两种稀土离子掺杂的镥氧化物纳米粉末和透明陶瓷的制备以及发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为五章,其中第1章概述了本论文研究的基础知识以及工作背景;从第2章到第5章分别介绍了使用两种方法合成稀土掺杂的两种镥氧化物的纳米粉末和透明陶瓷的过程,同时研究和比较了它们的微观结构和发光性能。
     第1章介绍了稀土功能材料,光致发光的基本原理与三价稀土离子的发光特性,概述了纳米材料、闪烁体透明陶瓷在国内外的研究、发展和取得的成果,并结合本工作具体介绍了两种制备纳米粉体及透明陶瓷的方法,同时讨论了影响透明陶瓷透明度的一些因素。
     第2章主要介绍了Lu2O3:Eu3+纳米粉末的共沉淀法制备过程,并与溶剂热法制备的样品进行比较。XRD和FTIR结果显示溶剂热法加快了无定形前驱物的晶化,有效地降低了高温煅烧下粉体的结晶温度。XRD和SEM结果表明共沉淀法制备的Lu2O3:Eu3+前驱粉是具有200nm棒状结构的非晶态物质,而溶剂热法制备的前驱粉主要是50nm的近球形颗粒,其主要成分是LuOOH,且于400℃煅烧下出现Lu203的相。相同初始条件下,比较了共沉淀和溶剂热法获得的Lu2O3:Eu3+粉末的颗粒度、形貌和发光性质。研究了不同沉淀剂、不同Eu3+掺杂浓度、不同煅烧温度和煅烧气氛对共沉淀法制备的Lu2O3:Eu3+粉体发光的影响,并对部分样品的衰减进行了测量,分析了Lu2O3:Eu3+粉体的荧光寿命和粉体颗粒度的关系。将煅烧获得的Lu2O3:Eu3+粉体在不使用任何添加剂的情况下,使用干压成型制成素坯,于先真空后氮气烧结方式下获得了Lu2O3:Eu3+透明陶瓷。初步比较了不同制备条件下Lu2O3:Eu3+透明陶瓷的透明度,分析了一些具体影响陶瓷透明度的因素。
     第3章介绍了溶剂热法制备LuAG:Ce3+纳米粉体,并研究其发光性质。FTIR和XRD测量结果表明,溶剂热法合成的LuAG:Ce3+前驱粉体的主要成分是AlOOH,煅烧温度400℃下有Lu2O3相的出现,而未经过溶剂热法制备的前驱粉在800℃下煅烧还是非晶态。比较了不同的沉淀剂、不同醇水体积比、不同煅烧温度对溶剂热法合成LuAG:Ce3+粉体形貌的影响。研究了不同Ce3+掺杂浓度、不同的沉淀剂和不同煅烧温度下,溶剂热法合成LuAG:Ce3+粉体的发光,实验结果表明当Ce3+的掺杂浓度为1%,使用碳酸氢铵加氨水作为混合沉淀剂,在1000℃下进行煅烧,溶剂热法获得的LuAG:Ce3+纳米荧光粉的发光强度较强。LuAG:Ce3+荧光粉5d→4f的发射谱是位于450-650nm波长范围内的两个发射带叠加组成的宽带,其很好的与硅光电二极管灵敏度曲线匹配。
     第4章用共沉淀方法和溶剂热方法,使用碳酸氢铵加氨水作为沉淀剂制备了LuAG:Ce3+纳米粉末及透明陶瓷。XRD、FTIR、SEM实验结果表明,共沉淀方法获得的LuAG:Ce3+前驱粉体具有无定形片状结构,其主要成分是碳酸盐NH4Al(OH)2CO3 and Lu2(CO3)3·nH2O,而溶剂热法获得的LuAG:Ce3+前驱粉体包含一些八面体形状的物质,其成分主要是由AlOOH和Lu(OH)3组成的氢氧化物。在1100℃煅烧条件下,共沉淀法制备的LuAG:Ce3+粉体,其颗粒呈现近球形,分散性好,分布较为均匀,粒径约为80-100nm;溶剂热法在同样煅烧条件下获得的LuAG:Ce3+粉体,团聚较为严重,由粒径30-50nm不规则的小颗粒所组成。比较了不同煅烧温度和气氛下,共沉淀和溶剂热法制备的LuAG:Ce3+粉体的发光。在同样初始条件下,溶剂热法制备的LuAG:Ce3+粉体的激发和发光强度较强。将获得的LuAG:Ce3+纳米粉末,在没有任何添加剂情况下压片,于先真空后氮气烧结的方式下制备了透明陶瓷。比较了两种方法制备LuAG:Ce3+陶瓷的微观结构和透明度以及具体实验中影响陶瓷透明度的因素。分析了两种方法制备的LuAG:Ce3+透明陶瓷的激发和发射谱,比较了不同激发波长下的发光强度变化规律,并分析了原因。与共沉淀法相比,溶剂热法制备的LuAG:Ce3+粉体和透明陶瓷的激发和发光强度都较强,但其制备样品的时间相对较长,产量相对较低,制备过程需要进一步优化。
     在第5章中,通过将溶剂热法(270℃保温2h)获得的LuAG:Ce3+前驱粉末直接压片,在无任何添加剂情况下,于先真空后氮气气氛烧结的方式下制备了LuAG:Ce3+透明陶瓷。研究了该透明陶瓷在紫外可见以及真空紫外区的光谱性质。在不同激发波长激发下,研究了所合成LuAG:Ce3+透明陶瓷的发光。并与第4章得到的LuAG:Ce3+透明陶瓷的微观结构、透明度及发光进行比较,发现该方法制备的LuAG:Ce3+透明陶瓷,其制备工艺简单,透明度有了明显的改善,发光较强。
The thesis contains five chapters. Chapter 1 outlines the basics and working background of this thesis. Chapter 2 to chapter 5 introduced the synthesis of rare earth doped two kinds lutetium oxide functional nano-materials and transparent ceramic materials using two methods, and theirs microstructural and luminescent properties were analyzed and compared.
     In chapter 1, the introductions of rare earth functional materials, the basic principles of photoluminescence and the luminescence properties of trivalent rare earth ion luminescence are given. The researches, developments and achievements of nano-materials and transparent ceramics scintillator are stated at home and abroad. Two methods for the preparation of nano powders and transparent ceramics in this work are introduced in detail, and some impact factors on transparency of transparent ceramics are discussed.
     In chapter 2, Lu2O3:Eu3+ nano-particles and transparent ceramics were prepared by co-precipitation and solvo-thermal methods, respectively. XRD and FTIR results showed that the solvo-thermal treatment accelerated the crystallization of amorphous precursor and effectively decreased the crystallization temperature. XRD and SEM results showed that the precursor powders of Lu2O3:Eu3+ prepared by co-precipitation were amorphous with the rod structure about 200nm; the precursor powders of Lu2O3:Eu3+ prepared by solvo-thermal method mainly included nearly spherical particles with 50nm, whose main components were LuOOH, and the phase of Lu2O3 appeared at calcination temperature 400℃. The powder particle size, morphology and luminescence properties of the obtained Lu2O3:Eu3+ by co-precipitation and solvo-thermal were compared. The luminescence of the obtained Lu2O3:Eu3+ powders by co-precipitation under the different precipitation agents, different Eu3+ doped concentrations, different calcination temperature and calcination atmosphere was dicussed. The fluorescence decay curves of the obtained Lu2O3:Eu3+ powders at different calcining temperature and atmosphere were measured. The relations of fluorescence lifetimes and particle-size for powders were analyzed. The resultant Lu2O3:Eu3+ powders were pressed into tablets without any additives by dry-pressing moulding, sintered in vacuum and then nitrogen atmosphere at high temperature, and Lu2O3:Eu3+ transparent ceramics were obtained. The transparencies of the obtained Lu2O3:Eu3+ transparent ceramics under different conditions were compared, and some factors that affect the transparency of ceramics were analyzed.
     In chapter 3, the synthesis and luminescence properties of LuAG:Ce3+ nano-powders by solvo-thermal method were investigated. FTIR and XRD measurements showed that the precursor powders of LuAG:Ce3+ by solvo-thermal treatment, theirs main components were AlOOH, and cubic phase Lu2O3 appeared at calcination temperature 400℃, but that precursor powders prepared by co-precipitation were still amorphous at calcination temperature 800℃. The influences on the LuAG:Ce3+ powders morphologies under different precipitant, different volume ratio of ethanol and water, different calcination temperature were compared. Dependences of illumination intensity of LuAG:Ce3+ powders on Ce3+ concentration, the precipitation agents and the calcination temperature were discussed. The results showed that, the 1% Ce3+ doping concentration, ammonium hydrogen carbonate and ammonia water as mixture precipitation agent, under the calcination temperature 1000℃, the luminescence of the obtained LuAG:Ce3+ nano-powder was stronger. Emission spectrum of LuAG:Ce3+ phosphor was located at 450-650nm, including overlap of two broad emission bands, which was matched well with the sensitivity curve of silicon photodiode.
     In chapter 4, LuAG:Ce3+ nano-powders and transparent ceramics were obtained by co-precipitation and solvo-thermal method using ammonium hydrogen carbonate and ammonia water as a mixture precipitation agent, respectively. XRD, FTIR, SEM results showed that the prepared precursor powder of LuAG:Ce3+ by co-precipitation contained amorphous sheet structure, its main components were carbonate NH4A1(OH)2CO3 and Lu2(CO3)3 nH2O, but the obtained that by solvo-thermal method existed some octahedral shape material construction, whose main components were AlOOH and Lu(OH)3. In the same calcination conditions, the prepared LuAG:Ce3+ resultant powder by co-precipitation was almost spherical, well dispersed and uniform distribution with particle size about 80-100nm, and the obtained that by solvo-thermal method contains seriously agglomerative and irregular morphological particles with particle size about 30-50nm. The luminescence of the obtained LuAG: Ce3+ powder by solvo-thermal method was stronger than that of powder prepared by co-precipitation method. The luminescence properties of the obtained LuAG:Ce3+ powders by co-precipitation method at different calcination temperature and atmosphere were compared. The LuAG:Ce3+ powders prepared by above two methods were pressed into tablets without any other additives, calcined in the vacuum and then nitrogen calcinations, and the LuAG:Ce3+ transparent ceramics were obtained. The microsructures and transparencies of the obtained LuAG:Ce3+ transparent ceramics by above two methods were compared. Some specific impact factors that affected the transparency of ceramics were discussed. The excitation and emission spectra of the obtained LuAG:Ce3+ ceramics in two ways were analyzed. The luminescence of Ce3+ under the different excitation wavelengths was analyzed. LuAG:Ce3+ powders and transparent ceramics prepared by solvo-thermal method, their excitation and emission intensities were all stronger than that prepared by co-precipitation method, but the preparation process and cycle of solvo-thermal method was relatively long, and yields were relatively lower, so this solvo-thermal preparation process should be further optimized.
     In chapter 5, the precursor powders of LuAG:Ce3+ obtained by mixed solvo-thermal at 270℃for 2h were directly pressed into tablets, sintered in vacuum and then in nitrogen without any additive, and LuAG:Ce3+ transparent ceramics were synthesized. The luminescence in ultraviolet and vacuum ultraviolet region for LuAG: Ce3+ transparent ceramics was measured and investigated. The photoluminescence of LuAG:Ce3+ transparent ceramics under the different excitation wavelength was analyzed and luminescence mechanism for Ce3+ was discussed. The microstructures, transparencies and luminescence properties of the obtained LuAG:Ce3+ transparent ceramics in chapter 5 were compared with that in chapter 4. It was found that the prepared LuAG:Ce3+ transparent ceramic in chapter 5, its preparation process was simple, the transparency of ceramics was better and its luminescence was stronger relatively.
引文
[1]贡长生,张克立.新型功能材料,化学工业出版社,北京,2001
    [2]郑子樵,李红英.稀土功能材料,化学工业出版社,北京,2003
    [3]张希艳,卢利平,柏朝晖等.稀土发光材料,国防工业出版社,北京,2005
    [4]李建宇.稀土发光材料及其应用,化学工业出版社,北京,2003
    [5]苏锵.20世纪稀土科技发展的回顾与前瞻,稀土信息2(2001)5
    [6]苏锵.国家中长期科学和技术发展规划纲要中与稀土有关部分的思考-稀土发光材料部分,四川稀土3(2006)2
    [7]G. H. Dieke. Spectra and energy levels of rare earth ions in crystals, Interscience Publishers, New York,1968
    [8]中国科学技术大学《固体发光》编写组.固体发光,吉林物理所,1976
    [9]R. T. Wegh, A. Meijerink, R. J. Lamminmaki, et al. Journal of Luminescence 87-89(2000)1002
    [10]夏上达.群论与光谱,科学出版社,北京,1994
    [11]徐叙瑢,苏勉曾.发光学与发光材料,化学工业出版社,北京,2004
    [12]黄世华.离子中心的发光动力学,科学出版社,北京,2002
    [13]L. A. Riseberg, M. J. Weber. In:E. Wolf (Eds.). Relaxation Phenomena in Rare-Earth Luminescence, Progress in Optics XIV. Elsevier, Amsterdam,1976
    [14]徐东勇,减竞存.人工晶体学报 30(2001)203
    [15]杨建虎,戴世勋,蒋中宏.物理学进展 23(2003)284
    [16]何捍卫,周科朝,熊翔,黄伯云.中国稀土学报 21(2003)123
    [17]F. Auzel. Chemical Reviews 104(2004)139
    [18]G. S. Yi, H. C. Lu, S. Y. Zhao, et al. Nano Lerters 4(2004)2191
    [19]R. T. Wegh, H. Donker, E. V. D. van Loef, et al. Journal of Luminescence 87-89(2000)1017
    [20]Y. H. Chen, B. Liu, C. S. Shi, et al. Science in China Series G-Physies Astronomy 46(2003)17
    [21]B. Liu, Y. H. Chen, C. S. Shi, et al. Journal of Luminescence 101(2003)155
    [22]P. S. Peijzel, W. J. M. Schrama, A. Meijerink. Molecular Physics 102(2004)1285
    [23]R. T. Wegh, H. Donker, K. D. Oskam, et al. Science 283(1999)663
    [24]T. Matsuzawa, Y. Aoki, N. Takeuchi, et al. Journal of the Electrochemical Society 143(1996)2076
    [25]李成宇,苏锵,丘建荣.发光学报,24(2003)19
    [26]Y. J. Chen, G. M. Qiu, X. J. Geng, et al. Journal of Rare Earth 22(2004)34
    [27]X. Y. Zhang, J. J. Hu, Q. S. Liu, et al. Journal of Rare Earth 22(2004)216
    [28]B. W. D'Andrade, J. Brooks, V. Adamovieh, et al. Advanced Materials 14(2002)1032
    [29]S. Tokito, T. lijima, Y. Suzuri, et al. Applied Physics Letters 83(2003)569
    [30]N. Dong, B. Chen, M. Yin, et al. Joumal of Rare Earth 22(2004)31
    [31]D. Y. Kondakov. Journal of Applied Physics 97(2005)
    [32]范希智等,国际光电与显示综述版,2002年7月刊
    [33]G. Blasse, Luminescent Materials, Springer,1994
    [34]华王祥.无机闪烁体的发展,上海化工23(1998)36
    [35]陈启伟,施鹰,施剑林.材料科学与工程学报23(2005)128
    [36]H. Yamada, A. Suzuki, et al. Journal Electrochemical Socity 139(1989)2713
    [37]Y. Ito, H. Yamada. Joumal of Applied Physics 27(1988)L1371
    [38]M. J. Weber. Journal of Lumineseence 100(2002)35
    [39]Jianren Lu. Japan Joumal of Applied Physics Part2 39(2002)L1048
    [40]Jianren Lu. Japan Journal of Applied Physics Part2 40(2001)L1277
    [41]施剑林,冯涛.无机光学透明材料-透明陶瓷,上海科学普及出版社,上海,2008
    [42]A. Ikesue, YL. Aung. Journal of American Ceramic Society 89(2006)1936
    [43]H. Yagi, T. Yanagitani, T. Numazawa, et al. Ceramics International 33(2007)711
    [44]徐政等,现代功能陶瓷,国防工业出版社,北京,1998
    [45]P. Herrera, R. C. Burghard, Veterinary P.T. D. Microbiology 74(2000)259
    [46]A. T. Cuneyt, F. Korkusuz. Journal of Mater Science:Master Medical 8(1997)29
    [47]高濂,李蔚.纳米陶瓷.化学工业出版社,北京,2002
    [48]张凯锋,陈国清.无机材料学报18(2003)705
    [49]李玉宝,顾宁,魏于全.纳米生物医药材料,化学工业出版社,北京,2004
    [50]郑衡,宋宜诺,王建明,朱宗奎.化工文摘2(2008)42
    [51]吴进前.新材料产业 3(2005)61
    [52]时刻,黄英,廖梓珺.中国陶瓷 41(2005)20
    [53]孙尧,周刚.化工新型材料 29(2001)6
    [54]沈理达,田宗军,黄因慧.粉末冶金技术 27(2009)29
    [55]江东亮.无机材料学报 24(2009)873
    [56]L. M. Sheppard. Ceramic Bulletin.69(1990)1801
    [57]Q. W. Chen, Y. Shi, L. Q. An, et al. Journal of European Ceramic Society 27(2007)191
    [58]E. Zych, D. Hreniak, W. Strek. Journal of Physical Chemistry B 105(2002)3805
    [59]施鹰,陈启伟,施剑林.硅酸盐学报 36(2008)805
    [60]李会利,刘学建,黄莉萍.无机材料学报 21(2006)1161
    [61]M. Nikl, J. A. Mares, N. Solovieva. Journal of Applied Physics 101(2007)033515-1
    [62]H. Takahashi, T. Yanagida, D. Kasama, et al. IEEE Transactions on Nuclear Science 53(2006)2404
    [63]Y. M. Ji, D. Y. Jiang, J. L. Shi. Journal of Materials Research 20(2005)567
    [64]石云,潘裕柏,冯锡淇,等.无机材料学报 25(2010)125
    [65]任国浩,王绍华.材料导报 16(2002)31
    [66]Z. G. Lin, C. H. Tan, B. Liu, et al. Journal of Materials Science 43(2008)7507
    [67]刘军芳,傅正义,张东明,等.硅酸盐通报 3(2003)68
    [68]刘军芳,傅正义,张东明,等.陶瓷学报 23(2002)246
    [69]徐如人,庞文琴.无机合成与制备化学.高等教育出版社,北京,2001
    [70]K. R. Venkatachari, et al. Journal of Materials Research 10(1995)248
    [71]A. G. Merzhanov. Ceramic International 21(1995)371
    [72]D. Jezequel, J. Guenot, N. Jouini, et al. Journal of Materials Research 10(1995)77
    [73]J. X. Huang, Y. Xie, B. Li, et al. Advanced Materials 12(2000)808
    [74]X. T. Dong, G. Y. Hong, X. G. Qu, et al. Journal of Materials Science& Technology 13(1997)113
    [75]魏娜.科协论坛 1(2009)99
    [76]李敏,李盼,王维刚.中国粉体技术 14(2008)54
    [77]施尔畏,夏长泰,王步国,等.无机材料学报 11(1996)193
    [78]苏勉曾,谢高阳,申泽文等译,固体化学及其应用,复旦大学出版社,上海,1989
    [79]Q. W. Chen, Y. T. Qian. Applied Physics Letters 66(1995)1608
    [80]G. W. Morey. Journal of American Ceramic Society 36(1953)279
    [81]P. Niggli, G. W. Morey. Zeitschrift fur Anorganische und allgemeine chemie 83(1913)369
    [82]G. Spezia, Z. Kristallogr. Atti. Accad. Sci. Torino 33(1900)636
    [83]E. T. Allen, J. L. Crenshaw, J. Johnson. American Journal of Science 4(1912)167
    [84]A. Rabenau. Angewandte Chemie-international Edition 24(1985)1026
    [85]Y. T. Qian. Advanced Materials 11(1999)1101
    [86]吕伟.氧化锌氧化钵氮化稼和氧化秘等纳米材料的制备及其性能研究,山东大学博士学位论文(2006)11-13
    [87]M. Inoue, H. Tanino, Y. Kondo, et al. Journal of American Ceramic Society 72(1989)352
    [88]Y. D. Li, Y. T. Qian, H. W. Liao, et al. Seience 281(1998)246
    [89]X. Wang, Y. Li, Angewandte Chemie-international Edition 41(2002)4790
    [90]X. Wang, X. Sun, D. Yu, et al. Advanced Materials 15(2003)1442
    [91]S. H. Yu, B. Liu, M. S. Mo, et al. Advanced Functional Materials 13(2003)639
    [92]Y Xie, Y. T. Qian, W. Z. Wang, et al. Science 272(1996)639
    [93]Z. Liu, S. Peng, Q. Xie, et al. Advanced Materials 15(2003)936
    [94]W. Wang, Y. D. Li. Advanced Materials 15(2003)445
    [95]X. Wang, X. M. Sun, D. P. Yu, et al. Advanced Materials 15(2003)1442
    [96]刘军芳,傅正义,张东明,等.陶瓷科学与艺术,(2002)26
    [97]N. Kuramoto, H. Taniguchi, I. Aso. IEEE transactions on components, hybrids and manufacturing technology 9(1989)386
    [98]N. Ichinose. Materials Chemistry and Physics 42(1995)176
    [99]吉亚明,蒋丹宇,冯涛,等.无机材料学报19(2004)275
    [100]王超男.Y2O3:Eu3+纳米粉末和透明陶瓷的制备及光谱性质研究.中国科学技术大学博士学位论文(2009)21-24
    [1]C. Greskovich, S. Duclos. Reviews on Advanced Materials Science 27(1997) 69
    [2]Marvin J. Weber. Journal of Luminescence 100(2002)35
    [3]S. J. Duelos, D. Charles, Greskovich, etal. Nuclear Instruments& Methods in Physics Research A 505(2003)68
    [4]Q. W. Chen, Y. Shi, L. Q An, et al. Journal of the American Ceramic Society 89(2006)2038
    [5]J. A. Capobianco, F. Vetrone, J. C. Boyer, et al. Optical Materials 19(2002)259
    [6]A. Garcia-Murillo. Journal of Alloys and Compounds 323-324(2001)74
    [7]J. Lu, K. Takaichi, T. Uematsu, Applied Physics Letters 81(2002)4324
    [8]Y. R. Shen. Physical Review B 65(2002)212103
    [9]D. W. Cooke. Journal of Luminescence 106(2004)125
    [10]江东亮.无机材料学报,24(2009)873
    [11]A. Lempickia. Nuclear Nuclear Instruments& Methods in Physics Research A 488(2002)579
    [12]E. Zych, P. J. Deren, W. Strek, et al. Journal of Alloys and Compounds 323-324(2001)8
    [13]Z. F. Wang, W. P. Zhang, B. G. You, M. Yin. Spectrochimica Acta Part A 70(2008) 835
    [14]E. Zych. Journal of Alloys and Compounds 341(2002) 381
    [15]Y. Shi, Q.W. Chen, J.L. Shi. Optical Materials 31(2009)729
    [16]X. J. Liu, H. L. Li, R. J. Xie, et al. Journal of Luminescence 127 (2007) 469
    [17]L. Q. An, J. Zhang, M. Liu, et al. Journal of Luminescence 122-123(2007)125
    [18]H. Guo, M. Yin, N. Dong, et al. Applied Surface Science 243(2005)245
    [19]J. Trojan-Piegza, E. Zyeh. Journal of Alloys and Compounds 380(2004)118
    [20]E. Zyeh, J. Trojan-Piegza, P. Dorenbos. Radiation Measurements 38(2004)471
    [21]张立德,牟季美.纳米材料和纳米结构,科学出版社,北京,2001
    [22]S. K. Shi, J. Y. Wang. Journal of Luminescence 327(2001)82
    [23]M. Xu, W. P. Zhang, N. Dong, et al. Journal of Solid State Chemistry 178(2005)477
    [24]G. Sequini. Applied Physics Letters 85(2004)5316
    [25]E. Zyeh. Journal of Physics-Condensed Matter 14(2002)5637
    [26]G. Concas, G. Spano, E. Zych, et al. Journal of Physics-Condensed Matter 17(2005)2597
    [27]E. Zych. Journal of Alloys and Compounds 341(2002)381
    [1]W. W. Moses, et al, IEEE Transactions on Nuclear Science NS-42(1995) 275
    [2]苏锵.稀土化学,河南科学技术出版社,1993
    [3]Y. Kuwano, K. Suda, N. Ishizawa, et al. Journal of Crystal Growth 260(2004)159
    [4]K. Papagelis, et al. Journal of Physics and Chemistry of Solids 64(2003)599
    [5]A. Krasnikov. Nuclear Instruments and Methods in Physics Research A 537(2005) 130
    [6]C. W. E. Van Eijk. Nuclear Instruments and Methods in Physics Research A 460(2001)1
    [7]S. A. Cicillini, A. M. Pires, O. A. Serra. Journal of Alloys and Compounds 347(2004)169
    [8]C. Greskovich, S. Duclos. Annual Review of Materials Science 27(1997)69
    [9]B. G. You, M. Yin Min, W. P. Zhang, et al. Journal of Rare Earths 24(2006)745
    [10]G. Blasse, B. C. Grabmaier. Luminescent Materials, Springer Verlag, Berlin,1994
    [11]J. A. Mares, M. Nikl, A. Beitlerova, et al. Nuclear Instruments and Methods in Physics Research A 537(2005)271
    [12]C. W. E. Van Eijk. Nuclear Instruments and Methods in Physics Research A 392(1997)285
    [13]M. Nikl, E. Mihokova, J. A. Mares, et al. Physical Status Solid Applied research (a) 181(2000)R10
    [14]N. J. Cherepy, J. D. Kuntz, T. M. Tillotson, et al. Nuclear Instruments and Methods in Physics Research. Section A 579(2007)38
    [15]H. L. Li, X. J. Liu, L. P. Huang. Optical Materials 29(2007)1138
    [16]H. L. Li, X. J. Liu, L. P. Huang. Journal of Inorganic Materials,21(2006)1161
    [17]H. L. Li, X. J. Liu, L. P. Huang. Journal of the American Ceramic Society 88(2005) 3226
    [18]H. L. Li, X. J. Liu, Q. T. Zhang Qitu, et al. Journal of Rare Earths 25(2007)401
    [19]H. L. Li, X. J. Liu, L. P. Huang. Ceramics International 32(2006)309
    [20]J. J. Xie, Y. Shi, Y. M. Hu, et al. Journal of inorganic materials, (in Chin.) 24(2009)79
    [21]H. L. Li, X. J. Liu, L. P. Huang. Ceramics International 33(2007)1141
    [22]R. Yang, J. Qin, M. Li, et al. Journal of the European Ceramic Society 28(2008)2903
    [23]J.Q. Wang, H.Y. Xu, Y. Wang, et al. Journal of Rare Earths 24(2006)284
    [24]X. Li, H. Liu, J.Y. Wang, et al. Journal of Physics and Chemistry of Solids 66(2005)201
    [25]T. Sato. Thermochimica Acta 88(1985)69
    [26]M. L. P. Antunes, H. S. Santos, P. S. Santos. Mater. Materials Chemistry and Physics 76 (2002)243
    [27]Y. K. Liao, D. Y. Jiang, J. L. Shi. Materals Letters 59(2005)3724
    [28]V. Bolis, G. Magnacca, G. Cerrato, C. Morterra. Thermochimica Acta 379(2001)147
    [29]V. Saraswati, G. V. N. Rao, R. Rama. Journal of Materials Science 22(1987)2529
    [30]G. G. Xu, X. D. Zhang, W. He, et al. Powder Technology 163(2006)202
    [31]X. Li, H. Liu, J. Y Wang. Materials Letters 58(2004)2377
    [32]X. Li, H. Liu, J. Y. Wang. Journal of Inorganic Materials (in Chin.) 19(2004)1168
    [33]M. Inoue Masashi, H. K. Otsu, H. Kominami, et al. Journal of the American Ceramic Society 74(1991)1452
    [34]W. Z. Zhong, S. K. Hua. Crystal growth morphology (in Chin.), Beijing:Science Press,1999
    [35]Y. H. Zhou, J Lin, M. Yu, et al. Materials Letters 56(2002)628
    [36]X. J. Liu, H. L. Li, R. J. Xie, et al. Journal of Luminescence 124(2007)75
    [37]Y. Zorenko, V. Gorbenko, I. Konstankevych, et al. Journal of Luminescence 114(2005)85
    [38]J. A. Mares, M. Nikl, A. Beitlerova, et al. Nuclear Instruments and Methods in Physics Research Section A 537(2005)271
    [39]Z. F. Wang, W. P. Zhang, B. G. You, et al. Spectrochimica Acta Part A 70(2008) 835
    [40]Q. W. Chen, Y. Shi, L. Q. An, et al. Journal of the European Ceramic Society 27(2007)191
    [41]A. Lempicki, C. Brecher, P. Szupryczynski, et al. Nuclear Instruments and Methods in Physics Research Section A 488(2002)579
    [42]C. D. Greskovich, D. Cusano, D. Hoffman, et al. American Ceramic Society Bulletin 71(1992)1120
    [43]C. D. Ambrosio, F. Notaristefani, G. Hull. Nuclear Instruments and Methods in Physics Research Section A 556(2006)187
    [1]Z. F. Wang, M. Xu, W. P. Zhang, et al. Journal of Luminescence 122-123(2007)437
    [2]V. Babin, A. Krasnikov, Y. Maksimov, etal. Optical Materials 30(2007)30
    [3]Y. Zorenko, V. Gorbenko, E. Mihokova, et al. Radiation Measurements 42(2007)521
    [4]O. Hiraku, Y. Akira, N. Martin, et al. Journal of Crystal Growth 287(2006)335
    [5]O. Hiraku, Y. Akira, H. Jong, et al. Journal of Crystal Growth 253(2003)314
    [6]B. G. You, M. Yin Min, W. P. Zhang, et al. Journal of Rare Earths 24(2006)745
    [7]C. W. E. Van Eijk. Nuclear Instruments and Methods in Physics Research A 392(1997)285
    [8]A. Lempicki, C. Brecher, P. Szupryczynski, et al. Nuclear Instruments and Methods in Physics Research Section A 488(2002)579
    [9]C. D. Greskovich, D. Cusano, D. Hoffman, et al. American Ceramic Society Bulletin 71(1992)1120
    [10]C. D. Ambrosio, F. Notaristefani, G. Hull. Nuclear Instruments and Methods in Physics Research Section A 556(2006)187.
    [11]M. Nikl, E. Mihokova, J. A. Mares, et al. Physica Status Solidi Applied research (a) 181(2000)R10
    [12]N. Zhang, D. J. Wang, L. Li, et al. Journal of Rare Earths 24(2006)294
    [13]Y. K. Liao, D. Y. Jiang, J. L. Shi. Materals Letters 59(2005)3724
    [14]J. P. Zhong, H. B. Liang, Q. Su, et al. Journal of Rare Earths 25(2007)568
    [15]H. L. Li, X. J. Liu, L. P. Huang. Journal of the American Ceramic Society 88(2005) 3226
    [16]H. L. Li, X. J. Liu, L. P. Huang. Ceramics International 33(2007)1141
    [17]H. L. Li, X. J. Liu, L. P. Huang. Ceramics International 32(2006)309
    [18]H. L. Li, X. J. Liu, L. P. Huang. Optical Materials 29(2007)1138
    [19]J. W. G. A. Kinsman, J. W. M. M. Willems, R. Metselaar, et al (Eds.). Euro-Ceramics vol.1. Essex:Elsevier Applied Science,1989
    [20]Z. G. Wu, X. D. Zhang, W. He, et al. Journal of Alloys and Compounds 472(2009)576
    [21]J. J. Xie, Y. Shi, Y. M. Hu, et al. Journal of inorganic materials, (in Chin.) 24(2009)79
    [22]X. Li, H. Liu, J.Y. Wang, et al. Journal of Physics and Chemistry of Solids 66(2005)201
    [23]V. Saraswati, G. V. N. Rao, R. Rama. Journal of Materials Science 22(1987)2529
    [24]Y. H. Zhou, J Lin, M. Yu, et al. Materials Letters 56(2002)628
    [25]J. G. Li, I. T. Ikegami, J. H. Lee, et al. Journal of the American Ceramic Society 83(2000)961
    [26]R. Yang, J. Qin, M. Li, et al. Journal of the European Ceramic Society 28(2008)2903
    [27]H. L. Li, X. J. Liu, Q. T. Zhang Qitu, et al. Journal of Rare Earths 25(2007)401
    [28]J. A. Dean. Inorganic Chemistry (15th ed.), Lange's handbook of chemistry,15th edition. McGraw-Hill, New York,1999
    [29]Department of Chemistry, Analytical Chemistry, Hangzhou University, Teaching and Research Section. Analytical Chemistry Handbook(second fascicle), second edition (in Chin.). Chemical Industry Press, Beijing,1997
    [30]Y. Zorenko, V. Gorbenko, I. Konstankevych, et al. Journal of Luminescence 114(2005)85
    [31]J. A. Mares, M. Nikl, A. Beitlerova, et al. Nuclear Instruments and Methods in Physics Research Section A 537(2005)271
    [32]C. W. Wong, S. R. Rotman, C. Warde. Applied Physics Letters 44(1984)1038
    [33]T. Tomiki, H. Akamine, M. Gushiken, et al. Journal of the Physical Society of Japan 60(1991)2437
    [1]J. W. G.A. Kinsman, J. W. M. M. Willems, R. Metselaar, et al (Eds.). Euro-Ceramics vol.1. Essex:Elsevier Applied Science,1989
    [2]J. Q. Wang, H. Y. Xu, Y. Wang Y, et al. Journal of Rare Earths 24(2006)284
    [3]R. Yang, J. Qin, M. Li, et al. Journal of the European Ceramic Society 28(2008)2903
    [4]L. Xing, L. M. Peng, M. Gu, et al. Journal of Alloys and Compounds 491(2010)599
    [5]J. Su, Q. L. Zhang, C. J. Gu, et al. Materials Research Bulletin 40(2005)1279
    [6]Y. K. Liao, D. Y. Jiang, J. L. Shi. Materals Letters 59(2005)3724
    [7]V. Bolis, G. Magnacca, G. Cerrato, et al. Thermochimica Acta 379(2001)147
    [8]X. Li, H. Liu, J.Y. Wang, et al. Journal of Physics and Chemistry of Solids 66(2005)201
    [9]T. Sato. Thermochimica Acta 88(1985)69
    [10]M. L. P. Antunes, H. S. Santos, P. S. Santos. Mater. Materials Chemistry and Physics 76 (2002)243
    [11]V. Saraswati, G. V. N. Rao, R. Rama. Journal of Materials Science 22(1987)2529
    [12]G. G. Xu, X. D. Zhang, W. He, et al. Powder Technology 163(2006)202
    [13]L. X. Wang, M. Yin, C. X. Guo, et al. Journal of Rare Earths 28(2010)16
    [14]Y. Zorenko, V. Gorbenko, E. Mihokova, et al. R adiation Measurements 42(2007)521
    [15]T. Tomiki, H. Akamine, M. Gushiken, et al. Journal of the Physical Society of Japan 60(1991)2437
    [16]E. Zych, C. Brecher, A. J. Wojtowicz, et al. J. Lumin.75(1997)193
    [17]Z. F. Wang, M. Xu, W. P. Zhang, et al. Journal of Luminescence 122-123(2007)437
    [18]M. Nikl, J. A. Mares, N. Solovieva, et al. Physical Status Solid Applied research (a) 201 (2004)R41
    [19]E. Zych, C. Brecher, H. Lingertat. Journal of Luminescence 78(1998)121
    [20]M. Nikl, E. Mihokova, J. A. Mares, et al. Physical Status Solid Applied research (a) 181(2000)R10
    [21]H. L. Li, X. J. Liu, Q. T. Zhang Qitu, et al. Journal of Rare Earths 25(2007)401
    [22]Y. Zorenko, V. Gorbenko, I. Konstankevych, et al. Journal of Luminescence 114(2005)85
    [23]J. A. Mares, M. Nikl, A. Beitlerova, et al. Nuclear Instruments and Methods in Physics Research A 537(2005)271
    [24]A. Lempicki, C. Brecher, P. Szupryczynski, et al. Nuclear Instruments and Methods in Physics Research Section A 488(2002)579
    [25]C. Greskovich, D. A. Cusano, D. Hoffman, R. J. Riedner. Journal of the American Ceramic Society Bullitin 71(1992) 1120
    [26]C. D. Ambrosio, F. Notaristefani, G. Hull. Nuclear Instruments and Methods in Physics Research Section A 556(2006)187
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.