夏冬季中国近海今生颗石藻及其钙化作用速率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗石藻是海洋浮游植物功能群中一类重要的钙化生物类群,同时也是海洋中生源无机碳的主要来源,其通过光合作用(有机碳泵)和钙化作用(碳酸盐反向泵)两个过程,将海水中的溶解无机碳(DIC)转化为颗粒有机碳(POC)和颗粒无机碳(PIC)。
     本研究基于2009年冬季(2月11日至21日)在南海北部进行的断面调查,以及2009年夏季(7月18日至8月31日)在南海、黄东海进行的大面调查。研究内容主要包括:海水叶绿素a含量;浮游植物丰度和碳生物量;颗石藻丰度、碳生物量和颗石粒方解石(CaCO3)含量;颗粒碳库(Phyto-C、POC、PIC);钙化速率(pPIC)和固碳速率(pPOC);温度、盐度、营养盐等参数。
     海水叶绿素a含量使用荧光法进行测定;浮游植物丰度和碳生物量采用Uterm?hl倒置显微镜和细胞体积转化法;颗石藻丰度和碳生物量采用偏光显微镜方法;颗石粒方解石含量采用扫描电子显微镜颗石粒体积转化法;POC测定使用CHN分析仪进行;PIC测定采用电感耦合等离子体发射光谱(ICP-OES)进行;钙化速率和固碳速率采用14C微扩散法进行;温盐采用CTD实时监测;营养盐使用自动分析仪进行。
     对叶绿素a含量、浮游植物群落、颗石藻群落、颗石粒CaCO3、颗石藻和方解石通量进行研究后发现:2009年夏季调查期间,叶绿素a高值主要出现在海水上混合层(SML)以下,南海叶绿素a含量为0.401±0.322 mg m-3,东海0.696±0.669 m g m-3,黄海0.751±0. 525 m g m-3。南海总浮游植物丰度平均1.39×104 cells/L,高值为硅藻的柔弱伪菱形藻(Pseudo-nitzschia delicatissima)控制,东海平均7.72×103 cells/L,高值为硅藻的角毛藻(Chaetoceros spp.)控制,黄海平均8.41×103 cells/L,高值为甲藻的具齿原甲藻(Prorocentrum dentatum)控制。颗石藻优势种主要为赫氏艾密里藻(Emiliania huxleyi)和大洋桥石藻(Gephyrocapsa oceanica)。南海总颗石藻丰度为4.24±5.61×103 cells L-1(2009年冬季为40.9±37.0×103 cells L-1,是夏季的近十倍),黄东海为8.41±7.95×103 cells L-1。南海颗石粒CaCO3含量平均51.9±50.5 mg m-2,黄东海为77.2±81.4 mg m-2。南海总颗石藻现存量为286.0±273.2×106 cells m-2,黄东海为506.4±527.4×106 cells m-2。南海总颗石藻通量为9.7±9.0×106 cells m-2 d-1,黄东海为20.7±15.7×106 cells m-2 d-1。南海总方解石通量为1.80±1.70 mg m-2 d-1,黄东海为3.08±2.33 mg m-2 d-1。
     对颗粒碳库、钙化速率和固碳速率进行研究后发现:2009年夏季调查期间,南海浮游植物碳(Phyto-C)为24.8±30.2 mmol m-2,黄东海为83.4±112.0 mmol m-2。南海POC为382.6±139.6 mmol m-2,黄东海为431.4±136.2 mmol m-2。南海PIC为31.9±21.6 mmol m-2,黄东海为53.5±54.3 mmol m-2。南海pPIC平均6.48±3.19μmol C m-3 d-(15.43±1.77 mg C m-2 d-1),黄东海平均9.95±5.53μmol C m-3 d-1(6.17±2.75 mg C m-2 d-1)。南海pPOC平均0.402±1.457 mmol C m-3 d-1(291.7±397.1 mg C m-2 d-1),黄东海平均0.736±0.890 mmol C m-3 d-1(468.7±375.6 mg C m-2 d-1)。
     对基于C吸收的生长率、C库的周转、钙化对海洋C固定的贡献、雨率(pPIC:pPOC)动态进行研究后发现:2009年夏季调查期间,南海μ-PIC为0.018±0.008 d-1,黄东海为0.016±0.013 d-1。南海μ-POC为0.054±0.043 d-1,黄东海为0.093±0.074 d-1。南海μ-PhytoC为0.83±0.52 d-1,黄东海为0.63±0.51 d-1。南海τ-PIC为67.9±32.6 days,黄东海为131.1±129.9 days。南海τ-POC为31.9±26.0 days,黄东海为21.6±22.9 days。南海τ-PhytoC为1.37±1.20 days,黄东海为4.85±9.86 days。南海颗石藻钙化占到总碳固定的3.5±2.8%,黄东海占到1.9±1.5%。南海颗石藻有机碳对总有机碳固定的贡献为5.4±4.5%,黄东海为2.9±2.3%。南海雨率变化在0.002 ~ 0.412之间,平均0.067±0.078,黄东海变化在0.003 ~ 0.102之间,平均0.034±0.031。
     综合以上研究,夏季台湾岛东北部黑潮影响区、菲律宾吕宋海峡黑潮上游分支入侵区、东南亚时间序列站(SEATS)以及珠江口与陆架的邻接区,是今生颗石藻群落的主要分布区域。尽管E. huxleyi在总颗石藻丰度、现存量、颗石球通量上占有绝对优势,但是因其细胞体积和颗石粒体积相对较小,因此其在有机碳含量、方解石现存量、方解石通量上的贡献相对较低。相反,细孔钙盘藻(Calcidiscus leptoporus)、纤细伞球藻(Umbellosphaera tenuis)等颗石粒钙化程度高、CaCO3含量大的物种对碳的贡献也同样不可忽视。尽管黄东海的颗石藻钙化速率比起南海来有所增加,但是在黄东海,硅甲藻等光合自养生物的初级生产要比南海高很多,因此导致了南海的雨率要显著高于黄东海。同样,尽管钙化速率在垂向上的变化范围不是很大,但是固碳速率随水深增加却急速下降,因此导致了雨率随水深增加而显著升高,高值多出现在近真光层底部的水体中。比较了海洋上层生产与深层输出后发现,上层水体有机碳生产在向深层输出的过程中,再矿化(氧化作用)还是十分显著的,最后只有约0.7%的有机碳生产能够抵达海底。但是方解石的情况却有很大的不同,由于颗石藻(方解石)是最难溶的,即使到达接近海底的深度(~ 3700 m),也只有~ 42.2%的方解石溶解,约50%的颗石藻CaCO3生产埋藏进入海底表层沉积物,从而完成大气CO2向海洋内部深层的扣押过程。从深层碳输出与表层碳生产之间量上的差异来看,方解石保持在一个数量级水平上,但是有机碳却变化在1-2个数量级上。但是如果单是从碳(C)的角度来看,抵达海底的有机碳与无机碳基本持平,无机碳埋藏占到~ 54%的总C埋藏。
Coccolithophores a re i mportant calcifiers i n marine phytoplankton functional groups study and meanwhile the main sources of biogenic inorganic carbon. They play critical roles in the oceanic biogeochemical carbon cycles through their organic carbon p ump (i.e. pho tosynthesis) a nd carbonate counter p ump (i.e. c alcification) processes which transform dissolved i norganic c arbon ( DIC) i nto respectively particulate organic and inorganic matter (POC and PIC).
     Two cruies were carried in the coastal China Seas during winter and summer 2009. T he first crusie covered then oerthern part o fS outh China S ea (SCS) including f our transects s tudy f rom 11th to 21st Feburary. The second c ruise surveyed t he SCS, East China S ea ( ECS) a nd Y ellow Sea ( YS) with r outine investigation a nd time-series studies. Parameters that measured were the s eawater chlorophyll-a concentration, phy toplankton a bundance a nd carbon bi omass, coccolithophore abundance and biomass, standing c rop of coccolith calcium carbonate, paniculate carbon materials (Phyto-C, POC and PIC), production rates of PIC and POC, temperature, salinity and nutrients etc.
     For chlorophyll-a determination, the f luorescent method was used. Phytoplankton taxonomic composition and cell abundance were performed by using inverted 1 ight mi croscope and the ca rbon biomass w as ca lculated f rom the c ell biovolume and the carbon-volume relationships. Coccolithophore counts and carbon biomass convertion w ere c arried by using a m icroscope w ith p olarization optics. Coccolith calicite content was estimated by measuring the coccolith volume using the Scanning Electronic Microscope and then converted t o the calcium carbonate ma ss according to t he c alcite d ensity in the c occolith. F or particulate o rganic carbon (POC) a nd particulate i norganic c arbon ( PIC), A CHN a naly ser a nd a n I nductively Coupled Plasma O pticalE mission Spectrometer ( ICP-OES) were a pplied. Calcification and photosynthesis rates w ere m easured following t he s tandard Micro-Diffusion Technique (MDT). Temperature and salinity were monitored by the
     Conductivity-Temperature-Depth (CTD) e quipment. Nutrients were determined in situ by using the automatic analyser.
     During the s ummer c ruise, hi gh c hlorophyll-a appeared primarily u nder t he Surface Mixed Layer ( SML) of the upper seawater. Averaging chlorophyll-a in the SCS was 0.401±0.322 mg m-3, and in the ECS and YS were 0.696±0.669 mg m-3 and 0.751±0.525 mg m"3 respectively. Total phytoplankton abundance in SCS was 1.39x 104 cells/L, with the diatom Pseudo-nitzschia delicatissima being the dominated species. In ECS and YS were 7.72×103 cells/L and 8.41×103 cells/Lr espectively, and the domiant species were diatom Chaetoceros spp. a nd dinoflagellate Prorocentrum dentatum. C occolithophore r epresentative species were Emiliania huxleyi and Gephyrocapsa oceanica. Total coccolithophore abundance in SCS was 4.24±5.61×103 cells L-1 (with the abundance 40.9±37.0xl03 cellsL"1 in winter nearly t en-times 1 arger t han that o f the s ummer), and i n E CS&YS w as 8.41±7.95x 103 cells L-1. Standing crop of calcium carbonate derived from the coccolith in the SCS was 51.9±50.5 mg m-2, and in ECS&Y
     S was 77.2±81.4 mg m-2. Standing crop of coccolithophoresin SCS was 286.0±273.2×106 cells m-2, and in ECS&YS was 506. 4±527. 4×106 cells m -2. Total c occolithophore flux i n SCS w as 9.7±9.0xl06 cellsm-2 d-1, and in ECS&YS was 20.7±15.7×106 cellsm-2 d-1. Calcite flux in SCS was 1.80±1.70 mg m-2 d-1, and in ECS&YS was 3.08±2.33 mg m-2 d-1.
     During the summer cruise, phytoplankton carbon (Phyto-C) in the SCS was 24.8±30.2 mmol m-2, and in the ECS&YS was 83.4±112.0 mmol m-2. Seawater POC content in SCS was 382.6±139.6 mmol m-2, and in the ECS&YS was 431.4±136.2 mmol m"2. PIC concentration in SCS was 31.9±21.6 mmol m-2, and in ECS&YS was 53.5±54.3 mmol m-2. Averaging pPIC in SCS was 6.48±3.19μmol C m-3 d-1 (5.43±1.77mgCm-2d-1), and in the ECS&YS was 9.95±5.53μmol C m-3 d-1 (6.17±2.75 mg C m-2 d-1). AveragingpPOC in SCS was 0.402±1.457 mmol C m-3 d-1 (291.7±397.1 mg C m-2 d-1), and in the ECS&YS was 0.736±0.890 mmol C m-3 d-1 (468.7±375.6 mg C m-2 d-1).
     During the summer cruise, //-PIC in the SCS was 0.018±0.008 d-1, and in the ECS&YS was 0.016±0.013 d-1.μ-POC in the SCS was 0.054±0.043 d-1, and in the ECS&YS was 0.093±0.074 d-1.μ-PhytoC in the SCS was 0.83±0.52 d-1, and in the ECS&YS was 0.63±0.51 d-1.τ-PIC in the SCS was 67.9±32.6 days, and in the ECS&YS was 131.1±129.9 days.τ-POC in the SCS was 31.9±26.0 days, and in the ECS&YS was 21.6±22.9 days.τ-PhytoC in the SCS was 1.37±1.20 days, and in the ECS&YS was 4.85±9.86 days. The percentage of pPIC to total carbon fixtion (pPIC + pPOC)intheSCS was 3.5±2.8%, and in the ECS&YS was 1.9±1.5%. Coccolithophore c ontributiont o total phytoplankton pa rticulate o rganic carbon production i n S CS was 5.4±4. 5%, and i n the ECS&YS was 2. 9±2.3%. The rain ratios (pPIC : pPOC) in SCS varied between 0.002 and 0.412, averaging 0.067±0.078. While it spaned from 0.003 to 0.102 in the ECS&YS, averaging 0.034±0.031.
     From the research that mentioned above, results showed that in summer the living coccolithophores were main distributed in the Kuroshio area of the NE Taiwan Island, the Luzon Strait where the upper stream of the Kuroshio intruded into the SCS basin, the South East Asian Tim e-series Study station ( SEATS), a nd the a dj acent a rea between the Pearl River estuary and the continental shelf of northern SCS. Although E. huxleyi was predominant in many aspects including cell abundance, standing crops of coccospheres and cell flux, the relative small cell diameter and coccolith volume decided t he m arked 1 ow v alues of estimated c arbon biomass, standing s tock o f calcium ca rbonate ma ss, ca lcite flux et c. However, two h eavy-calicified c occolith species Calcidiscus leptoporus and Umbellosphaera tennis were crucial and critical for the carbon pools as well. Although there was obvious elevating trend in the calcification rates in the ECS&YS, the relative high production rates of POC in this region caused the rain ratio decreasing dramatically in contrast to the case in the SCS. The pPIC variations in the vertical profiles were little constrained. However, the sharp decline in pPOC at depth caused the marked drawdown of rain ratios along with the increasing depth and most of the higher values appeared near the bottom of the euphotic z one. When c omparing the results o f surface pr oduction w ith deep water mass f lux d escribed in the lit eratures, results sh owed that the r emineralization (oxidation) pr ocess of o rganic matter w as s ignificant. Only ~ 0.7% o f s urface organic p roduction c an reach t he s ea floor. However, the case w as d ifferent for calcite, only ~ 42.2% of surface calcite production was dissolved when exporting to depth (even ~ 3,700 m) because of its refractory nature and around a half of calcite production could finally buried in the sendiments which constituted the ocean interior sequestration oft he a tmospheric CO2. Seen from t he q uantitative discrepancies between surface carbon production and deep water carbon flux, calcite varied within one order of magnitude in contrast with the organic matter which changed in one to two orders of magnitude. But when seeing from the carbon quota allocation, there was ba lance be tween or ganic and inorganic c arbon that reached the s ea floor, with inorganic carbon accounted ~ 54% of total carbon that buried.
引文
[1] Ajani P, Hallegraeff G M and Pritchard T, 2001. Historic overview of algal blooms in marine and estuarine waters of New South Wales, Australia. Proceedings of the Linnean Society of New South Wales, 123: 1-22.
    [2] Aksnes D L and Egge J K, 1991. A theoretical model for nutrient uptake in phytoplankton. Marine Ecology Progress Series, 70(1), 65-72.
    [3] Aksnes D L , Egge J K , R osland R, et al., 1994. R epresentation o f Emiliania huxleyi in phytoplankton simulation models. A first approach. Sarsia, 79: 291-300.
    [4] Andersen O K, 1981. Coccolith formation and calcification in an N-cell culture of Emiliania huxleyi during phosphorus-limited growth in batch and chemostat cultures. PhD Thesis [in Norwegian]. University of Oslo, Oslo.
    [5] Anderson T R , 2 005. Plankton f unctional type m odelling: r unning be fore w e c an w alk? Journal of Plankton Research, 27(11): 1073-1081.
    [6] Anning T , N imer N , M errett M J , et al., 1 996. C osts a nd benefits of c alcification in coccolithophorids. Journal of Marine Systems, 9(1-2): 45-56.
    [7] Archer S D , Widdicombe C E , T arran G A, et al., 2 001. Production a nd t urnover of particulate di methylsulphoniopropionate d uring a coccolithophore bl oom i n t he northern North Sea. Aquatic Microbial Ecology, 24: 225-241.
    [8] Armstrong R A, Lee C, Hedges J I, et al., 2002. A new, mechanistic model for organic carbon fluxes i n t he o cean b ased on t he quantitative association o f POC w ith b allast m inerals. Deep-Sea Research II, 49: 219-236.
    [9] Arpin N, Svec W A and Liaaen-Jensen S, 1976. New fucoxanthin-related carotenoids from Coccolithus huxleyi. Phytochemistry, 15: 529-532.
    [10] Assmy P , Henjes J , Klaas C , et al. M echanisms de termining s pecies d ominance i n a phytoplankton bloom induced by the iron fertilization experiment EisenEx in the Southern Ocean, Deep-Sea Research I, doi:10.1016/j.dsr. 2006.12.005.
    [11] Badger M R, Andrews T J, Whitney S M, et al., 1998. The diversity and co-evolution of rubisco, pl astids, p yrenoids a nd c hloroplast-based C O2-concentrating m echanisms i n the algae. Canadian Journal of Botany, 76: 1052-1071.
    [12] Balch W M and Kilpatrick K, 1996. Calcification rates in the equatorial Pacific along 140°W. Deep-Sea Research II, 43: 971-993.
    [13] Balch W M, Drapeau D T, Fritz J J, 2000. Monsoonal forcing of calcification in the Arabian Sea. Deep-Sea Research II, 47: 1301-1337.
    [14] Balch W M, Fritz J and Fernández E, 1996. Decoupling of calcification and photosynthesis in the c occolithophore Emiliania huxleyi under s teady-state li ght-limited gr owth. M arine Ecology Progress Series, 142: 87-97.
    [15] Balch W M, H olligan P M a nd K ilpatrick K A , 1992. Calcification, ph otosynthesis a nd growth of the bloom-forming coccolithophore, Emiliania huxleyi. Continental Shelf Research, 12(12): 1353-1374.
    [16] Balch W M, Holligan P M, Ackleson S G, et al., 1991. Biological and optical properties of mesoscale c occolithophore blooms in the G ulf of Maine. Limnology a nd O ceanography,36(4): 629-643.
    [17] Balch W, D rapeau D, Bowler B, et al., 2007. Prediction of pelagic calcification rates using satellite measurements. Deep-Sea Research II, 54: 478-495.
    [18] Baumann K H , B?ckel B a nd Frenz M, 20 04. Coccolith c ontribution to South A tlantic carbonate sedimentation. In: Thierstein H R and Young J R, Eds. Coccolithophores - From Molecular Processes to Global Impact. Heidelberg: Springer-Verlag, 367-402.
    [19] Berge G, 1 962. D iscoloration of t he sea d ue t o Coccolithus huxleyi‘‘bloom’’. S arsia, 6: 27-40.
    [20] Billard C, 1994. Life cycles. In: Green J C and Leadbeater B S C, Eds. The Haptophyte Algae. Clarendon Press, Oxford, pp. 167-186.
    [21] Black M , 1963. T he f ine structure o f t he m ineral parts of t he C occolithophoridae. Proceedings of the Linnean Society of London, 174: 41-46.
    [22] Bown P R, 1998. Calcareous Nannofossil Biostratigraphy. Chapman & Hall, London.
    [23] Boyd P W, Goldblatt R H and Harrison P J, 1999. Mesozooplankton grazing manipulations during in vitro iron enrichment studies in the NE subarctic Pacific. Deep Sea Research II, 46: 2645-2668.
    [24] Brand L E and Guillard R R L, 1981. The effects of continuous light and light intensity on the reproduction rates of twenty-two species of marine phytoplankton. Journal of Experimental Marine Biology and Ecology, 50: 119-132.
    [25] Brand L E, 1982. Genetic variability and spatial patterns of genetic differentiation in the reproductive rates of t he m arine c occolithophores Emiliania huxleyi and Gephyrocapsa oceanica. Limnol. Oceanogr., 27: 236-245.
    [26] Brand L E, 1991. Minimum iron requirements of marine phytoplankton and implications for the bi ogeochemical c ontrol of new production. L imnology a nd O ceanography, 36(8): 1756-1771.
    [27] Brand L E, Sunda W G a nd G uillard R R L , 1983. L imitation o f marine phytoplankton reproductive r ates by zinc, m anganese, a nd iron. L imnology and Oceanography, 28 (6): 1182-1198.
    [28] Bratbak G , Egge J K a nd H eldal M, 1993. Viral m ortality of the marine a lga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Marine Ecology P rogress Series, 93(1-2): 39-48.
    [29] Brown C W a nd Yoder J A , 19 93. Blooms of Emiliania huxleyi (Prymnesiophyceae) i n surface waters of the Nova-Scotian shelf and the Grand Bank. Journal of Plankton Research, 15: 1429-1438.
    [30] Brown C W and Yoder J A, 1994a. Coccolithophorid blooms in the global ocean. Journal of Geophysical Research-Oceans, 99: 7467-7482.
    [31] Brown C W and Yoder J A, 1994b. Distribution pattern of coccolithophorid blooms in the western north Atlantic Ocean. Continental Shelf Research, 14: 175-197.
    [32] Buitenhuis E T, van der Wal P and de Baar H J W, 2001. Blooms of Emiliania huxleyi are sinks of atmospheric carbon dioxide: a field and mesocosm study derived simulation. Global Biogeochemical Cycles, 15: 577-587.
    [33] Buitenhuis E, va n B leijswijk J , B akker D, et al., 1996. Trends i n i norganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea. Marine Ecology Progress Series, 143: 271-282.
    [34] Cai W J, Dai M, Wang Y, et al., 2004. The biogeochemistry of inorganic carbon and nutrients in t he Pearl River estuary and the adjacent N orthern S outh C hina Sea. C ontinental Shelf Research, 24: 1301-1319.
    [35] Cerme?o P, Dutkiewicz S, Harris R P, et al., 2008. The role of nutricline depth in regulating the ocean carbon cycle. PNAS, 105(51): 20344-20349.
    [36] Chen J F, Zheng L F, Wiesner M G, et al., 1998. Estimates of primary production and export production i n t he S outh C hina Sea based on sediment t rap experiments. C hinese Science Bulletin, 43(7): 583-586.
    [37] Chen R H, Wiesner M G, Zheng Y L, et al., 2007. Seasonal and annual variations of marine sinking particulate f lux dur ing 1993 ~ 199 6 in th e central S outh China Sea. A cta Oceanologica Sinica, 26(3): 33-43.
    [38] Chen Y L L and Chen H Y, 2006. Seasonal dynamics of primary and new production in the northern S outh C hina S ea: t he s ignificance o f river discharge and n utrient advection. Deep-Sea Research I, 53: 971-986.
    [39] Chen Y L L, 2005. S patial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep-Sea Research I, 52: 319-340.
    [40] Chen Y L L , C hen H Y and C hung C W, 2007. S easonal v ariability o f coccolithophore abundance a nd a ssemblage i n t he n orthern S outh C hina S ea. D eep-Sea R esearch I I, 5 4: 1617-1633.
    [41] Christensen T, 1980.“Algae. A Taxonomic Survey,”1. Odense, AiO Tryk.
    [42] Clocchiatti M , 1971. Sur l’existence d e coccosphères p ortant d es coccolithes de Gephyrocapsa oceanica et d e Emiliania huxleyi (Coccolithophoridés). C ompte r endu de l’Académie des sciences, Paris, 273: 318-321.
    [43] Crawford D W, Lipsen M S, Purdie D A, et al., 2003. Influence of zinc and iron enrichments on phytoplankton gr owth i n t he n orth-eastern subarctic P acific. L imnology a nd Oceanography, 48: 1583-1600.
    [44] Cros L, Kleijne A, Zeltner A, et al., 1999. New example of hol ococcolith-heterococcolith combination c occosphere a nd their implications for c occolithophorid bi ology. M arine Micropaleontology, 39: 1-34.
    [45] Danbara A a nd Shiraiwa Y, 1 999. The requirement of s elenium for the gr owth of m arine coccolithophorids, Emiliania huxleyi, Gephyrocapsa oceanica and Heladosphaera sp. (Prymnesiophyceae). Plant Cell Physiology, 40(7): 762-766.
    [46] de Vr ind-de Jong E W , B orman A H , Thierry R , et al., 1 986. Calcification in th e coccolithophorids Emiliania huxleyi and Pleurochrysis carterae. II. Biochemical aspects. In: Biomineralization in lower plants and animals (Ed. by Leadbeater B S C and Riding R S), Clarendon Press, Oxford, pp: 205-217.
    [47] de Vr ind-de Jong E W, van E mburg P R and de Vrind J P M , 1 994. M echanisms of calcification: Emiliania huxleyi as a model system. In: The haptophyte algae (Ed. by Green J C and Leadbeater B S C), Clarendon Press, Oxford, pp: 149-166.
    [48] Delille B , Harlay J , Zondervan I , et al., 20 05. R esponse of pr imary p roduction a nd calcification t o ch anges of pCO2 during e xperimental bl ooms o f t he c occolithophorid Emiliania huxleyi. Global Biogeochemical Cycles, 19: 595-605.
    [49] Dyhrman S T, Haley S T, Birkeland S R, et al., 2006. Long serial analysis of gene expression for gene di scovery and t ranscriptome profiling i n t he widespread m arine coccolithophoreEmiliania huxleyi. Applied and Environmental Microbiology, 72: 252-260.
    [50] Dymond J and Lyle M, 1985. Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: Implications for atmospheric CO2 variations during the Pleistocene. Limnology and Oceanography, 30: 699-712.
    [51] Egge J K and Aksnes D L, 1992. Silicate as regulating nutrient in phytoplankton competition. Marine Ecology Progress Series, 83: 281-289.
    [52] Engel A, Zondervan I, Aerts K, et al., 2005. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnology and Oceanography, 50(2): 493-507.
    [53] Eppley R W, Reid F M H and Strickland J D H, 1970. Estimates of phytoplankton crop size, growth rate and primary production. Bull. Scripps Inst. Oceanogr., 17: 33-42.
    [54] Feely R A, Sabine C L, Lee K, et al., 2002. In situ calcium carbonate di ssolution in the Pacific Ocean. Global Biogeochemical Cycles, 16(4), 1144, doi:10.1029/2002GB001866.
    [55] Feng Y Y, Warner M E, Zhang Y H, et al., 2008. Interactive effects of increased pCO2, temperature a nd i rradiance on the marine c occolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology, 43(1): 87-98.
    [56] Fernández E, Boyd P, Holligan P M, et al., 1993. Production of organic and inorganic carbon within a large-scale coccolithophore bloom in the northeast Atlantic Ocean. Marine Ecology Progress Series, 97: 271-285.
    [57] Fernández E, Mara?ón E, Harbour D S, et al., 1996. Patterns of carbon and nitrogen uptake during blooms of Emiliania huxleyi in two Norwegian fjords. Journal of Plankton Research, 18(12): 2349-2366.
    [58] Fileman E S, Cummings D G and Llewllyn C A, 2002. Microplankton community structure and the impact of m icrozooplankton gr azing during a n Emiliania huxleyi bloom off t he Devon coast. J ournal o f t he M arine B iological Association o f t he U nited Kingdom, 82: 359-368.
    [59] Fisher N S and Honjo S, 1988. Intraspecific differences in temperature and salinity responses in the coccolithophore Emiliania huxleyi. Biological Oceanography, 6: 355-361.
    [60] Frankignoulle M, Canon C and Gattuso J P, 1994. Marine calcification as a source of carbon dioxide: p ositive feedback o f i ncreasing atmosphere C O2. Limnology a nd O ceanography, 39(2): 458-462.
    [61] Fritz J J, 1999. Carbon fixation and coccolith detachment in the coccolithophore Emiliania huxleyi in nitrate-limited cyclostats. Marine Biology, 133: 509-518.
    [62] Garcia-Soto C, Fernández E, Pingree R D, et al., 1995. Evolution and structure of a shelf coccolithophore bloom in the Western English Channel. Journal of Plankton Research, 17(11): 2011-2036.
    [63] Gard G, 1987. Observation of a dimorphic coccosphere. A bhandlungen de r Geologischen Bundesanstalt, 39: 85-87.
    [64] Gattuso J P, Frankignoulle M and Wollast R, 1998. C arbon and carbonate metabolism in coastal aquatic ecosystems. Annu. Rev. Ecol. Syst., 29: 405-433.
    [65] Geisen M, Billard C, Broerse A T C, et al., 2002. Life-cycle association involving pairs of holococcolithophorids s pecies: I ntraspecific v ariation or cryptic specification? E uropean Journal of Phycology, 37: 531-550.
    [66] Goldblatt R H, M ackas D L and L ewis A G, 1 999. M esozooplankton communitycharacteristics in the NE subarctic Pacific. Deep Sea Research II, 46: 2619-2644.
    [67] Graziano L M , Balch W M , D rapeau D , et al., 20 00. O rganic and i norganic c arbon production in the Gulf of Maine. Continental Shelf Research, 20: 685-705.
    [68] Green J C a nd J ordan R W, 1994. S ystematic hi story and t axonomy. In: The Haptophyte Algae. (Green J C and Leadbeater B S C, Eds.) Clarendon Press, Oxford, pp: 1-23.
    [69] Green J C, Course P A and Tarran G A, 1996. The life-cycle of Emiliania huxleyi: a brief review and a study of relative ploidy levels analysed by flow cytometry. J. Mar. Syst., 9: 33-44.
    [70] Gregg W W, Ginoux P, S chopf P S , et al., 2003. Phytoplankton and iron: validation of a global threedimensional ocean biogeochemical model. Deep-Sea Research II, 50: 3143-3169.
    [71] Haidar A T and Thierstein H R, 2001. Coccolithophore dynamics off Bermuda (N. Atlantic). Deep-Sea Research II, 48: 1925-1956.
    [72] Harris G N , S canlan D J and Geider R J , 2 005. Acclimation of Emiliania huxleyi (Prymnesiophyceae) to photon flux density. Journal of Phycology, 41(4): 851-862.
    [73] Harris R P, 1994. Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux. Marine Biology, 119: 431-439.
    [74] Hattori H, Koike M, Tachikawa K, et al., 2004. Spatial variability of living coccolithophore distribution in the western subarctic Pacific and the Bering Sea. J. Oceanogr., 60: 505-515.
    [75] Hay W W, Mohler H P, Roth P H, et al., 1967. Calcareous nannoplankton zonation of the Cenozoic o f t he Gulf C oast and C aribbean-Antillean a rea, and t ransoceanic c orrelation. Transactions of the Gulf Coast Association of Geological Societies, 17: 428-480.
    [76] Head R N, Crawford D W, Egge J K, et al., 1998. The hydrography and biology of a bloom of the coccolithophorid Emiliania huxleyi in the northern North Sea. Journal of Sea Research, 39(3-4): 255-266.
    [77] Heinze C , 20 04. Simulating oceanic C aCO3 export pr oduction i n the gr eenhouse. Geophysical Research Letters, 31(16): L16301-L16308.
    [78] Hewes C D, S akshaug E, H olm-Hansen O , et al., 19 90. Microbial a utotrophic a nd heterotrophic eucaryotes in Antarctic Waters: relationships between biomass and CHL, ATP, and POC. Mar. Ecol. Prog. Ser., 63: 27-35.
    [79] Holligan P M , F ernández E , Aiken J, et al., 1 993. A bi ogeochemical s tudy of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochemical Cycles, 7: 879-900.
    [80] Holligan P M , Viollier M , Harbour D S , et al., 1983. S atellite and s hip s tudies of coccolithophore production along a continental shelf edge. Nature, 304: 339-342.
    [81] Honjo S, 1976. C occoliths: pr oduction, transportation and s edimentation. Marine Micropaleontology, 1: 65-79.
    [82] Honjo S, 1996. Fluxes of particles to the interior of the open oceans. In: Ittekkot V, Sch?fer P, Honjo S and Depetris P J, Editors. Particle Flux in the Ocean, SCOPE Vol. 57, Wiley, New York, pp: 91-254.
    [83] Honjo S, Manganini S J and Cole J J, 1982. Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res., 29: 609-625.
    [84] Houdan A , B illard C , Marie D, et al., 2004. Holococcolithophore-heterococcolithophore (Haptophyta) life cycles: flow cytometric analysis of relative ploidy levels. Systematics and Biodiversity, 1: 453-465.
    [85] Hung T C, Lin S H and Chuang A, 1980. Relationship among particulate organic carbon, chlorophyll a and primary productivity in the seawater along the northern coast of Taiwan. Acta Oceanogr., Taiwan, 11: 70-88.
    [86] Hunt Jr. G L and Stabeno P J, 2002. Climate change and the control of energy flow in the southeastern Bering Sea. Progress in Oceanography, 55: 5-22.
    [87] Hutchins D A, Hare C E, Weaver R S , et al., 2002. Phytoplankton i ron limitation in t he Humboldt Current and Peru Upwelling. Limnology and Oceanography, 47(4): 997-1011.
    [88] Iglesias-Rodriguez M D , B rown C W, D oney S C , et al., 2002. R epresenting k ey phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochem. Cycles, 16(4), 1100, doi:10.1029/2001GB001454.
    [89] Iglesias-Rodriguez M D , Halloran P R, R ickaby R E M , et al., 2 008. P hytoplankton calcification in a high-CO2 world. Science, 320(5874): 336-340.
    [90] Inouye I and Pienaar R N, 1985. Ultrastructure of the flagellar apparatus in Pleurochrysis (Class Prymnesiophyceae). Protoplasma, 125: 24-35.
    [91] Inouye I and Pienaar R N, 1988. Light and electron microscope observations of t he t ype species of Syracosphaera, S. pulchara (Prymnesiophyceae). British Phycological Journal, 23: 205-217.
    [92] IPCC, 2007. Summary for Policymakers [A]. In: Solomon S. (eds.), Climate Change 2007: The P hysical Science Basis. C ontribution o f Working Group I t o t he F ourth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 1-18.
    [93] Jansen H, Zeebe R E and Wolf-Gladrow D A, 2002. Modeling dissolution of settling CaCO3 in the ocean. Global Biogeochemical Cycles, 16(2), 1027, doi:10.1029/2000GB001279.
    [94] Jeffrey S W and Wright S W, 1987. A new spectrally distinct component in preparations of chlorophyll c from t he m icroalga Emiliania huxleyi (Prymnesiophyceae). Biochimica e t Biophysica Acta, 894: 180-188.
    [95] JGOFS, 1996. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements. Scientific C ommittee o n Oceanic R esearch, I nternational C ouncil of S cientific Unions, Intergovernmental Oceanographic Commission, Bergen, Norway, 170p.
    [96] Jordan R W and Kleijne A , 1994. A classification s ystem for living coccolithophores. In: Winter A and Siesser W G (eds). Coccolithophores. Cambridge University Press, pp: 83-106.
    [97] Kamptner E , 1937.über D auersporen bei marinen C occolithineen. Akademie de r Wissenschaften in Wien, 146: 67-76.
    [98] Kamptner E , 1 941. D ie C occolithineen der Südwestküste v on I strien. Annalen de s Naturhistorischen Museums in Wien, 51: 54-149.
    [99] Kamptner E, 1943. Zur Revision der Coccolithen-Species Pontosphaera huxelyi Lohmann. Anz Akad Wiss Wien, Math - Naturw Kl, 80: 43-49.
    [100] Kawachi M and Inouye I, 1995. Functional roles of the haptonema and the spine scales in t he feeding p rocess o f Chrysochromulina spinifera (Fournier) P ienaar et N orris (Haptophyta, Prymnesiophyta). Phycologia, 34: 193-200.
    [101] Keller M D , S elvin R C, Claus W, et al., 19 87. Media f or the c ulture of oceanic ultraphytoplankton. J. Phycol., 23: 633-638.
    [102] Klaveness D and P aasche E , 1 971. T wo different Coccolithus huxleyi cell t ypes incapable of coccolith formation. Arch. Mikrobiol., 75: 382-385.
    [103] Klaveness D , 1 972a. Coccolithus huxleyi (Lohmann) Kamptner. I . M orphological investigations on the vegetative cell and the process of coccolith formation. Protistologica, 8: 335-346.
    [104] Klaveness D , 1972b. Coccolithus huxleyi (Lohn.) Kamptn. II. T he f lagellate c ell, aberrant cell types, vegetative propagation and life cycles. Br. Phycol. J., 7: 309-318.
    [105] Koeve W, 2002. Upper ocean carbon fluxes in the Atlantic Ocean: The importance of the POC:PIC ratio, Global Biogeochem. Cycles, 16(4), 1056, doi:10.1029/2001GB001836.
    [106] Kristiansen S, Thingstad T F, Wal P V D, et al., 1994. An Emiliania huxleyi dominated subsurface bloom in Samnangerfjorden, western Norway. Importance of hydrography and nutrients. Sarsia, 79: 357-368.
    [107] Lam P J, Tortell P D and Morel F M M, 2001. Differential effects of iron additions on organic and inorganic carbon production by phytoplankton. Limnology and Oceanography, 46(5): 1199-1202.
    [108] Landry M R, Monger B C and Selph K E, 1993. Time-dependency of microzooplankton grazing and phytoplankton growth in the subarctic Pacific. Progress in Oceanography, 32: 205-222.
    [109] Le QuéréC , Harrison S P, P rentice I C, et al., 2005. Ecosystem dynamics based on phytoplankton functional types f or global o cean biogeochemistry m odels. G lobal C hange Biology, 11: 2016-2040.
    [110] Lecourt M, Muggli D L and Harrison P J, 1996. Comparison of growth and sinking rates of n on-coccolith- and coccolith- forming strains of Emiliania huxleyi (Prymnesiophyceae) grown under different irradiances and nitrogen sources. Journal of Phycology, 32: 17-21.
    [111] Lessard E J and Murrell M C, 1998. Microzooplankton herbivory and phytoplankton growth in the northwestern Sargasso Sea. Aquatic Microbial Ecology, 16: 173-188.
    [112] Levasseur M, Michaud S, Egge J, et al., 1996. Production of DMSP and DMS during a mesocosm study of a n Emiliania huxleyi bloom: Influence of b acteria a nd Calanus finmarchicus grazing. Marine Biology, 126: 609-618.
    [113] Leynaert A, Tréguer P, L ancelot C , et al., 2001. Silicon limitation of biogenic silica production in the Equatorial Pacific. Deep Sea Res., Part I, 48: 639-660.
    [114] Linschooten C , va n Bleijswijk J D L , van E mburg P R , et al., 1991. R ole of t he light-dark c ycle a nd m edium c omposition on the p roduction of c occoliths b y Emiliania huxleyi (Haptophyceae). Journal of Phycology, 27: 82-86.
    [115] Liu H, Chang J, Tseng C M, et al., 2007. Seasonal variability of picoplankton in the Northern South China Sea at the SEATS station. Deep-Sea Res. II, 54: 1602-1616.
    [116] Mara?ón E a nd G onzález N, 1997. P rimary production, c alcification a nd macromolecular synthesis in a bloom of the coccolithophore Emiliania huxleyi in the North Sea. Marine Ecology Progress Series, 157: 61-77.
    [117] Marsh M E and Dickinson D P, 1997. Polyanion-mediated mineralization-mineralization in c occolithophore ( Pleurochrysis carterae) variants which do not e xpress P S2, t he most abundant and acidic mineral-associated polyanion in wild-type cells. Protoplasma, 199: 9-17.
    [118] Marsh M E, 1994. Polyanion-mediated mineralization-assembly and reorganization of acidic p olysaccharides i n t he G olgi s ystem of a c occolithophorid a lga du ring m ineral deposition. Protoplasma, 177: 108-122.
    [119] McIntyre A and Be A W H, 1967. Modern coccolithophoridae of the Atlantic Ocean-I.Placoliths and cyrtoliths. Deep-Sea Research, 14: 561-597.
    [120] Menden-Deuer S and L essard E J, 2 000. Carbon t o v olume relationships f or dinoflagellates, di atoms, a nd ot her protist pl ankton. L imnology a nd O ceanography, 45: 569-579.
    [121] Merico A, Tyrrell T, Lessard E J, et al., 2004. Modelling phytoplankton succession on the B ering S ea s helf: r ole of climate influences a nd trophic in teractions in g enerating Emiliania huxleyi blooms 1997-2000. Deep-Sea Research I, 51, 1803-1826.
    [122] Milliman J D, Troy P J, Balch W M, et al., 1999. Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep-Sea Research I, 46: 1653-1669.
    [123] Milliman J , 1 993. P roduction and accumulation of calcium c arbonate i n t he o cean: budget of a nonsteady state. Global Biogeochemical Cycles, 7: 927-957.
    [124] Mjaaland G, 1956. Some laboratory experiments on the coccolithophorid Coccolithus huxleyi. Oikos, 7: 251-255.
    [125] Morse J W and M ackenzie F T , 1 990. Geochemistry o f S edimentary Carbonates. Amsterdam: Elsevier, pp: 1-707.
    [126] Muggli D L and Harrison P J, 1996. Effects of nitrogen sources on the physiology and metal nutrition of Emiliania huxleyi grown under different iron and light conditions. Marine Ecology Progress Series, 130(1-3): 255-267.
    [127] Muggli D L and Harrison P J, 1997. E ffects of i ron on t wo oceanic phytoplankters grown in natural NE subarctic Pacific seawater with no artificial chelators present. Journal of Experimental Marine Biology and Ecology, 212(2): 225-237.
    [128] Nanninga H J and Tyrrell T, 1996. Importance of light for the formation of algal blooms by Emiliania huxleyi. Marine Ecology Progress Series, 136(1-3): 195-203.
    [129] Nielsen M V, 1 997. G rowth, da rk r espiration a nd p hotosynthetic p arameters of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) acclimated t o different day length-irradiance combinations. Journal of Phycology, 33: 818-822.
    [130] Nimer N A and Merrett M J, 1993. Calcification rate in Emiliania huxleyi Lohmann in response to light, nitrate and inorganic carbon availability. New Phytologist, 123: 673-677.
    [131] Nimer N A a nd Merrett M J , 1 995. C alcification r ate in r elation to c arbon di oxide release, photosynthetic carbon fixation and oxygen evolution in Emiliania huxleyi. Bulletin de l′Institut Oceanographique (Monaco), 14, special issue: 37-42.
    [132] Nimer N A and Merrett M J, 1996. The development of a CO2-concentrating mechanism in Emiliania huxleyi. New Phytologist, 133: 383-389.
    [133] Nimer N A, Dixon G K and Merrett M J, 1992. Utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi (Lohmann) Kamptner. New Phytologist, 120: 153-158.
    [134] Olson M B and Strom S L, 2002. Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep-Sea research II, 49: 5969-5990.
    [135] Paasche E and B rubak S , 1 994. E nhanced calcification i n t he coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation. Phycologia, 33(5): 324-330.
    [136] Paasche E and Klaveness D, 1970. A physiological composition of coccolith-forming and naked cells of Coccolithus huxleyi. Arch. Mikrobiol., 73: 143-152.
    [137] Paasche E, 1962. Coccolith formation. Nature, London, 193: 1094-1095.
    [138] Paasche E , 1963. T he adaptation o f t he C arbon-14 m ethod f or the m easurement ofcoccolith production in, Coccolithus huxleyi. Physiologia Plantarum, 16: 186-200.
    [139] Paasche E , 1964. A t racer s tudy of t he i norganic carbon up take dur ing coccolith formation a nd photosynthesis i n t he coccolithophorid Coccolithus huxleyi. P hysiologia Plantarum Supplementum, III: 5-81.
    [140] Paasche E, 1967. Marine plankton stage grown with light-dark cycles. I. Coccolithus huxleyi. Physiologia Plantarum, 20: 946-956.
    [141] Paasche E, 1 968. Biology a nd ph ysiology o f c occolithophorids. A nnual Review of Microbiology, 22: 71-86.
    [142] Paasche E, 1998. Roles of nitrogen and phosphorus in coccolith formation in Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology, 33: 33-42.
    [143] Paasche E, 1999. Reduced coccolith calcite production under light-limited growth: a comparative study o f three c lones of Emiliania huxleyi (Prymnesiophyceae). P hycologia, 38(6): 508-516.
    [144] Paasche E, 20 02. A review o f the c occolithophorid Emiliania huxleyi (Prymnesiophyceae), w ith pa rticular r eferences to g rowth, c occolith f ormation, a nd calcification-photosynthesis interactions. Phycologia, 40(6): 503-529.
    [145] Palenik B and Henson S E, 1997. The use of amides and other organic nitrogen sources by the phytoplankton Emiliania huxleyi. Limnology and Oceanography, 42(7): 1544-1551.
    [146] Parsons T, Maita Y and Lalli C, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York, pp: 1-173.
    [147] Pasquer B, Laruelle G, Becquevort S, et al., 2005. Linking ocean biogeochemical cycles and ecosystem structure and function: results of the complex SWAMCO-4 model. Journal of Sea Research, 53: 93-108.
    [148] Peterson B J, 1978. Radiocarbon uptake: its relation to net particulate carbon production. Limnology and Oceanography, 23: 179-184.
    [149] Pienaar R N, 1 994. Ultrastructure and c alcification of coccolithophores. In: Coccolithophores. (Winter A and Siesser W G, eds). Cambridge University Press, Cambridge, pp: 13-37.
    [150] Poulton A J, Adey T R, Balch W M, et al., 2007. Relating coccolithophore calcification rates to phyoplankton community dynamics: regional differences and implications for carbon export, Deep-Sea Res. II, 54: 538-557.
    [151] Poulton A J, Holligan P M, Hickmann A, et al., 2006a. Phytoplankton carbon fixation, chlorophyll biomass and diagnostic pigments in the Atlantic Ocean. Deep-Sea Research II, 53: 1593-1610.
    [152] Poulton A J, Sanders R, Holligan P M, et al., 2006b. Phytoplankton mineralisation in the tropical and subtropical Atlantic Ocean. Global Biogeochemical Cycles 20, GB4002.
    [153] Purdie D A and Finch M S, 1994. Impact of a coccolithophorid on dissolved carbon dioxide in sea water enclosures in a Norwegian fjord. Sarsia, 79: 379-387.
    [154] Putland J N, Whitney F A and Crawford D W, 2004. Survey of bottom-up controls of Emiliania huxleyi in t he N ortheast Subarctic P acific. D eep-Sea R esearch I , 51(12): 1793-1802.
    [155] Raven J A and Johnston A M, 1991. Mechanisms of i norganic carbon acquisition i n marine phytoplankton and their implications for the use of other resources. Limnology and Oceanography, 36: 1701-1714.
    [156] Redalje D G and Laws E A, 1981. A new method for estimating phytoplankton growth rates and carbon biomass. Mar. Biol., 62: 73-79.
    [157] Rees A P, Woodward E M S, Robinson C et al., 2002. Size-fractionated nitrogen uptake and carbon fixation during a developing coccolithophore bloom in the North Sea during June 1999. Deep-Sea Research II, 49(15): 2905-2927.
    [158] Richardson K, Beardall J and Raven J A. Adaptation of unicellular algae to irradiance: An analysis of strategies. New Phytologist, 1983, 93: 157-191.
    [159] Ridgwell A a nd Zeebe R E, 2 005. The r ole of the gl obal c arbonate c ycle in the regulation and e volution of t he E arth s ystem. E arth and P lanetary Science Letters, 23 4: 299-315.
    [160] Riebesell U, Zondervan I, Rost B, et al., 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407: 364-366.
    [161] Riegman R, Stolte W, Noordeloos A A M, et al., 2000. Nutrient uptake and alkaline phosphate ( EC 3:1:3:1) a ctivity of Emiliania huxleyi (Prymnesiophyceae) du ring gr owth under N and P limitation in continuous cultures. Journal of Phycology, 36: 87-96.
    [162] Rivkin R B, Putland J N, Anderson M R, et al., 1999. Microzooplankton bacterivory and herbivory in the NE subarctic Pacific. Deep Sea Research II, 46: 2579-2618.
    [163] Robertson J E, 1993. Diurnal variations in surface pCO2 and oxygen at 60°N, 20°W in the northeast Atlantic. Deep-Sea Research, 40: 409-422.
    [164] Robertson J E, Robinson C, Turner D R, et al., 1994. The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. Deep-Sea Research I, 41, 297-314.
    [165] Rost B and Riebesell U, 2004. Coccolithophores and the biological pump: responses to environmental c hanges [ C] // Thierstein H R , Young J R , e ds. C occolithophores: F rom Molecular Processes to Global impact. Berlin: Springer, pp: 99-127.
    [166] Rowson J D, Leadbeater B S C and Green J C, 1986. Calcium carbonate deposition in the m otile (crystallolithus) p hase o f Coccolithus pelagicus (Prymnesiophyceae). B ritish Phycological Journal, 21: 359-370.
    [167] Sarmiento J L, Dunne J, Gnanadesikan A, et al., 2002. A new estimate of the CaCO3 to organic carbon e xport ratio. Global Biogeochem. C ycles, 1 6(4), 1 107, doi:10.1029/2002GB001919.
    [168] Sciandra A, Harlay J, Lefèvre D, et al., 2003. Response of coccolithophorid Emiliania huxleyi to el evated p artial p ressure of C O2 under nitrogen limitation. M arine E cology Progress Series 261: 111-122.
    [169] Shin K H, Tanaka N, Harada N, et al., 2002. Production and turnover rates of C37 alkenones in the eastern Bering Sea: implication for the mechanism of a long duration of Emiliania huxleyi bloom. Progress in Oceanography, 55: 113-129.
    [170] Siesser W G a nd Winter A , 1994. C omposition a nd m orphology of c occolithophore skeletons. In: W inter A a nd Siesser W G (eds). C occolithophores. C ambridge University Press, pp: 83-106.
    [171] Sikes C S, Roer R D and Wilbur K M, 1980. Photosynthesis and coccolith formation. Inorganic c arbon sources a nd net inorganic r eaction of de position. L imnology a nd Oceanography, 25: 248-261.
    [172] Six K D and Maier-Reimer E, 1996. Effects of plankton dynamics on seasonal carbonfluxes in an ocean general circulation model. Global Biogeochemical Cycles, 10(4): 559-583.
    [173] Smayda T J, 1958. Biogeographical studies of marine phytoplankton. Oikos, 9: 158-191.
    [174] Stabeno P J, Bond N A, Kachel N B, et al., 2001. On the temporal variability of the physical e nvironment o ver t he south-eastern B ering Sea. F isheries Oceanography, 10( 1): 81-98.
    [175] Stockwell D A, Whitledge T E, Zeeman S I, et al., 2001. Anomalous conditions in the south-eastern Bering S ea, 1997: n utrients, p hytoplankton and z ooplankton. F isheries Oceanography, 10(1): 99-116.
    [176] Strom S L, Brainard M A, Holmes J L, et al., 2001. Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters. Marine Biology, 138: 355-368.
    [177] Sun J and Liu D, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25: 1331-1346.
    [178] Sunda W G a nd Huntsman S A, 1 992. F eedback i nteractions between zi nc and phytoplankton in seawater. Limnology and Oceanography, 37(1): 25-40.
    [179] Sunda W G and Huntsman S A, 1995a. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Marine Chemistry, 50(1-4): 189-206.
    [180] Sunda W G and Huntsman S A, 1995b. Cobalt and zinc inter-replacement in marine phytoplankton: biological a nd ge ochemical implications. L imnology a nd O ceanography, 40(8): 1404-1417.
    [181] Sunda W G and Huntsman S A, 2000. Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: implications for oceanic Cd cycling. Limnology and Oceanography, 45(7): 1501-1516.
    [182] Taylor A R, R ussell M A , H arper G M, et al., 2 007. Dynamics of f ormation a nd secretion of heterococcoliths by Coccolithus pelagicus ssp. braarudii. European Journal of Phycology, 42: 125-136.
    [183] Throndsen J , 1969. F lagellates o f N orwegian coastal waters. N ytt. M ag. Bot., 1 6: 161-216.
    [184] Throndsen J , 1978. T he dilution-culture m ethod. I n: S ournia A ( ed.) P hytoplankton manual. Unesco, Paris, pp: 218-224.
    [185] Townsend D W, Keller M D, Holligan P M, et al., 1994. Blooms of the coccolithophore Emiliania huxleyi with respect t o h ydrography in t he Gulf o f M arine. C ontinental S helf Research, 14(9): 979-1000.
    [186] Tyrrell T and Merico A, 2004. Emiliania huxleyi: bloom observations and the conditions that induce them. In: Thierstein H R, Young J R (Eds.), Coccolithophores. From Molecular Processes to Global Impact. Springer, Berlin, Heidelberg, Germany, pp: 75-97.
    [187] Tyrrell T a nd Taylor A H , 19 96. A m odeling study of Emiliania huxleyi in t he N E Atlantic. Journal of Marine Systems, 9: 83-112.
    [188] van Bleijswijk J D L and Veldhuis M J, 1995. In situ gross growth rates of Emiliania huxleyi in enclosures with different phosphate loadings revealed by diel changes in DNA content. Marine Ecology Progress Series, 121(1-3): 271-278.
    [189] van Bleijswijk J D L, Kempers R S, van der Wal P, et al., 1994. Standing stocks of PIC, POC and PON and Emiliania huxleyi coccospheres and liths in sea water enclosures with different phosphate loadings. Sarsia, 79: 307-317.
    [190] van de r W al P , de Bruijn W C and W estbroek P , 1985. C ytochemical and X -ray microanalysis studies of intracellular c alcium p ools in s cale-bearing c ells of the coccolithophorid Emiliania huxleyi. Protoplasma, 124: 1-9.
    [191] van der Wal P, de Jong E W, Westbroek P, et al., 1983. Ultrastructural polysaccharide localization i n calcifying and na ked cells of t he coccolithophorid Emiliania huxleyi. Protoplasma, 118: 157-168.
    [192] van der Wal P, Kempers R S and Veldhuis M J W, 1995. Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series, 126: 247-265.
    [193] van de r Wal P, v an Bleijswijk J D L a nd Egge J K, 19 94. Primary pr oductivity and calcification r ate in b looms of t he c occolithophorid Emiliania huxleyi (Lohmann) Hay e t Mohler developing in mesocosms. Sarsia, 79: 401-408.
    [194] Veldhuis M J W , S toll M , Bakker D , et al., 1 994. C alcifying phytoplankton i n Bjoernafjorden, Norway. The prebloom situation. Sarsia, 79: 389-399.
    [195] Verity P G and Smetacek V, 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Marine Ecology Progress Series, 130: 277-293.
    [196] Vezina A F and Savenkoff C, 1999. Inverse modeling of carbon and nitrogen flows in the pelagic food web of the northeast subarctic Pacific. Deep Sea Research II, 46: 2909-2939.
    [197] Voss K J, Balch W M and Kilpatrick K A, 1998. Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths. Limnology and Oceanography, 43(5): 870-876.
    [198] Wang R J, Lin J, Zheng L F, et al., 2000. Siliceous microplankton fluxes and seasonal variations in the central South China Sea during 1993-1995: monsoon climate and El Ni?o responses. Chinese Science Bulletin, 45(1): 1-5.
    [199] Watabe N and Wilbur K M, 1966. Effects of temperature on growth, calcification, and coccolith form in Coccolithus huxleyi (Coccolithineae). Limnology and Oceanography, 11: 567-575.
    [200] Welschmeyer N A, 2004. Fluorometric analysis of chlorophyll a in the pr esence of chlorophyll b and pheopigments. Limnol. Oceanogr., 39: 1985-1992.
    [201] Westbroek P, Brown C W, van Bleijswijk J, et al., 1993. A model system approach to biological climate forcing. The example of Emiliania huxleyi. Global and Planetary Change, 8: 27-46.
    [202] Westbroek P, de Jong E W, van der Wal P, et al., 1984. Mechanism of calcification in the marine alga Emiliania huxleyi. Philosophical Transactions of the Royal Society of London, series B, 304: 435-444.
    [203] Westbroek P, Young J R, Linschooten K, 1989. Coccolith production (biomineralization) in the marine alga Emiliania huxleyi. Journal of Protozoology, 36: 368-373.
    [204] Wilbur K M and Watabe N, 1963. Experimental studies in calcification in mollusks and the alga Coccolithus huxleyi. Annals of the New York Academy of Sciences, 109: 82-112.
    [205] Winter A and Siesser G, 1994. Atlas of living coccolithophores. In: Winter A and Siesser W G (Eds.), Coccolithophores. Cambridge University Press, Cambridge, pp: 107-159.
    [206] Winter A, Jordan R W and Roth P H, 1994. Biogeography of living coccolithophores in ocean w aters. pp. 16 1-177. In C occolithophores, ed. by W inter A a nd Siesser W G , Cambridge Univ. Press.
    [207] Wolf-Gladrow D A, R iebesell U , B urkhardt S , et al., 1 999. D irect e ffects o f C O2 concentrations on gr owth a nd isotopic composition o f marine plankton. T ellus, 51( 2): 461-476.
    [208] Yang T and Wei K, 2003. How many coccoliths are there in a coccosphere of the extant coccolithophorids? A compilation. Journal of Nannoplankton Research, 25: 7-15.
    [209] Yang T N, Wei K Y , C hen L L, 20 03. O ccurrence of c occolithophorids in the Northeastern and Central South China Sea. Taiwania, 48(1): 29-45.
    [210] Yang T N, Wei K Y, C hen M P, et al., 2 004. S ummer and winter di stribution and malformation of coccolithophores i n t he E ast C hina S ea. M icropaleontology, 50( s1): 157-170.
    [211] Yang T N, Wei K Y, Gong G C, 2001. Distribution of coccolithophorids and coccoliths in surface ocean off northeastern Taiwan. Bot. Bull. Acad. Sin., 42: 287-302.
    [212] Young J R and Henriksen K, 2003. B iomineralization within ve sicles: The calcite of coccoliths. p p: 1 89-215 i n D ove P, de Yoreo J J and Weiner S , e ds. Biomineralization. Mineralogical society of America/Geochemical society.
    [213] Young J R and Ziveri P, 2000. Calculation of coccolith volume and its use in calibration of carbonate flux estimates. Deep-Sea Research II, 47: 1679-1700.
    [214] Young J R, 1994. Functions of coccoliths. In: Coccolithophores, ed. by Winter A and Siesser W G, Cambridge Univ. Press, pp: 63-82.
    [215] Young J R, Billard C, Bown P R, et al., 2000. Phylogeny of coccolithophores and the evolution of calcification. Journal of Nanoplankton Research, 22: 153-155.
    [216] Young J R , D avis S A, B own P R , et al., 199 9. Coccolith u ltrastructure and biomineralisation. Journal of Structural Biology, 126: 195-215.
    [217] Zeebe R E and Wolf-Gladrow D, 2001. CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier Oceanography Series, 65, pp: 1-360.
    [218] Zhai W, Dai M, Cai W J, et al., 2005. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Marine Chemistry, 93: 21-32.
    [219] Ziveri P, Thunell R C and Rio D, 1995. Seasonal changes in coccolithophore densities in the Southern C alifornia Bight du ring 1 991-1992. D eep-Sea R esearch I, 42(11-12): 1881-1903.
    [220] Zondervan I , Rost B and Riebesell U , 2 002. E ffect of C O2 concentration on t he PIC/POC ratio in th e coccolithophore Emiliania huxleyi grown under l ight-limiting conditions and different daylengths. Journal of Experimental Marine Biology and Ecology, 272(1): 55-70.
    [221] Zondervan I, Zeebe R E, Rost B, et al., 2001. Decreasing marine biogenic calcification: a ne gative f eedback on rising a tmospheric pCO2. G lobal B iogeochemical C ycles, 15(2): 507-516.
    [222] Zubkov M V, Burkill P H and Topping J N, 2007. Flow cytometric enumeration of DNA-stained oceanic planktonic protists. J. Plankton Res., 29: 79-86.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.