西藏古新世—始新世生物与地球化学记录及其对PETM事件的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在古新世与始新世界线(P/E)时期的短时间内发生了一件全球性增温事件,被称为古新世/始新世最大热事件(PETM)。该时期的底栖大有孔虫的绝灭(BEE)以及演替(LFT)在古近纪底栖大有孔虫演化过程中起着非常重要的作用。西藏南部岗巴地区发育有良好的海相界线地层,在宗浦Ⅰ宗浦Ⅱ剖面中,对底栖大有孔虫动物群及碳、氧稳定同位素,锶同位素,磁化率的研究显示全球界线事件对该地区造成明显影响。在界线附近,底栖大有孔虫出现大量灭绝,平均总灭绝率达73%。据分析,PETM事件的发生造成海水温度的快速上升,底栖大有孔虫不能适应新的环境,从而发生灭绝。界线之上开始出现复苏,底栖大有孔虫的平均新生率为75%。事件过后,底栖大有孔虫SBZ4动物群被SBZ5~SBZ13动物群代替,以古新统宗浦组的Miscellanea miscella,Lockhartia haimei,Glomalveolina Primaeva的灭绝和Operculina一属的消失及始新统遮普惹组Nummulites willcox, Alveolina ellipsoidalis和Orbitolites complanatus出现为特征。在该时期,底栖大有孔虫也在进行着不同的进化并存在不同的古地理分布。在古新世界线顶部,碳稳定同位素值出现明显负偏,宗浦Ⅰ剖面的碳稳定同位素出现3期负向偏移,在界线处的低峰值为-4‰;宗浦Ⅱ剖面的碳稳定同位素低峰值为-7.9‰,然后迅速返回。两剖面在界线处的碳稳定同位素与全球同一时期碳稳定同位素事件表现一致;氧稳定同位素表现则与全球事件不太相同,这可能是由于成岩作用的影响。宗浦Ⅰ剖面中P/E界线处的锶同位素的变化趋势与全球P/E事件出现的时间—55Ma时锶同位素变化趋势相一致。在样品32即P/E界线以上2m处,磁化率值开始出现急剧的增加。造成这种突然变化的原因可降水或气候的改变。
     西藏南部岗巴地区宗浦Ⅰ和宗浦Ⅱ剖面古新世/始新世界线附近底栖大有孔虫、同位素、磁化率参数的有显著的变化,表明古新世/始新世地质事件对该地区有很大影响,也说明古新世/始新世界线全球地质事件同样发生在东特提斯低纬度浅海地区,只是在浅海地区影响时间更长。
A rupid global warming occurred at the Paleocene and Eocene boundary (P/E), which is known as the Paleocene-Eocene Thermal Maximum event (PETM).The benthic extinction event (BEE) and larger foraminifera turnover (LFT) during the Paleocene-Eocene transition constitutes an important step in Paleogene larger-foraminifera evolution. A marine boundary succession is well preserved in the Gamba region of southern Tibet. Research on larger foraminifera fauna, carbon and oxygen stable isotopes, strontium isotopes and Magnetic susceptibility in the sections of ZongpuⅠand ZongpuⅡshow that the signals of global Palaeocene-Eocene boundary event are well recorded in the Gamba region. At the P/E boundary, the larger benthic foraminifera were extensive extinction with an average general extinction rate of 73%. According to the analysis, PETM event caused seawater temperature rising and environment change during a short time, larger benthic foraminifera cannot fit for it and begin to extinct. Following the event, larger benthic foraminifera began to recover with the average rate of 75%. The replacement of SBZ4 fauna by SBZ5~SBZ13 fauna, as characterized by the gradual extinction of Paleocene taxa such Miscellanea miscella,Lockhartia haimei,Glomalveolina primaeva and disappearance of Operculina in Zongpu formation and the rise of Eocene taxa Nummulites willcox, Alveolina ellipsoidalis and Orbitolites complanatus in Zhepure formation. In that period, large benthic foraminifera are also great for a different evolution and the existence of different palaeogeographic distribution. The carbon isotope appeared three negative shifts in ZongpuⅠsection with peak value is -4‰at the boundary. A clear negative Carbon isotope shift is recorded at the boundary with the peak value is -7.9‰in ZongpuⅡsection. The situation of carbon isotope is well correlated with other standard isotopic event. The change of oxygen isotope is different with global change, the probability caused by effects of the diagenesis. The strontium isotopic shift is not obvious at the boundary, but an important peak appears above the boundary that is matched with the 55Ma level. Magnetic susceptibility change is obscure at the boundary but a sharp change of magnetic susceptibility clearly appears at two meters above the boundary, the reason for this sudden change maybe is rainfall or climate change.
     All above significant change imply that the Tethys-Himalayan area was affected by the Paleocene/Eocene Thermal Maximum (PETM). This event also takes place in the East Tethyan low latitude shallow marine but with expanded duration.
引文
[1]陈骏,仇钢,杨杰东.黄土碳酸盐锶同位素组成与原生和次生碳酸盐识别.自然科学进展,1997,7(6)
    [2]陈满荣,王少平,俞立中.环境磁学及其再地理环境研究中应用.云南地理环境研究,2001,13(1):12~19
    [3]董军社.古海洋学中锶稳定同位素研究进展.大自然探索,1995,3(14)
    [4]冯增昭,何幼斌,吴胜和.中下扬子地区二叠纪岩相古地理研究[A].见:冯增昭,等.中下扬子地区二叠纪岩相古地理[C].北京:地质出版社,1991. 28~30
    [5]高莉玲摘译.古新世/始新世过渡期碳循环和气候转暖的年代. Nature,1999,401(6755)
    [6]郝诒纯,万晓樵.西藏定日的海相白垩、第三系.青藏高原地质文集(17),1985,227~232
    [7]胡修棉,王成善. 100 Ma以来若干重大地质事件与全球气候变化.大自然探索, 1999,18 (1):53~58
    [8]黄思静,石和,沈立成.锶同位素地质学研究进展.地球科学进展,2001,16(2)
    [9]黄思静.川西北甘溪中、上泥盆统海相碳酸盐岩的碳、锶同位素组成及其地质意义.岩学报,1993,9(增刊)
    [10]黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究.地质学报, 1997,71(1)
    [11]黄思静.上扬子二叠系-三叠系初海相碳酸盐岩的碳同位素组成与生物灭绝事件.地球化学,1994,23(1):60~68
    [12]姜月华,殷鸿福,王润华.环境磁学理论、方法和研究进展.地球学报,2004,259 (3):357~362
    [13]蓝先洪.海洋锶同位素研究进展,海洋地质动态,2001,17(10)
    [14]李国彪,万晓樵,其和日格等.藏南岗巴—定日地区始新世化石碳酸盐岩微相与沉积环境.中国地质, 2002, 29(4): 401~406
    [15]李国彪,万晓樵,刘文灿.西藏南部古近纪微体古生物及盆地演化特征,地质出版社
    [16]李国彪,万晓樵.藏南岗巴-定日地区始新世微体化石与特提斯的消亡.地层学杂志,2003,27(2):99~108
    [17]李双应,洪天求,金福全,等.巢县二叠系栖霞组臭灰岩段异地成因碳酸盐岩[J].地层学杂志,2001,25(1): 69~74
    [18]刘传联,成鑫荣.渤海湾盆地早第三纪非海相钙质超微化石的锶同位素证据.科学通报,1996,41(10)
    [19]刘志飞,胡修棉.白垩纪至早第三纪的极端气候事件.地球科学进展,2003,18(5): 681~687
    [20]刘志飞.古新世-始新世界线全球构造事件在沉积学中的反映.成都理工学院学报增刊,1996,23(增刊)
    [21]穆恩之,尹集祥,文世宣等.中国西藏南部珠穆朗玛峰地区的地层.中国科学,1973,16(1):59~71
    [22]齐文同.事件地层学.北京:地质出版社. 1990
    [23]舒小辛.环境磁学在古湖泊学研究中的应用.同济大学海洋地质开放实验室,1989,59~76.
    [24]宋海斌,江为为,张岭.海洋天然气水合物的地球物理研究(IV):双似海底反射[J].地球物理学进展, 2003, 18(3), 368~373.
    [25]同济大学海洋地质系.古海洋学概论.上海:同济大学出版社. 1989
    [26]万晓樵,西藏第三纪有孔虫生物地层及地理环境.现代地质,1987,1(1):15-47
    [27]万晓樵,李金和,张双增等.西藏札达晚白垩世—古新世浮游有孔虫及其时代意义.微体古生物学报,2005,22(1):10-18
    [28]万晓樵,王曦,于涛等.古新世/始新世全球增温在西藏岗巴地区的表现.地学前缘,2006,13(6):218-226
    [29]万晓樵,阴家润.西藏岗巴地区白垩纪中期微体生物群与古海洋事件.微体古生物学报,1996,13(1):43~56
    [30]万晓樵.西藏岗巴地区白垩纪地层及有孔虫动物群.见:李廷栋主编,青藏高原地质文集,1985,16: 203-228.
    [31]万晓樵.西藏白垩纪—早第三纪有孔虫于特提斯—喜马拉雅海的演化.微体古生物学报,1990,7(2):169~186
    [32]王成善,刘志飞.古新世-始新世界线的全球事件.地球科学进展,1999,11(3)
    [33]王世杰,董丽敏,林文祝,李春来,汪品先,赵泉鸿,吴锡浩.泥河湾组有孔虫化石群的锶同位素研究.科学通报,1995,40(22)
    [34]魏振声,谭岳岩.西藏地层概况.西藏自治区地质局: 1979,37~41
    [35]文世宣.珠穆朗玛峰地区的地层·第三系.珠穆朗玛峰地区科学考察报告(1966~1968)·地质.北京:科学出版社,1974.:184~212
    [36]文世宣.珠穆朗玛峰地区的地层,白垩系.见:中国科学院西藏科学考察队,珠穆朗玛峰地区科学考察报告.地质.北京:科学出版社, 1966-1968,1974a,148~183
    [37]吴瑞荣,张守信等.现代地层学.武汉:中国地质大学出版社. 1989
    [38]西藏地质矿产局.西藏自治区岩石地层.武汉:中国地质大学出版社. 1997
    [39]西藏自治区测绘局.西藏自治区地图册.北京:中国地图出版社. 1995
    [40]西藏自治区地质局综合地质大队(孙亦因等).中华人民共和国区域地质调查报告(1:100万).北京:地质出版社. 1984
    [41]西藏自治区地质矿产局.西藏自治区区域地质志.北京:地质出版社. 1993
    [42]西藏自治区地质矿产局.西藏自治区岩石地层[M].北京:地质出版社,1997. 235~237
    [43]徐钰林,茅绍智.西藏南部白垩纪-早第三纪钙质超微化石及其沉积环境.微体古生物学报,1992,9(4):331~348
    [44]徐钰林,万晓樵,苟宗海等.西藏侏罗、白垩、第三纪生物地层.武汉:中国地质大学出版社,1989,1~147
    [45]杨遵仪,吴顺宝,杨逢清.关于我国南方海相二叠-三叠系界线问题和接触关系.地球科学,1981,1
    [46]有孔虫.科学出版社. 1980
    [47]余光明,王成善.西藏特提斯沉积地质.中华人民共和国地质矿产部地质专报(三):岩石,矿物,地球化学,第12号,北京:地质出版社. 1990
    [48]俞立中.环境磁学再城市污染研究中应用.上海环境科学,1999,18(4):175~178
    [49]章炳高,耿良玉.西藏南部早第三纪地层的再认识.地层学杂志,1983,7(4):310~312
    [50]章炳高,穆西南.西藏雅鲁藏布江以北海相第三系的发现.地质学杂志,1979,7(4):310~312
    [51]张世红,李海燕.地磁学、古地磁学和环境磁学的研究新发展-第32届国际地质大会学科总结和评述.现代地质,2004,18(4):415~422
    [52]赵文金,万晓樵.西藏特提斯演化晚期生物古海洋事件.北京:地质出版社. 2003
    [53]赵玉龙,刘志飞.古新世—始新世最热事件对地球表层循环的影响及其触发机制.地球科学进展,2007,24(4):321-349
    [54]赵振华.微量元素地球化学原理[M].北京:科学出版社,1997,1~238
    [55]中国科学院青藏高原综合科学考察队(文世宣,章炳高等).西藏地层.科学出版社,1984,
    [56] A li J R,Hailwood E A. Magnetostratigraphic(re) calibration of the Paleocene/Eocene boundary interval in Holes 550 and 549 Goban Spur,eastern North Atlantic[J]. Earth and Planetary Science Letters,1998. 161(1-4):201~213
    [57] B. Schmitz,V. Pujalte,K. Nunez-Betelu. Climate and sea-level perturbations during the Initial Eocene Thermal Maximum: evidence from siliciclastic units in the Basque Basin (Ermua,Zumaia and Trabakua Pass),northern Spain,Palaeogeography,Palaeoclimatology, Palaeoecology 165,2001. 299~320
    [58] B. Schmitz.特提斯陆架南部(埃及)古新世末期底栖有孔虫灭绝事件记录. Geology,1996. 4
    [59] Bains S, Norris R, Corfield R, et al. Termination of global warmth at the Palaeocene /Eocene boundary through productivity feedback [J]. Nature, 2000, 407: 171~174.
    [60] Bains S,Corfield R M,and Norris R D. Mechanisms of climate warming at the end of the Paleocene. Science,1999. 285:724~727
    [61] Be, A.W.H., J.K.B Bishop, M.S. Sverdlove, and W.D. Gardner. Standing stock, vertical distribution, and flux of planktonic foraminifera in the Panama Basin, Mar. Micropal. 1985,9: 307-333.
    [62] Beerling D. Increased terrestrial carbon storage across the Palaeocene Eocene boundary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 161:395~405.
    [63] Bice K, Marotzke J. Numerical evidence against reversed thermohaline circulation in the warm Paleocene/Eocene ocean [J].Journal of Geophysical Research, 2001, 106: 11529~11542.
    [64] Bijma J., Erez J. ,and Hemleben C. Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifera. J. Foram. Res. 1990, 2, 117-127.
    [65] Bralower T J , Zachos J C, Thomas E, Parrow M, Paul C K, Kelly D C, Silva I P, Sliter W V, Lohmann K C. Late Paleocene to Eocene paleocenography of the equatorial pacific ocean: stable isotopes recorded at ocean drilling program site865, allison guyot [J].Paleoceanography, 1995, 10: 8841~8865.
    [66] Bralower T J,Thomas D J,Zachos J C,et al. High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: Is there a causal link? Geology,1997. 25:963~966
    [67] Changnon S A, Easterling D R. U S Policies Pertaining to Weather and Climate Extremes [J]. Science, 2000, 289:2053-2055.
    [68] Christian Robert and James P Kennett. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Clay-mineral evidence. Geology,1994. 211~214
    [69] Christian Robert and James P Kennett. Paleocene and Eocene kaolinite distribution in the South Atlantic and Southern Ocean: Antarctic climatic and paleoceanographic implications. Marine Geology,1992. 103:99~100
    [70] Cramer B, Kent D. Bolide summer: The Paleocene/Eocene thermal maximum as a response to an extraterrestrial trigger [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 224:144~166.
    [71] Curry, W.B., R.C. Thunnell, and S. Honjo. Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama Basin sediment traps, Earth Planet. Sci. Lett. 1983, 64: 33-43.
    [72] D. Clay Kelly,Timothy J. Bralower,James C.Zachos,Isabella Premoli Silva,Ellen Thomas. Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology,1996. 24(5):423~426
    [73] D. J. Beerling,D. W. Jolley. Fossil plants record an atmospheric CO2 and temperature spike across the Palaeocene-Eocene transition in NW Europe. Journal of the Geological Society,1998. 155:591~594
    [74] D. J. Beerling. Increased terrestial carbon storage across the Palaeocene-Eocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology,2000. 161:395~405
    [75] Deborah J. Thomas and Timothy J. Bralower,James C. Zachos. New evidence for subtropical warming during the late Paleocene thermal maximum: Stable isotopes from Deep Sea Drilling Project Site 527, Walvis Ridge. Paleoceanography,1999. 14(5):561~570
    [76] Deuser, W.G. and Ross, E.H.. Seasonally abundant plantonic forminifera of the Sargasso Sea: succession, deep-water fluxes, isotopic compositions, and paleoceanographic implications. J.Foram. Res., 1989, 19:268-293.
    [77] Dickens G R, Castillo M M, Walker J C G., A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of methane hydrate [J]. Geology, 1997.25: 259-262.
    [78] Dickens G R, O’Neil J R, Rea D K, Owen R M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene [J]. Paleoceanography, 1995, 10: 965~971.
    [79] Dickens G R,Castillo M M,Walker J C G. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of methane hydrate [J]. Geology,1997. 25:259~262
    [80] Dickens G R. Methane oxidation during the Late Palaeocene thermal maximum [J]. Bull Soc geol. 2000, 171: 37~49.
    [81] Easterling D R, Meehl G A, Parmesan C, et al. Climate Extremes: Observations, Modeling, and Impacts [R]. Science, 2000, 289: 2068~2074.
    [82] Eldholm O, Thomas E. Environmental impact of volcanic margin formation [J]. Earth and Planet ary Science Letters, 1993, 117: 319~329.
    [83] Erez J., Almogi-Labin A. ,and Avraham S. On the life history of planktonic foraminifera: lunar reproduction cycle in Globeriginoides sacculifer (Brady). Paleoceanogr. 1991, 6: 295-306.
    [84] Erez, J. and B. Luz. Experimental paleotemperature equation for planktonic foraminifera, Geochim. Cosmochim. Acta 1983, 47: 1025-1031.
    [85] Fairbanks, R.G. and P.H. Wiebe. Foraminifera and chlorophyll maximum: vertical distribution, seasonal succession, and paleoceanographic significance, Science ,1980, 209:1524-1526.
    [86] Fairbanks, R.G., M. Sverdlove, R. Free, P.H. Wiebe, and A.W.H. Be'. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin, Nature , 1982, 298:841-4.
    [87] Fairbanks, R.G., P.H. Wiebe, and A.W.H. Be'. Vertical distribution and Isotopic composition of living planktonic foraminifera in the western North Atlantic, Science , 1980, 207: 61-63.
    [88] Flavia Nunes and Richard D. Norris. Abrupt reversal in ocean overturning during thePalaeocene/Eocene warm period. Nature,2006. 439:60~63
    [89] Gabriel J. Bowen,William C. Clyde,Paul L. Koch,Suyin Ting,John Alroy,Takehisa Tsubamoto,Yuanqing Wang,Yuan Wang. Mammalian Dispersal at the Paleocene/Eocene Boundary. Science,2002. 295
    [90] Gibson T G,Bybell L M,Owens J P. Latest Paleocene lithologic and bitic events in neritic deposits of southwestern New Jersey[J]. Paleoceanography,1993. 8(4):495~544
    [91] Gunnell G F, Bartels W S, Gingerich P D. 1993. Paleocene-Eocene boundary in continental North America: biostratigraphy and geochronology, Northern Bighorn Basin, Wyoming [J].Journal of Vertebrate Paleontology, 13(3Suppl.):39.
    [92] Hayden H H. The geology of the provinces Tsang and U in Tibet. Mem. Geological Survey of India,1907. 36:122~201
    [93] Higgins J, Schrag D. Beyond methane: Towards a theory for the Paleocene-Eocene thermal maximum [J]. Earth and Planetary Science Letters, 2006, 245:523~537.
    [94] Hottinger L, Recherches sur les Alveolines du Puleocene et de l’Eocene. Mem. Suisses Pal., 1960a.75/76:243
    [95] Hottinger L. Processes determing the distribution of larger foraminifera in space and time. Utrecht Micropal. Bull,1983. 30:239~254
    [96] Hottinger L. Processes determining the distribution of larger foraminifera in space and time [J]. Utrecht Micropal. Bull, 1983, (30): 239~254
    [97] Hottinger L., Krusat G., 1972. Un foraminifere nouveau intermedeaire entre Opertorbitolites et Somalina de I’Ilerdien pyreneen. Rev. Esp. Micropal, 249-271
    [98] Hottinger, L. 1998. Shallow benthic foraminifera at the Paleocene-Eocene boundary. Strata, Serie 1, 9: 61-64
    [99] HsüK J. Paleoceanography of the Mesozoic Alpine Tethys. Geol. Soc Am,1976. Special Paper 170
    [100] J. I. Baceta,V. Pujalte,J. Dinares-Turell,A. Payros,X. Orue-Eyxebarria and G. Bernaola. The Paleocene/Eocene boundary interval in the Zumaia section (Gipuzkoa, Basque Basin): Magnetostratigraphy and high-resolution lithostratigraphy. Geology,2000. Espana 13(2)
    [101] Jenkyns H C. Cretaceous anoxic events: form continents to oceans. Journal of the GeologicalSociety,1980. 137:171~188
    [102] Jorgensen, B.B., J. Erez, N.P. Revsbech, Y. Cohen. Symbiotic photosynthesis in a planktonic foraminiferan, G. sacculifer (Brady), studied with microelectrodes , Limnol.Oceanogr. , 1985, 30:1253-1267.
    [103] Karl T R, Knight R W, Easterling D R, et al. Indices of Climate Change for the United State [J]. Bull Amer Meteor Soc, 1996, 77: 279-292.
    [104] Katz M, Cramer B, Mountain G, et al. Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release [J].Paleocenography, 2001, 16(6):549~562.
    [105] Kaufmann E G. High resolution event stratigraphy regional and global Cretaceous bioevents. In: Walliser O H, eds. Global bioevents. Spinger-Verlag Lecture Notes in Earth Science 8, Spring-Verlag, Berlin,1986. 279~336
    [106] Kennett J P,Stott L D. Abrupt deep sea warming,paleoceanographic changes and benthic extinctions at the end of the Palaoecene[J]. Nature,1991. 353:225-322
    [107] Kent D, Cramer B, Lanci L, et al. A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion [J]. Earth and Planetary Science Letters, 2003,211:13~26.
    [108] Kirschvink J L, Raub T D. A methane fuse for the Cambrian explosion: carbon cycles and true polar wander [J]. C R Geoscience, 2003,335: 157~174.
    [109] Koch P L& Zochos J C. Mamalian biochronology of the Paleocene-Eocene boundary in North America, Europe and Asia[J]. Journal of Vertebrate Palaeontology,1993. (3 Suppl.):47
    [110] Kureshy A A. 1977. The Tertiary larger foraminiferal zones of West Pakistan. Rovista Espanola de Micropaleontologia, 9(2): 203-219.
    [111] Kureshy A A. The Tertiary larger foraminiferal zones of Pakistan. Rovista Espanola de Micropaleontologia,1978. 10(3):467~483
    [112] Kureshy A A. The Tertiary larger foraminiferal zones of West Pakistan. Rovista Espanola de Micropaleontologia,1977. 9(2):203~219
    [113] KurtzA, Kump L, ArthurM,et al. Early Cenozoic decoupling of the global carbon and sulfur cycles[ J].Paleoceanography, 2003, 18(4): 1 090, do:i 10. 1029 /2003PA000908.
    [114] Kvenvolden K A. Potential effects of gas hydrates on human welfare [J]. Proc Natl Acad Sci USA 96, 1999, 3420~3426.
    [115] Li Guobiao, Wan Xiaoqiao. 2003. Eocene microfossils in southern Tibet and the final closing of the Tibet-Tethys. Journal of stratigraphy, 27(2): 99-108.
    [116] Lisa Cirbus Sloan,Birger Schmitz,Marie-Pierre Aubry and James Zachos. Early Paleogene Warm Climates and Biosphere Dynamics: Meeting in Goteborg makes progress in deciphering the dynamics of past greenhouse worlds,Paleoceanography,1999. 14(5):559~560
    [117] Lourens L, Sluijs A, Kroon D, et al. Astronomical pacing of late Palaeocene to early Eocene global warming events [J]. Nature , 2005,435: 1083~1087.
    [118] MacArthur R H, MacArthur JW, Preer J. On bird species diversity. II. Prediction of bird censuses from habitat measurements. Am Nat, 1962. 96: 167~174
    [119] MacArthur, R H., Wilson, E. O.1967.The theory of island biogeography. Princeton, N.J.: Princeton University Press.
    [120] Maclennan J, Jones S. Regional uplift, gas hydrate dissociation and the origins of the Paleocene Eocene thermal maximum [J]. Earth and Planetary Science Letters, 2006, 245:65~80.
    [121] Miller K G, Fairbanks R G, and Mountain G S. Tertiary oxygen isotope synthesis, sea-level history, and continental margin erosion. Paleoceanography ,1987, 2: 1~19.
    [122] Moran K, Backman J, Brinkhuis H, et al. The Cenozoic palaeoenvironment of the Arctic Ocean [J]. Nature, 2006, 441:601~605.
    [123] Mu Enzhi, Ying Jixiang, Wen Shixuan. 1973. Stratigraphy of Mt. Everest region in southern Tibet China. Chinese Science, 16(1): 59~71
    [124] Muller-Merz E, 1980. Strukturanalysc ausgewahlter rotaloider Foraminiferen. Schweizerische Pal. Abh., 101:68
    [125] Neue H. Methane emission from rice fields: Wetland rice fields may make a major contribution to global warming [J]. BioScience, 1993, 43(7): 466~473.
    [126] Norris R D,R?hl U. Carbon cycling and chronology of climate warming during the Paleocene/Eocene transition[J]. Nature,1999. 401:775~778.
    [127] Nunes F, Norris R. Abrupt reversal in ocean overturning during the Paleocene/Eocene warmperiod [J]. Nature, 2006, 439: 60~63.
    [128] Pak, D.K., Miller, K.G. 1992. Paleocene to Eocene benthic foraminiferal isotopes and assemblages: Implications for deep water circulation. Paleoceanography, 7(4): 405-422.
    [129] Paul L. Koch,James Zachos,Philip D. Gingerich. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature,1992. 358
    [130] Peters R B, Sloan L C. High concentrations of greenhouse gases and polar stratospheric clouds: a possible solution to high latitude faunal migration at the latest Paleocene thermal maximum [J].Geology, 2000, 28: 979~982.
    [131] Pujalte, V., Orue-Etxebarria, X., Schmitz, B., Tosquella, J., Baceta, J.I., Payros, A., Bernaola, G., Caballero, F. & Apellaniz, E. 2003. Basal Ilerdian (earliest Eocene) turnover of larger foraminifera: Age constraints based on calcareous plankton and deltaδ13C isotopic profiles from new southern Pyrenean sections (Spain). In: S.L. Wing, P.D. Gingerich, B. Schmitz and E. Thomas (Editors) Causes and consequences of globally warm climates in the early Paleogene. Geological Society of America Special Paper, 369: 205–221.
    [132] R.C. Thunnell, W.B. Curry, and S. Honjo. Seasonal variation in the flux of planktonic foraminifera: time series sediment trap results from the Panama Basin, Earth Planet. Sci. Lett. 1983, 64: 44-55.
    [133] Raup D M and Sepkoski J J Jr. Mass extinctions in the marinr fossil record. Science,1982. 215:1501~1503
    [134] Ravelo A. C., Fairbanks R. G. ,and Philander S. G. H. Reconstructing tropical Atlantic hydrography using planktonic foraminifera and an ocean model. Paleoceanogr., 1990, 5, 409-431.
    [135] Richrd J,Howarth R J,McArthur J M. Statistics for strontium isotope stratigraphy: a robust LOWESS fit to marine Sr-isotope curve for 0 to 206 Ma, with look-up table for derivation of numeric age [J]. The Journal of Geology,1997. 105: 441~456
    [136] Santo Bains, Richard D. Norris,Richard M. Corfield and Kristina L. Faul. Termination of global warmth at the Palaeocene/Eocene boundary through productivety feedback. Nature,2000. 407
    [137] Sautter L. R. ,and Thunnell R. C. Planktonic foraminiferal response to upwelling andseasonal hydrographic conditions: sediment trap results from San Pedro Basin, Southern California Bight. J. foram. Res. 1991, 21, 347-363.
    [138] Sautter L. R. ,and Thunnell R. C. Seasonal succession of planktonic foraminifera: results from a four-year time-series sediment trap experiment in the northeast Pacific. J. Foram. Res. 1989, 19, 253-267.
    [139] Schlanger S O and Jenkyns H C. Cretaceous oceanic anoxic events: cause and consequence. Geol. Mijnbown,1976. 55: 179-184
    [140] Scott L. Wing and Guy J. Harrington. Floral response to rapid warming in the earliest Eocene and implications for concurrent faunal change. Paleobiology,2001. 27(3):539~563
    [141] Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrandez, C., Jauhri, A.K.,Less, G., Pavlovec, R., Pignatti, J., Samso, J.M., Schaub, H., Sirel, E.,Strougo, A., Tambareau, Y., Tosquella, J., and Zakrevskaya, E. Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene, Bulletin de la Socie′te′Ge′ologique de France, 1998. 169: 281–299.
    [142] Shackleton N,Boersma A. The climate of the Eocene ocean [J].Journal of Geological Society,London. 1981. 138:153~157
    [143] Shackleton N. J., Wiseman J. D. H. ,and Buckley H. A. Non-equilibrium isotopic fractionation between seawater and planktonic formainiferal tests. Nature. 1973, 242, 177-179.
    [144] Shackleton, N.J. and E. Vincent. Oxygen and carbon isotope studies in recent foraminifera from the southwest Indian Ocean, Mar. Micropal. 1978, 3:1-13.
    [145] Smout A H, 1954. Lower Tertiary foraminifera of the Qatar peninsula. British Museum (Nat. Hist), London: 96
    [146] Speijer R P, Schmitz B, Van der Zwaan G J. 1997. Benthic foraminifera extinction and repopulation in response to late Paleocene Tethyan anoxia [J].Geology, 25(8):683-686.
    [147] Spero H. J. ,and Williams D. F. Opening the carbon isotope "vital effect" black box, 1, seasonal temperatures in the euphotic zone. Paleoceanogr. 1989, 4: 593-602.
    [148] Spero H. J., Bijma J., Lea D. W., and Bemis B. E. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 1997, 390, 497-500.
    [149] Suyin Ting,Gabriel J. Bowen,Paul L. Koch,William C. Clyde, Yuanqing Wang,Yuan Wang,Malcolm C. McKenna. Biostratigraphic,chemostratigraphic and magnetostratigraphicstudy across the Paleocene-Eocene bourdary in the Hengyang Basin, Hunan, China, Geological Society of America. 2003. Special Paper 369
    [150] Svensen H, Planke S, Malthe-S renssen A, et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming [J]. Nature,2004, 429: 542~545.
    [151] Thomas D, Bralower T, Jones C. Neodymium isotopic reconstruction of late Paleocene early Eocene thermohaline circulation [J] Earthand Planetary Science Letters, 2003, 209: 309~322.
    [152] Thomas D, Zachos J, Bralower T, et al. Warming the fuel for the fire: Evidence for the thermal dissociation of methane hydrate during the Paleocene Eocene thermal maximum [J]. Geology, 2002, 30(12): 1067~1070.
    [153] Thomas E,Shackleton N J. The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies[A]. In: Knox R O,et al,eds. Correlations of the Early Paleogene in Northwest Europe[C]. Geological Society of London,Special Publication,1996. 101:401~411
    [154] Thomas, E. 1989. Development of Cenozoic deep-sea benthic foraminiferal faunas in Antarctic waters. Geological Society London Special Publication, 47: 283-296.
    [155] Thomas, E. 1998. Biogeography of the late Paleocene benthic foraminiferal extinction. In: M.-P. Aubry, S.G. Lucas and W.A. Berggren (Editors) Late Paleocene-early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press, New York, 214-243.
    [156] Timothy J. Bralower,James C. Zachos,Ellen Thomas,Matthew Parrow,Charles K. Paull, D. Clay Kelly,Isabella Premoli Silva,William V. Sliter and Kyger C. Lohmann. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography,1995. 10(4):841~865
    [157] Tjalsma, R.C., Lohmann, G.P., 1983. Paleocene-Eocene bathyal and abyssal benthic foraminifera from the Atlantic Ocean. Micropaleontology, Spec. Publ.,1983, 4: 1-90.
    [158] U. Rohl,T. J. Bralower,R. D. Norris,G. Wefer. New chronology for the late Paleocene thermal maximum and its environmental implications. Geology,2000. 28(10):927~930
    [159] Walliser O H. events and events stratigraphy in the Phanerozoic. Berlin Heidelberg:Springer-verlag,1996. 242~252
    [160] Wan Xiaoqiao, Chen Peiji, Wei Mingjian. The Cretaceous system in China. Acta Geologica Sinica-English Edition, 2007. 81(6): 957-983.
    [161] Wan Xiaoqiao, Li Jinhe, Zhang Shuangzeng, et al. The late Cretaceous-Paleocene planktonic foraminifera form Zanda, western Tibet and their chronostratigraphic implications. Acta Micropalaeontogica Sinica, 2005. 22(1): 10~18
    [162] Wan Xiaoqiao, Wang Xi, Yu Tao, et al. The global Paleocene/Eocene thermal maximum event in the Gamba area, Tibet. Earth Science Forntiers, 2006.13(6): 218~226
    [163] Wan Xiaoqiao. Foraminifera biostratigraphy and paleogeography of the tertiary in Tibet. Geoscience, 1987. 1(1): 15-47
    [164] Wan Xiaoqiao. Eocene Larger Foraminifera from Southern Tibet. Revista Espanola De Micropaleontologia, 1990.22(1): 213-238.
    [165] Wen Shixuan. Stratigraphy of Mt. Everest region, Cretaceous, Tertiary, in A report on the scientific exploration to the Mt. Everest (1966–1968), Geology (in Chinese), Beijing: Science Press, 1974. (2): 184–212.
    [166] Wignall P B. Large igneous provinces and mass extinctions [J].Earth Sci Rev, 2001, 53: 1~33.
    [167] William C. Clyde,Philip D. Gingerich. Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology,1998. 26(11):1011~1014
    [168] Williams D. F. Seasonal stable isotopic variations in living planktonic foraminifera from Bermuda plankton tows. Paleograo., Paleoclimatol.,Paleoecol. 1981, 33, 71-102.
    [169] X. Orue-Etxebarria,V. Pujalte,G. Bernaola,E. Apellaniz,J.I. Baceta,A.Payros,K. Nunez-Betelu,J. Serra-Kiel,J. Tosquella. Did the Late Paleocene thermal maximum affect the evolution of larger foraminifers? Evidence from calcareous plankton of the Campo Section (Pyrenees, Spain), Marine Micropaleontology,2001. 41:45~71
    [170] Xiaoqiao Wan. Eocene Larger Foraminifera from Southern Tibet. Revista Espanola De Micropaleontologia,1990. 22 (1):213~238
    [171] Xu W, Ruppel C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments [J]. Geophys Res, 1999, 104: 5081~096.
    [172] Zachos J C, Lohmann K C, Walker J C G, et al. 1993. Abrupt climate change and transient climates during the Paleogene: a marine perspective. J Gerl, 101: 191-213.
    [173] Zachos J C, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 2001, 292: 686-693.
    [174] Zachos J C, Wara M, Bohaty S, et al. A transient rise in tropical sea surface temperature during Paleocene Eocene thermal maximum [J]. Science, 2003. 302(28): 1551-1554
    [175] Zachos J C,Lohmann K C,Walker J C G,et al. Abrupt climate change and transient climates during the Paleogene: a marine perspective,1993. J Gerl. 101:191~213
    [176] Zachos J C,Pagani M,Sloan L,et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science,2001. 292:686~693
    [177] Zachos J, R?hl U, Schellenberg S, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum [J]. Science, 2005. 308: 1611~1615.
    [178] Zachos J, Wara M, Bohaty S, et al. A transient rise in tropical sea surface temperature during the Paleocene Eocene thermal maximum [J]. Science, 2003, 302(28): 1551~1554.
    [179] Zhang Binggao, Geng Liangyu. A further knowledge of the Early Tertiary strata in southern Xizang. Journal of Stratigraphy, 1983. 7(4): 310~312.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.