopic variations in Neoproterozoic sedimentary rocks from Southern China. Progress in Natural Science, 2003, 13: 875-880.
    Chu X L,Zhang T G,Zhang Q R,et al. Carbon isotopic variations of Proterozoic carbonates in Jixian, Tianjin, China. Science in China Series D-Earth Sciences, 2004, 47: 160-170.
    Compston W,Williams I S,Kirschvink J L ,et al. Zircon u-pb ages for the early Cambrian time-scale. Journal of the Geological Society, 1992, 149: 171-184.
    Condon D,Zhu M Y,Bowring S,et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308: 95-98.
    Conway N M, Kennicutt M C, Van Dover C L. Stable isotopes in the study of marine chemosynthetic-based food webs. In: Lajtha K, Michener R. (Eds.), Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, Oxford, 1994, pp. 158–186.
    Corsetti F A,Kaufman A J. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California. Geological Society of America, 2003, 115: 916-932.
    Dehler C M,Elrick M,Bloch J D,et al. High-resolution delta C-13 stratigraphy of the Chuar Group(ca. 770-742 Ma), Grand Canyon: Implications for mid-Neoproterozoic climate change. Geological Society of America Bulletin, 2005, 117: 32-45.
    Derry L A,Kaufman A J,Jacobsen S B. Sedimentary cycling and environmental-change in the late Proterozoic-evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta, 1992, 56: 1317-1329.
    Derry L A. Atmospheric science - Fungi, weathering, and the emergence of animals. Science, 2006, 311: 1386-1387.
    Des Marais D J,Strauss H,Summons R E,et al. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature, 1992, 359: 605-609.
    Deuser W G. 13C in Black Sea waters and implications for the origin of hydrogen sulfide. Science 1970,168: 1575–1577.
    Ding L F, Li Y, Chen H X. Discovery of Micrhystridium regulare from Sinian-Cambrian boundary strata in Yichang, Hubei, and its stratigraphic significance. Acta Palaeontologica Sinica, 1992, 9:303-309.
    Ding L F, Li Y, Hu X S, et al. Sinian Miaohe Biota. Beijing: Geological Publishing House, 2006. Donald R,Southam G. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochimica et Cosmochimica Acta, 1999, 63: 2019-2023.
    Dong L,Xiao S H,Shen B,et al. Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu area (Tarim block, Northwestern China). Journal of Paleontology, 2009, 83: 30-44.
    Dong L,Xiao S,Shen B,et al. Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis. Journal of the Geological Society, 2008, 165: 367-378.
    Dzik J. Possible ctenophoran affinities of the Precambrian "sea-pen" Rangea. Journal of Morphology, 2002, 252: 315-334.
    Farquhar J,Wing B A,McKeegan K D,et al. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science, 2002, 298: 2369-2372.
    Fedonkin M A,Yochelson E L,Horodyski R J. Ancient metazoa. Research & Exploration, 1994, 10: 200-223.
    Fedonkin M A. Precambrian metazoans - the problems of preservation, systematics and evolution. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1985, 311: 27-45.
    Feng H Z,Ling H F,Jiang S Y,et al. Delta C-13(carb) and Ce-anom excursions in the post-glacial Neoproterozoic and Early Cambrian interval in Guizhou, South China. Progress in Natural Science, 2004, 14: 188-192.
    Fike D A,Grotzinger J P,Pratt L M,et al. Oxidation of the Ediacaran ocean. Nature, 2006, 444: 744-747.
    Fike D A,Grotzinger J P. A paired sulfate-pyrite delta S-34 approach to understanding the evolution of the Ediacaran-Cambrian sulfur cycle. Geochimica Et Cosmochimica Acta, 2008, 72: 2636-2648.
    Fike D A,Grotzinger J P. Aδ34SSO4 approach to reconstructing biogenic pyrite burial in carbonate-evaporite basins: An example from the Ara Group, Sultanate of Oman. Geology, 2010, 38: 371-374.
    Galimov E M,Kodina L A,Zhiltsova L I,et al. Organic carbon geochemistry in the North-western Black Sea-Danube River system. Estuarine Coastal and Shelf Science, 2002, 54: 631-641.
    Gibson G G,Teeter S A,Fedonkin M A. Ediacarian fossils from the Carolina slate belt, Stanly County, North-Carolina. Geology, 1984, 12: 387-390.
    Goldberg T,Poulton S W,Strauss H. Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution. Precambrian Research, 2005, 137: 223-241.
    Goldberg T,Strauss H,Guo Q J,et al. Reconstructing marine redox conditions for the early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254: 175-193.
    Grey K,Williams I R. Problematic bedding-plane markings from the middle Proterozoic Manganese Subgroup, Bangemall basin, Western Australia. Precambrian Research, 1990, 46: 307-327.
    Grotzinger J P,Bowring S A,Saylor B Z,et al. Biostratigraphic and geochronological constraints on early animal evolution. Science, 1995, 270: 598-604.
    Guo Q J,Liu C Q,Strauss H,et al. Isotopic evolution of the terminal Neoproterozoic and early Cambrian carbon cycle on the northern Yangtze Platform, South China. Progress in Natural Science, 2003, 13: 942-945.
    Guo Q J,Strauss H,Liu C Q,et al. Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: Evidence from the Yangtze platform, South China. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254: 140-157.
    Guo Q J,Strauss H,Liu C Q,et al. Carbon and oxygen isotopic composition of Lower to Middle Cambrian sediments at Taijiang, Guizhou Province, China. Geological Magazine, 2005, 142: 723-733.
    Halverson G P,Dudas F O,Maloof A C,et al. Evolution of the Sr-87/Sr-86 composition of Neoproterozoic seawater. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 256: 103-129.
    Halverson G P,Hoffman P F,Schrag D P,et al. Toward a Neoproterozoic composite carbon isotope record. Geological Society of America Bulletin, 2005, 117: 1181-1207.
    Hannah J L,Bekker A,Stein H J,et al. Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth andPlanetary Science Letters, 2004, 225: 43-52.
    Harris D,Horwath W R,van Kessel C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Science Society of America Journal, 2001, 65: 1853-1856.
    Hayes J M,Strauss H,Kaufman A J. The abundance of C-13 in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology, 1999, 161: 103-125.
    Hoffman P F,Kaufman A J,Halverson G P,et al. A Neoproterozoic snowball earth. Science, 1998, 281: 1342-1346.
    Hoffman P F,Schrag D P. The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 2002, 14: 129-155.
    Holland H D. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B-Biological Sciences, 2006, 361: 903-915.
    Hollander D J,Smith M A. Microbially mediated carbon cycling as a control on the delta C-13 of sedimentary carbon in eutrophic Lake Mendota (USA): New models for interpreting isotopic excursions in the sedimentary record. Geochimica et Cosmochimica Acta, 2001, 65: 4321-4337.
    Horodyski R J. Problematic bedding-plane markings from the middle Proterozoic appekunny argillite, belt Supergroup, Northwestern Montana. Journal of Paleontology, 1982, 56: 882-889.
    Hua H,Chen Z,Yuan X L,et al. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology, 2005, 33: 277-280.
    Huang M H,Buick I. High delta C-13 carbonates from the Songpan-Garze orogenic belt: Implications for correlation of neoproterozoic carbon isotope anomalies across the Yangtze platform, China. Gondwana Research, 2002, 5: 217-226.
    Hurtgen M T,Arthur M A,Halverson G P. Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology, 2005, 33: 41-44.
    Ishikawa T,Ueno Y,Komiya T,et al. Carbon isotope chemostratigraphy of a Precambrian/ Cambrian boundary section in the Three Gorge area, South China: Prominent global-scale isotope excursions just before the Cambrian Explosion. Gondwana Research, 2008, 14: 193-208.
    Jacobsen S B,Kaufman A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 1999, 161: 37-57.
    James N P,Narbonne G M,Kyser T K. Late Neoproterozoic cap carbonates: Mackenzie Mountains, Northwestern Canada: precipitation and global glacial meltdown. Canadian Journal of Earth Sciences, 2001, 38: 1229-1262.
    Javaux E J,Knoll A H,Walter M R. TEM evidence for eukaryotic diversity in mid-Proterozoicoceans. Geobiology, 2004, 2: 121-132.
    Jenkins R J F. The enigmatic Ediacaran (late Precambrian) genus rangea and related forms. Paleobiology, 1985, 11: 336-355.
    Jiang G Q,Kaufman A J,Christie-Blick N,et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean delta C-13 gradient. Earth and Planetary Science Letters, 2007, 261: 303-320.
    Jiang G Q,Kennedy M J,Christie-Blick N,et al. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in south China. Journal of Sedimentary Research, 2006, 76: 978-995.
    Jiang G Q,Shi X Y,Zhang S H. Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates. Chinese Science Bulletin, 2006, 51: 1152-1173.
    Jiang G Q,Sohl L E,Christie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (South China): Paleogeographic implications. Geology, 2003, 31: 917-920.
    Jiang G Q,Zhang S H,Shi X Y,et al. Chemocline instability and isotope variations of the Ediacaran Doushantuo basin in South China. Science in China Series D-Earth Sciences, 2008, 51: 1560-1569.
    Jiang G Q,Christie-Blick N,Kaufman A J,et al. Sequence Stratigraphy of the Neoproterozoic Infra Krol Formation and Krol Group, Lesser Himalaya, India. Journal of Sedimentary Research, 2002, 72: 524-542.
    Jiang G Q,Kennedy M J,Christie-Blick N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 2003, 426: 822-826.
    Kah L C,Lyons T W,Frank T D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 2004, 431: 834-838.
    Kampschulte A,Strauss H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology, 2004, 204: 255-286.
    Kasting J F. Palaeoclimatology - Archaean atmosphere and climate. Nature, 2004, 432: Kaufman A J,Corsetti F A,Varni M A. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA. Chemical Geology, 2007, 237: 47-63.
    Kaufman A J,Hayes J M,Knoll A H,et al. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. Precambrian Research, 1991, 49: 301-327.
    Kaufman A J,Jacobsen S B,Knoll A H. The Vendian record of sr and c-isotopic variations in seawater - implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 1993, 120: 409-430.
    Kaufman A J,Jiang G Q,Christie-Blick N,et al. Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of Northern India. Precambrian Research, 2006, 147: 156-185.
    Kaufman A J,Knoll A H. Neoproterozoic variations in the c-isotopic composition of seawater - stratigraphic and biogeochemical implications. Precambrian Research, 1995, 73: 27-49.
    Kennedy M J,Christie-Blick N,Sohl L E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Geology, 2001, 29: 443-446.
    Kennedy M J,Droser M,Mayer L M ,et al. Late Precambrian oxygenation; Inception of the clay mineral factory. Science, 2006, 311: 1446-1449.
    Kennedy M J,Mrofka D,von der Borch C. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature, 2008, 453: 642-645.
    Kimura H,Matsumoto R,Kakuwa Y,et al. The Vendian-Cambrian delta C-13 record, North Iran: Evidence for overturning of the ocean before the Cambrian Explosion. Earth and Planetary Science Letters, 1997, 147: E1-E7.
    Kirschvink J L,Raub T D. A methane fuse for the Cambrian explosion: carbon cycles and true polar wander. Comptes Rendus Geoscience, 2003, 335: 65-78.
    Knauth L P,Kennedy M J. The late Precambrian greening of the Earth. Nature, 2009, 460: 728-732.
    Knoll A H,Bambach R K,Canfield D E,et al. Comparative Earth History and Late Permian Mass Extinction. Science, 1996, 273: 452-457.
    Knoll A H,Hayes J M,Kaufman A J,et al. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature, 1986, 321: 832-838.
    Knoll A H,Walter M R,Narbonne G M,et al. A new period for the geologic time scale. Science, 2004, 305: 621-622.
    Knoll A H,Walter M R,Narbonne G M,et al. The Ediacaran Period: a new addition to the geologic time scale. Lethaia, 2006, 39: 13-30.
    Knoll A H. End of the Proterozoic Eon. Scientific American, 1991, 265: 64-&.
    Knoll A H. Learning to tell Neoproterozoic time. Precambrian Research, 2000, 100: 3-20.
    Knoll A H. The early evolution of eukaryotes - a geological perspective. Science, 1992, 256: 622-627.
    Kump L R,Pavlov A,Arthur M A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, 2005, 33: 397-400.
    Lambert I B,Walter M R,Zang W L,et al. Palaeoenvironment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature, 1987, 325: 140-142.
    Le Guerroue E,Allen P A,Cozzi A,et al. 50 Myr recovery from the largest negative delta C-13excursion in the Ediacaran ocean. Terra Nova, 2006, 18: 147-153.
    Lehmann B,Nagler T F,Holland H D,et al. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology, 2007, 35: 403-406.
    Li R,Chen J,Zhang S,et al. Spatial and temporal variations in carbon and sulfur isotopic compositions of Sinian sedimentary rocks in the Yangtze platform, South China. Precambrian Research, 1999a, 97: 59-75.
    Li Z X,Li X H,Kinny P D,et al. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth and Planetary Science Letters, 1999b, 173: 171-181.
    Ling H F,Feng H Z,Pan J Y,et al. Carbon isotope variation through the neoproterozoic Doushantuo and Dengying formations, South China: Implications for chemostratigraphy and paleoenvironmental change. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254: 158-174.
    Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian research, 2003, 122: 111-140
    Liu B J, Xu X S, Pan X N, et al. Paleocontinental sediments,crust Evolution and ore deposits of South China. Beijing: Science Press, 1993.
    Liu H Y. The Sinian System in China. Beijing: Science Press, 1991
    Liu P J,Yin C Y,Gao L Z,et al. New material of microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping area, Yichang, Hubei Province and its zircon SHRIMP U-Pb age. Chinese Science Bulletin, 2009, 54: 1058-1064.
    Logan G A , Hayes J M , Hieshima G B,et al. Terminal Proterozoic reorganization of biogeochemical cycles. Nature, 1995, 376: 53-56.
    Ma G, Lee H, Zhang Z. An investigation of the age limits of the Sinian System in south China. Yichang Institute of Geology and Mineral Resources,Bulletin, 1984, 8: 1–29.
    Macouin M,Besse J,Ader M,et al. Combined paleomagnetic and isotopic data from the Doushantuo carbonates, South China: implications for the "snowball Earth" hypothesis. Earth and Planetary Science Letters, 2004, 224: 387-398.
    Mathur S M. A new collection of fossils from the Precambrian Vindhyan supergroup of central India. Current Science, 1983, 52: 361-363.
    Mathur V K,Shanker R. 1st record of Ediacaran fossils from the Krol formation of Naini tal Syncline. Journal of the Geological Society of India, 1989, 34: 245-254.
    McFadden K A,Huang J,Chu X L,et al. Pulsed oxidation and bioloical evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 3197-3202.
    Meyer K M,Kump L R. Oceanic euxinia in Earth history: Causes and consequences. Annual Review of Earth and Planetary Sciences, 2008, 36: 251-288.
    Morse J W,Wang Q W. Pyrite formation under conditions approximating those in anoxic sediments .2. Influence of precursor iron minerals and organic matter. Marine Chemistry, 1997, 57: 187-193.
    Narbonne G M,Hofmann H J. Ediacaran biota of the Wernecke mountains, Yukon, Canada. Palaeontology, 1987, 30: 647-676.
    Peckmann J,Thiel V. Carbon cycling at ancient methane seeps. Chemical Geology, 2004, 205: 443-467.
    Qian Y, Li G X, Zhu M Y. The Meishucunian stage and its small shelly fossil sequence in China. Acta Palaeontologica Sinica, 2001,40: 54–62.
    Qiao X F. Southeast China region, Stratigraphy of China (3). Beijing: Geological Publishing House, 1989.
    Rickard D,Luther G W. Kinetics of pyrite formation by the H2S oxidation of iron(II) monosulfide in aqueous solutions between 25 and 125 degrees C: The mechanism. Geochimica et Cosmochimica Acta, 1997, 61: 135-147.
    Rothman D H,Hayes J M,Summons R E. Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 8124-8129.
    Rouxel O J,Bekker A,Edwards K J. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 2005, 307: 1088-1091.
    Ruby E G,Jannasch H W,Deuser W G. Fractionation of stable carbon isotopes during chemoautotrophic growth of sulfur-oxidizing bacteria. Applied and Environmental Microbiology, 1987, 53: 1940-1943.
    Saltzman M R. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology, 2005, 33: 573-576.
    Saylor B Z,Kaufman A J,Grotzinger J P,et al. A composite reference section for terminal Proterozoic strata of Southern Namibia. Journal of Sedimentary Research, 1998, 68: 1223-1235.
    Schr?der S,Grotzinger J P. Evidence for anoxia at the Ediacaran-Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman. Journal of the Geological Society, 2007, 164: 175-187.
    Schr?der S,Schreiber B C,Amthor J E,et al. Stratigraphy and environmental conditions of the terminal Neoproterozoic-Cambrian period in Oman: evidence from sulphur isotopes. Journal of the Geological Society, 2004, 161: 489-499.
    Scott C,Lyons T W,Bekker A,et al. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 2008, 452: 456-460.
    Seilacher A. Biomat-related lifestyles in the Precambrian. Palaios, 1999, 14: 86-93.
    Seilacher A. Vendozoa - organismic construction in the Proterozoic biosphere. Lethaia, 1989, 22:229-239.
    Shen B,Mao S H,Kaufman A J,et al. Stratification and mixing of a post-glacial Neoproterozoic ocean: Evidence from carbon and sulfur isotopes in a cap dolostone from northwest China. Earth and Planetary Science Letters, 2008, 265: 209-228.
    Shen Y A,Buick R,Canfield D E. Isotopic evidence for microbial sulphate reduction in the early Archaean Era. Nature, 2001, 410: 77-81.
    Shen Y A,Knoll A H,Walter M R. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature, 2003, 423: 632-635.
    Shen Y A,Schidlowski M,Chu X L. Biogeochemical approach to understanding phosphogenic events of the terminal Proterozoic to Cambrian. Palaeogeography Palaeoclimatology Palaeoecology, 2000, 158: 99-108.
    Shen Y A,Schidlowski M. New C isotope stratigraphy from southwest China: Implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations. Geology, 2000, 28: 623-626.
    Shen Y A,Zhang T G,Chu X L. C-isotopic stratification in a Neoproterozoic postglacial ocean. Precambrian Research, 2005, 137: 243-251.
    Shen Y A,Zhang T G,Hoffman P F. On the coevolution of Ediacaran oceans and animals. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 7376-7381.
    Shen Y A,Zhao R,Chu X L ,et al. The carbon and sulfur isotope signatures in the Precambrian-Cambrian transition series of the Yangtze Platform. Precambrian Research, 1998, 89: 77-86.
    Shen Y A. C-isotope variations and paleoceanographic changes during the late Neoproterozoic on the Yangtze Platform, China. Precambrian Research, 2002, 113: 121-133.
    Shields G A,Deynoux M,Strauss H,et al. Barite-bearing cap dolostones of the Taoudeni Basin, Northwest Africa: Sedimentary and isotopic evidence for methane seepage after a Neoproterozoic glaciation. Precambrian Research, 2007, 153: 209-235.
    Shields G A,Kimura H,Yang J D,et al. Sulphur isotopic evolution of Neoproterozoic- Cambrian seawater: new francolite-bound sulphate delta S-34 data and a critical appraisal of the existing record. Chemical Geology, 2004, 204: 163-182.
    Shields G A. Neoproterozoic cap carbonates: a critical appraisal of existing models and the plumeworld hypothesis. Terra Nova, 2005, 17: 299-310.
    Steiner M,Li G X,Qian Y,et al. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254: 67-99.
    Sun W G. Late Precambrian pennatulids (sea pens) from the Eastern Yangtze Gorge, China - paracharnia gen-nov. Precambrian Research, 1986, 31: 361-375.
    Tang F, Yin C Y, Bengtson S et al. Octoradiate spiral organisms in the Ediacaran of South China. Acta Geologica Sinica, 2008, 82: 27-34.
    Tang F,Yin C Y,Stefan B,et al. A new discovery of macroscopic fossils from the Ediacaran Doushantuo Formation in the Yangtze Gorges area. Chinese Science Bulletin, 2006, 51: 1487-1493.
    Volkov II. Dissolved inorganic carbon and its isotopic composition in the waters of anoxic marine basins. Oceanology, 2000, 40: 499-502.
    Walter M R,Veevers J J,Calver C R,et al. Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrian Research, 2000, 100: 371-433.
    Wang H Z. Atlas of the Paleogeography of China. Beijing, Cartographic Publishing House, 1985.
    Wang J S,Jiang G Q,Xiao S H,et al. Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology, 2008, 36: 347-350.
    Wang J,Li Z X. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research, 2003, 122: 141-158.
    Wang W, Matsumoto R, Wang H F et al. Isotopic chemostratigraphy of the upper Sinian in Three Gorges area. Acta Micropalaeontologica Sinica. 2002a, 19: 382–388.
    Wang X Q, Jiang G Q, Shi X Y, et al. Carbon isotope fractionation in the Early Cambrian ocean. Geological Society of America Abstracts with Programs, 2008, 40: 320.
    Wang X Q,Shi X Y. Spatio-temporal carbon isotope variation during the Ediacaran period in South China and its impact on bio-evolution. Science in China Series D-Earth Sciences, 2009, 52: 1520-1528.
    Wang Y, Wang X L, Huang Y M. Macroscopic Algae from the Ediacaran Doushantuo Formation in Northeast Guizhou, South China. Earth Science-Journal of China University of Geosciences, 2007,32:828-844.
    Wang Y, Wang X L. The holdfasts of macroalgae in the Neoproterozoic Doushantuo Formation in Northeastern Guizhou province and their environmental significance. Acta Micropalaeontologica Sinica, 2006, 23:154-164.
    Wang Y,Lin J P,Zhao Y L,et al. Palaeoecology of the trace fossil Gordia and its interaction with nonmineralizing taxa from the early Middle Cambrian Kaili Biota, Guizhou province, South China. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 277: 141-148.
    Wang Y,Wang X L,Huang Y M. Megascopic symmetrical metazoans from the Ediacaran Doushantuo Formation in the northeastern Guizhou, South China. Journal of China University of Geosciences, 2008, 19: 200-206.
    Wang Z Q, Yin C Y, Gao L Z, et al. Chemostratigraphic characteristics and correlation of the Sinian stratotype in the eastern Yangtze Gorges area, Yichang, Hubei Province. Geological Review, 2002b, 48: 408–415.
    Weber B,Steiner M,Zhu M Y. Precambrian-Cambrian trace fossils from the Yangtze Platform (South China) and the early evolution of bilaterian lifestyles. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254: 328-349.
    Wilkin R T,Barnes H L. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 1997, 61: 323-339.
    Wille M,Nagler T F,Lehmann B,et al. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature, 2008, 453: 767-769.
    Xiao S H,Bao H M,Wang H F,et al. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for a post-Marinoan glaciation. Precambrian Research, 2004, 130: 1-26.
    Xiao S H,Hagadorn J W,Zhou C M,et al. Rare helical spheroidal fossils from the Doushantuo Lagerstatte: Ediacaran animal embryos come of age? Geology, 2007, 35: 115-118.
    Xiao S H,Knoll A H. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'An, Guizhou, South China. Journal of Paleontology, 2000, 74: 767-788.
    Xiao S H,Shen B,Zhou C M,et al. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 10227-10232.
    Xiao S H,Yuan X L,Steiner M,et al. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China. Journal of Paleontology, 2002, 76: 347-376.
    Xiao S H,Zhang Y,Knoll A H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 1998, 391: 553-558.
    Xiao S H. New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic; Yangtze Gorges, south China). Journal of Paleontology, 2004, 78: 393-401.
    Yang J D,Sun W G,Wang Z Z,et al. Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Neoproterozoic seawater? Precambrian Research, 1999, 93: 215-233.
    Yin C Y,Liu D Y,Gao L Z,et al. Lower boundary age of the Nanhua System and the Gucheng glacial stage: Evidence from SHRIMP II dating. Chinese Science Bulletin, 2003, 48: 1657-1662.
    Yin C Y. Microfossils from the Upper Sinian (late Neoproterozoic) Doushantuo Formation in Changyang, western Hubei, China: Continental Dynamics, 1999, 4:1–18.
    Yin L M,Zhu M Y,Knoll A H,et al. Doushantuo embryos preserved inside diapause egg cysts. Nature, 2007, 446: 661-663.
    Yin L. Precambrian–Cambrian transitional acritarch biostratigraphy of the Yangtze Platform. Bulletin of National Museum of Natural Science (Taipei), 1997,10: 217-231.
    Yochelson E L,Fedonkin M A. A new tissue-grade organism 1.5 billion years old from Montana. Proceedings of the Biological Society of Washington, 2000, 113: 843-847.
    Zhang R,Follows M J,Grotzinger J P,et al. Could the Late Permian deep ocean have been anoxic? Paleoceanography, 2001, 16: 317-329.
    Zhang S H,Jiang G Q,Han Y G. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 2008, 20: 289-294.
    Zhang S H,Jiang G Q,Zhang J M,et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 2005, 33: 473-476.
    Zhang T G,Chu X L,Zhang Q R,et al. The sulfur and carbon isotopic records in carbonates of the Dengying Formation in the Yangtze Platform, China. Acta Petrologica Sinica, 2004, 20: 717-724.
    Zhang T G,Chu X L,Zhang Q R,et al. Variations of sulfur and carbon isotopes in seawater during the Doushantuo stage in late Neoproterozoic. Chinese Science Bulletin, 2003, 48: 1375-1380.
    Zhang Y,Yin L M,Xiao S H,et al. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, south China. Journal of Paleontology, 1998, 72: 1-52.
    Zhao Y L, Chen M E, Peng J, et al. Discovery of a Miaohe-type Biota from the Neoproterozoic Doushantuo Formation in Jiangkou County, Guizhou Province, China. Chinese Science Bulletin, 2004,49:2224-2226.
    Zhao Z, Xing Y, Ding Q, et al. The Sinian System of Hubei. Wuhan: China University of Geosciences Press, 1988.
    Zhao Z, Xing Y, MA G, et al. Biostratigraphy of the Yangtze Gorge area, (1) Sinian. Beijing, Geological Publishing House, 1985.
    Zheng Y F,Wu Y B,Chen F K ,et al. Zircon U-Pb and oxygen isotope evidence for a large-scale O-18 depletion event in igneous rocks during the neoproterozoic. Geochimica et Cosmochimica Acta, 2004, 68: 4145-4165.
    Zheng Y F. Neoproterozoic magmatic activity and global change. Chinese Science Bulletin, 2003, 48: 1639-1656.
    Zhou C M, Yan K, Hu J, et al. The Neoproterozoic tillites at Lantian, Xiuning County, Anhui Province. Journal of Stratigraphy, 2001, 25: 247–252.
    Zhou C M, Zhang J M, Li G X, et al. Carbon and oxygen isotopic record of the Early Cambrian from the Xiaotan Section, Yunnan,South China. Scientia Geologica Sinica, 1997,32: 201–211.
    Zhou C M,Xiao S H. Ediacaran delta C-13 chemostratigraphy of South China. Chemical Geology, 2007, 237: 89-108.
    Zhou C M , Xie G W , McFadden K,et al. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: causes and biostratigraphic significance. Geological Journal, 2007, 42: 229-262.
    Zhou C M. Upper Sinian (latest Proterozoic) carbon isotope profile in Weng'an, Guizhou. Journal of Stratigraphy, 1997,21:124–129.
    Zhou C M,Tucker R,Xiao S H,et al. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 2004, 32: 437-440.
    Zhu M Y,Gehling J G,Xiao S H,et al. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 2008, 36: 867-870.
    Zhu M Y,Zhang J M,Li G X,et al. Evolution of C isotopes in the Cambrian of China: implications for Cambrian subdivision and trilobite mass extinctions. Geobios, 2004, 37: 287-301.
    Zhu M Y,Zhang J M,Yang A H. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 254: 7-61.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.