火星电流系及其磁场
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在太阳系八大行星中,除金星和火星之外,其它行星都有比较强的内禀磁场。鉴于各个行星自身的差异性,特别是它们的磁场拓扑结构,因而它们与太阳风作用的性质有所不同,各自形成的磁层结构以及产生的磁层现象也不尽相同。火星被认为是太阳系中自然环境最接近地球的行星,因此越来越为人类所关注。对火星磁场的探测与研究已经成为空间物理领域里的热门课题之一。
     本文利用火星具有电离层而无内禀磁场的特点以及它与太阳风作用的性质,从电流的角度出发,建立火星感应磁场模型,对火星感应磁场产生的原因、分布情况进行研究。同时,根据探测器所观测到的火星极光图片,建立极光区地壳磁场模型,得到了磁力线拓扑结构并且讨论了磁异常的成因。本文的主要工作以及得到的结果概括如下:
     由于火星没有显著的内禀磁场,它与太阳风作用的方式与地球有很大的差异。太阳风直接与火星电离层、大气层发生相互作用,导致了火星电离层上出现感应电流。在第二章中,根据卫星所观测到的火星磁场分布特征以及电流始终包络磁力线这一特性,构建了火星磁层电流体系模型。在模型中,火星磁层顶电流,电离层电流以及磁尾中性片电流构成了火星磁层电流体系。根据电流连续性的条件,这三种电流满足一定的关系:磁层顶上通过的总电流是电离层上通过的总电流与磁尾中性片通过的总电流之和。本文分别讨论了火星磁层电流体系分布的二维近似模型和三维分布模型。
     第三章以火星磁层电流体系模型为基础,分别构建了火星感应磁场二维近似模型和三维模型。在模型中,火星磁层顶电流,电离层电流以及磁尾中性片电流产生的磁场与太阳风磁场一起构成了火星周围的磁场分布。根据毕奥-萨伐尔定理和利用磁力线跟踪程序,得到了火星赤道面以及与赤道面平行的其它平面内的磁场分布。计算结果表明,根据模型得到的磁场分布与卫星观测到的结果以及他人研究结果符合的较好。火星周围的磁场分布与具有内禀磁场的行星不同,其磁力线披挂在火星周围,在磁尾形成一个开放的结构。同时计算结果还表明,不同平面内磁力线拓扑结构既有类似的地方,又存在较大的差异性。与赤道面平行且越近的平面内,磁力线的“拖拽”程度越明显,这主要由于火星电离层对不同的区域内行星际磁场的阻碍程度不同。
     与具有较强内禀磁场的行星两极上出现的极光不同,火星极光主要发生在南半球地壳磁场异常的区域,并且极光分布特征与其它行星上的极光也有所区别。第四章在“火星全球勘探者”和“火星快车”的最近观测结果基础上,从等效电流的角度出发,建立了火星极光区地壳磁场模型,得到了火星地壳磁异常区的磁场拓扑结构。基于极光发生于磁力线汇聚的地方,利用模型得到的磁场拓扑结构,能够复原出所观测到的火星极光图像。同时,根据火星极光弧的宽度比较窄这一显著分布特征,本文对火星地壳磁异常的起因进行了讨论。
Among eight planets in the solar system, the other planets have relatively strong intrinsic magnetic field except Venus and Mars. In view of their differences among all planets, especially their magnetic field topologies, the characteristics of interaction between planets and the solar wind are not the same and their magnetospheric structures and phenomena produced through interaction with solar wind are not the same. Mars among planets in the solar system is considered to be the most closest to earth in natural environment, so the human being are more and more concerned for Mars. Exploration and research of Martian magnetic field has become a hot topic in the field of space physics.
     In this thesis, based on facts that there is an ionosphere above the solid Mars but there is no intrinsic magnetic field inside the solid Mars, and also the characteristics of interaction between the solar wind and Martian ionosphere, a model of Martian induced magnetic field is proposed from the perspective of the current, and causes and the distribution of Martian induced magnetic field are studied. In addition, according to Martian aurora picture observed through spacecraft, a model of crustal magnetic field on Martian aurora zone is established, and topology of magnetic field lines is obtained, and the causes of magnetic anomalies are discussed. The main work and the results obtained are summarized as follows:
     Since there is no obvious intrinsic magnetic field at Mars, the characteristics of interaction between the solar wind and Mars are different from that of earth. The solar wind interacts directly with the Martian ionosphere and atmosphere, resulting on the appearance of the induced current on ionosphere. In the second chapter, a model of currents in the Martian magnetosphere is constructed based on the distribution of Martian magnetic field gained through satellite observations and the characteristics that the current always envelopes the magnetic field lines. In the model, the magnetopause current, the ionospheric current and the current sheet in magnetotail form the current system in Martian magnetosphere. According to the continuity of the current, these currents satisfy the relation that the total current in the Martian magnetopause is equal to the summation of the total current in the Martian ionosphere and the total current in the Martian magnetotail. This thesis discusses two-dimensional approximation model and three-dimensional distribution model of the current system in Martian magnetosphere respectively.
     In the third chapter, we construct two-dimensional approximation model and three-dimensional model of Martian induced magnetic field based on the current system model of Martian magnetosphere. In the model, Superposition of the magnetic field generated by these currents and solar wind magnetic field constitutes the distribution of magnetic field around Mars. According to Biot-Savart theorem, we get the distribution of magnetic field in Martian equatorial plane and the other plane parallel to equatorial plane using the program of tracing magnetic field lines. The results show the magnetic field distribution obtained by the model is consistent with observational results through satellite and those gained by others. Distribution of magnetic field around Mars is different from that of those planets having intrinsic magnetic field, and the magnetic field lines drape around Mars, forming an open structure in the magnetotail. Results also show that the topologies of magnetic field in different planes have both similarities and differences. In the plane parallel and closer to equatorial plane, the magnetic field lines drag more obviously, mainly because Martian ionosphere hinders interplanetary magnetic field at different extents in the different regions.
     Differing from auroras occurring on poles of planets with a strong intrinsic magnetic field, the Martian aurora occurs mainly in the region of crustal magnetic anomalies in southern hemisphere, and the distribution of the aurora differs from that of other planets. In the fourth chapter, from the equivalent currents point of view, we establish the model of the Martian crustal magnetic field on aurora zone, and gain the topology of crustal magnetic anomalies. Based on the fact that aurora occurs where the magnetic field lines converge, we can recover the Martian aurora morphology observed by Mars Global Surveyor and Mars Express through the topology of magnetic field according to the model. In addition, according to the obvious feature of the narrow width about Martian aurora arcs, the causes of the Martian crustal magnetic anomalies are discussed in this thesis.
引文
吕保维,叶永恒,刘振兴,空间物理学进展(第三卷),科学出版社,北京,2001.
    Acuna M. H., et al., Magnetic field and plasma observations at Mars:Initial results of the Mars Global Surveyor Mission, Science, 279, 1676-1680, 1998.
    Acuna M. H., et al., Global Distribution of Crustal Magnetization Discovered by the Mars Global Surveyor MAG/ER Experiment, Science, 284, 790-793, 1999.
    Acuna M. H., J. E. P. Connereney, P. Wasilewski, et al., Magnetic field of Mars: Summary of results from aerobraking and mapping orbits, J. Geophys. Res., 106, 23403-23417, 2001.
    Afonin V., et al., Energetic ions in the close environment of Mars and particle shadowing by the planet, Nature, 341, 616-618, 1989.
    Albert R. D., Nearly monoenergetic electron fluxes detected during a visible aurora, Phys. Rev. Lett., 18, 368-372, 1967.
    Bauer S. J., M. H. Hantsch, Solar cycle variation of the upper atmosphere temperature of Mars, Geophys. Res. Lett., 16, 373-376, 1989.
    Bertucci C., C. Mazelle, D. Crider, M. H. Acuna, J. E. Connerney, D. Mitchell, R. P. Lin, H. Reme, N. Ness, The magnetic field draping enhancement at weakly magnetized bodies, EOS Transactions 83 (47, Fall Meet. Suppl.) (Abstract P21B-0380), 2002.
    Bertucci C., C. Mazelle, D. H. Crider, Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars Global Surveyor observations, Geophys. Res. Lett., 30, 1099-1112, 2003.
    Bertucci. C., C. Mazelle, D. H. Crider, Interaction of the solar wind with Mars from Mars Global Surveyor MAG/ER observations, J. Atmos. Tess. Phys., 67, 1797-1808, 2005.
    Bertaux J. L., F. Leblanc, O. Witasse, et al., Discovery of an aurora on Mars, Nature ,435, 790-794, 2005.
    Bougher S. W., S. Engel, D. Hinson, et al., Mars Global Surveyor radio science electron density profiles: Neutral atmosphere implications, Geophys. Res. Lett., 28, 3091-3094, 2001.
    Brain D. A., et al., Reconnection of Martian Crustal Magnetic Fields to the Solar Wind, J. Geophys. Res. 108, 1424-1440, 2003a.
    Brain D. A., et al., Martian magnetic morphology:Contributions from the solar wind and crust, J. Geophys. Res., 108, 1424-1437, 2003b.
    Brain D. A., J. S. Halekas, R. Lillis, D. L. Mitchell, and R. P. Lin, Variability of the altitude of the Martian sheath, Geophys. Res. Lett., 32, 18203-18206, 2005.
    Brain D. A., J. S. Halekas, L. M. Peticolas, et al., On the origin of aurorae on Mars, Geophys. Res. Lett., 33, 1201-1204, 2006.
    Breus T. K., et al., The effect of the solar radiation in the topside atmosphere/ionosphere of Mars: Mars Global Surveyor observations, J. Geophys. Res., 109, 9310-9317, 2004.
    Broadfoot A. L., et al., Extreme ultraviolet observations from Voyager 1 encounter with Jupiter, Science, 204, 979-982 , 1979.
    Broadfoot A. L., et al., Extreme ultraviolet observations from Voyager 1 encounter with Saturn, Science, 212, 206-211, 1981.
    Cloutier P. A., C. C. Law, D. H. Crider, P. W. Walker, Y. Chen, M. H. Acuna, J. E. P. Connerney, R. P. Lin, K. A. Anderson, D. L. Mitchell, C. W. Carlson, J. Mcfadden, D. A. Brain, H. Reme, C. Mazelle, J. A. Sauvaud, D. Vignes, S. J. Bauer, and N. F. Ness, Venus-like interaction of the solar wind with Mars, Geophys. Res. Lett., 26, 2685-2688, 1999.
    Connerney J. E. P., M. H. Acuna, P. J. Wasilewski, et al., Mars Observer Magnetic Fields Investigation, J. Geophys. Res., 97, 7799-7814, 1992.
    Connerney J. E. P., et al., Magnetic Lineations in the Ancient Crust of Mars, Science, 284,794-798, 1999.
    Connerney J. E. P., M. H. Acuna, P. J.Wasilewski, et al., The global magnetic field of Mars for crustal evolution, Geophys. Res. Let., 28, 4015-4018, 2001.
    Connerney J. E.P., M. H. Acuna, N.F. Ness, T. Spohn, and G. Schubert, Mars Crustal magnetism, Space Sci. Rev., 111, 1-32, 2004.
    Cravens T. E., A. J. Kliore, J. U. Kozyra, The ionospheric peak on the Venus dayside, J. Geophys. Res., 86, 11323-11329, 1981.
    Crider D. H., D. Vignes, A. M. Krymskii, T. K. Breus, N. F. Ness, D. L. Mitchell, J. A. Slavin, and M. H. Acuna, A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data, J.Geophys.Res.,108, 1461-1470, 2003.
    Crider D. H., D. A. Brain, M. H. Acuna, et al., Mars global surveyor observations ofsolar wind magnetic field draping around Mars, Space Sci. Rev., 111, 203-221, 2004.
    Crider D. H., M. H. Acuna, J. E. P. Connerney, D. Vignes, N. F.Ness, A. M. Krymskii, T. K. Breus, H. Reme, C. Mazelle, D. L. Mitchell, R. P. Lin, P. A. Cloutier, and D. Winterhalter, Observations of the latitude dependence of the location of the martian magnetic pileup boundary, Geophys. Res. Lett., 29, 1170-1173, 2002.
    Curtis S. A., N. F. Ness, Remanent magnetism at Mars, Geophys. Res. Lett., 15, 737-739, 1988.
    Dolginov S. S., Y. G. Yeroshenko, and L. N. Zhuzgov, Magnetic field in the very close neighborhood of Mars according to data from the Mars 2 and Mars 3 spacecraft, J. Geophys. Res., 78, 4779-4786, 1973.
    Dubinin E., R. Lundin, W. Riedler, K. Schwingenschuh, J. G. Luhmann, C. T. Russell, and L. H. Brace, Comparison of observed plasma and magnetic field structures in the wakes of Mars and Venus, J. Geophys. Res., 96, 11189-11197, 1991.
    Dubinin E., et al., Access of solar wind electrons into the Martian magnetosphere, Ann. Geophys., 26, 3511-3524, 2008a.
    Dubinin E., G. Chanteur, M. Fraenz, J. Woch , Field-aligned currents and parallel electric field potential drops at Mars.Scaling from the Earth’aurora, Planet Space Sci., 56, 868-872,2008b.
    Dubinin E., M. Fraenz, J. Woch, J. D. Winnigham, R. Frahm, R. Lundin, and S. Barabash, Suprathermal electron fluxes on the nightside of Mars: ASPERA-3 observations, Planet Space Sci., 56, 846-851, 2008c.
    Dubinin E., et al., Long-lived auroral structures and atmospheric losses through auroral flux tubes on Mars, Geophys. Res. Lett., 36, 8108-8112, 2009.
    Fedorov F., E. Budnik, J. A. Sauvaud, et al., Structure of the Martian wake, ICARUS, 182, 337-342, 2006.
    Fox J. L., Models for aurora and airglow emissions from other planetary atmospheres, Can. J. Phys., 64, 1631-1656, 1986.
    Fox J. L., A. I. F. Stewart, The Venus Ultraviolet Aurora: A Soft Electron Source, J. Geophys. Res., 96, 9821-9828, 1991.
    Fox J. L, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions (eds Luhmann, J. G., Tatrallyay, M. & Pepin, R. O.) 191-222(Geophys. Monogr. 66, American Geophysical Union, Washington DC, 1992).
    Franz M., J. D. Winningham, E. Dubinin, et al., Plasma intrusion above Mars crustal fields Mars Express ASPERA-3 observations, ICARUS, 182,406-412, 2006.
    Frank L. A., K. L. Ackerson, Observations of Charged Particle Precipitation into theAuroral Zone, J. Geophys. Res., 76, 3612-3643, 1971.
    Gallagher J. J., J. A. Simpson, Search for Trapped Electrons and a Magnetic Moment at Mars by Mariner IV, Science, 149, 1233-1239, 1965.
    Gerard J., V. Dols, F. Paresce, and R. Prange, Morphology and time variation of the Jovian Far UV aurora: Hubble Space Telescope observations, J. Geophys. Res., 98, 18793-18801, 1993.
    Gringauz K. I., Interaction of solar wind with Mars as seen by charged particle traps on Mars 2, 3, and 5 satellites, Reviews of Geophysics, 14, 391-402, 1976.
    Gringauz K. I., A comparison of the magnetospheres of Mars, Venus and the Earth, Adv. Space Res., 1, 5-24, 1981.
    Gurnett D. A., D. L. Kirchner, R. L. Huff, et al.,Radar soundings of the ionosphere of Mars , Science, 310, 1929-1933, 2005.
    Halekas J. S., D. A. Brain, R. J. Lillis, et al., Current sheets at low altitudes in the Martian magnetotail, Geophys. Res. Lett., 33, 13101-13104, 2006.
    Harnett E. M., R. M. Winglee, Three-dimensional fluid simulations of plasma asymmetries in the Martian magnetotail caused by the magnetic anomalies, J. Geophys. Res., 110, 7226-7738, 2005.
    Hantsch M. H., S. J. Bauer, Solar control of the Mars ionosphere, Planet Space Sci., 38, 539-542,1990.
    Kallio E., An empirical model of the solar wind flow around Mars, J. Geophys. Res., 101, 11133-11147, 1996.
    Kallio E., P. Janhunen, Ion escape from Mars in a quasi-neutral hybrid model, J. Geophys. Res., 107, 1305-1325, 2002.
    Kallio E., H. Koskinen, A test particle simulation of the motion of oxygen ions and solar wind protons near Mars, J. Geophys. Res., 104, 557-579, 1999.
    Krymskii A. M., T. K. Breus, N. F. Ness, et al., Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars, J.Geophys.Res., 107,1245-1254, 2002.
    Krymskii A. M., T. K. Breus, N. F. Ness, et al., Effect of crustal magnetic fields on the near terminator ionosphere at Mars: Comparison of in situ magnetic field measurements with the data of radio science experiments on board Mars Global Surveyor, J. Geophys. Res., 108, 1431-1438, 2003.
    Langel R. A., J. D. Phillips, R. J. Horner, Initial scalar magnetic anomaly map from Magsat, Geophys. Res. Lett., 9: 269-272, 1982.
    Leblanc F., O. Witasse, J. Winningham, et al., Origins of the Martian aurora observed by Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board Mars Express, J. Geophys. Res., 111, 9313-9321, 2006.
    Leblanc F., J. Y. Chaufray, and J. L. Bertaux, On Martian nitrogen dayglow emission observerd by SPICAM UV spectrograph/Mars Express, Geophys. Res. Lett., 34, 2206-2210, 2007.
    Leblanc F., O. Witasse, L. Lilensten, et al., Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERA-3 and MARSIS measurements, J. Geophys. Res., 113, 8311-8326, 2008.
    Leweling M. T. Spohn, Mars: a magnetid field due to themoremanence, Planet Space Sci, 45, 1389-1400, 1997.
    Liemohn M.W., Y. Ma, A. F. Nagy, J. U. Kozyra, J. D. Winningham, R. A. Frahm, J. R. Sharber, S. Barabash, and R. Lundin, Numerical modeling of the magnetic topology near Mars auroral observations, Geophys. Res. Lett., 34, 24202-24206, 2007.
    Lundin R., A.Zakharov, R. Pellinen, H.Borg, B. Hultqvist, N. Pissarenko, E. M. Dubinin, S. W. Barabash, I. Liede, and H. Koskinen, First measurement of the ionospheric plasma escape from Mars, Nature, 341,609-612, 1989.
    Lundin R., D. Winningham, S. Barabash, et al., Plasma acceleration above Martian magnetic anomalies, Science, 311, 980-983, 2006.
    Lundin R., E. Dubinin, H. Koskinen, O. Norberg, N. Pissarenko, and S. Barabash, On the momentum transfer of the solar wind to the Martian topside ionosphere, Geophys. Res. Lett., 18, 1059-1062, 1991.
    Luhmann J. G., The solar wind interaction with Venus, Space Sci. Rev., 44,241-306, 1986.
    Luhmann J. G., C. T. Russell, K. Schingenschuh, and Ye. Yeroshenko, A comparison of induced magnetotails of planetary bodies: Venus, Mars, and Titan, J. Geophys. Res., 96, 11199-11208, 1991.
    Macek W. M., The deep planetary magnetotail revisited, Geophys. Res. Lett., 16, 1249-1252, 1989.
    Ma Y. J., A. F. Nagy, I. V. Sokolov, and K. C. Hansen, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, 211-215, 2004.
    Mayhew M. A., Inversion of satellite magnetic anomaly data, Geophys. J., 45, 119-128, 1979.
    Mcllwain C. E., Direct measurement of particles producing visible auroras, J. Geophys. Res., 65, 2727-2747, 1960.
    Mitchell D. L., R. P. Lin, C. Mazelle, H. Reme, P. A. Cloutier, J. E. P. Connerney, M. H. Acuna, and N. F. Ness, Probing Mars’crustal magnetic field and ionosphere with the MGS Electron Reflectometer, J. Geophys. Res., 106, 23419-23427, 2001.
    Mitchell D. L., R. J. Lillis, R. P. Lin ,et al., A global map of Mars'crustal magnetic field based on electron reflectometry, J. Geophys. Res., 112, 1002-1009, 2007.
    Mohlmann D., W. Riedler, J. Rustenbach, K. Schwingenschuh, J. Kurths, U. Motschmann, T. Roatsch, K. Sauer and H.T.M. Lichtenegger, The question of an internal Martian magnetic field, Planet Space Sci., 39, 83-88, 1991.
    Moore, T. E., R. Lundin, D. Alcayde, M. Andre, S. B. Ganguli, M.Temerin, and A. Yau, Source processes in the high latitude ionosphere, Space Sci. Rev., 88, 7-84, 1999.
    Nagy A. F. , D. Winterhalter, K. Sauer, T. E. Cravens, S. Brecht, C. Mazelle, D. Crider, E. Kallio, A. Zakharov, E. Dubinin, M. Verigin, G. Kotova, W. I. Axford, C. Bertucci, and J. G. Trotignon, The plasma Environment of Mars, Space Sci. Rev., 111,33-114, 2004.
    Ness N. F., M. H. Acuna, J. Connerney, P. Wasilewski, C. Mazelle, J. Sauvaud, D.Vignes, C. d’Uston, H. Reme, R. Lin, D. I. Mitchell, J. McFadden, D. Curtis, P. Cloutier, and S. Bauer, MGS Magnetic Fields and Electron Reflectometer Investigation: Discovery of Paleomagnetic Fields due to Crustal Remnance, Adv. Space Res., 23, 1879-1886, 1999.
    Ness N. F., M. H. Acuna, J. E. P. Connerney, et al., Effects of magnetic anomalies discovered at Mars on the structure of the Martian ionosphere and solar wind interaction as follows from radio occultation experiments, J. Geophys. Res., 105, 15991-16004, 2000.
    Norberg O., S. Barabash, R. Lundin, Observations of molecular ions in the Martian plasma environment, in Plasma Environments of Nonmagnetic Planets, COSPAR Colloquia Series, vol. 4, edited by T. Gombosi, p. 299-304, 1993.
    Phillips J. L., A. I. F. Stewart, and J. G. Luhmann, The Venus ultraviolet aurora: observations at 130.4nm, Geophys. Res. Lett., 13, 1047-1050, 1986.
    Reidler W., K. Schwingenschuh, H.I.M.Lichtenegger, et al., Interaction of solar wind with the planet Mars: Phobos-2 magnetic field observations, Planet Space Sci., 39, 75-81, 1991.
    Roberts P. H., G. A. Glatzmaier, Geodynamo theory and simulations, Rev. Mod.Phys. ,72, 1081-1123, 2000.
    Rosenbauer H., N. Shutte, I. Apathy, A. Galeev, K. Gringauz, H. Grunwaldt, P. Hemmerich, K. Jockers, P. Kiraly, G. Kotova, S. Livi, E. Marsch, A. Richter, W. Riedler, T. Remizov, R. Schwenn, K. Schwingenschuh, M. Steller, K.Szego,
    M.Verigin, and M. Witte, Ions of martian origin and plasma sheet in the martian magnetosphere: initial results of the TAUS experiment, Nature, 341, 612-614, 1989.
    Roussos E., et al., Energetic electron asymmetries in the Martian magnetosphere., ASPERA-3 observations, Planet Space Sci., 56, 836-839, 2008.
    Russell C. T., The magnetic field of Mars: Mars 3 evidence reexamined, Geophys. Res. Lett., 5, 81-86, 1978.
    Schwingenschuh K., W. Reidler, T.-L.Zhang, et al., The Martian magnetic field environment: induced or dominated by an intrinsic magnetic field?, Adv. Space Res., 12, 213-219, 1992.
    Shelley E. G., R. D. Sharp, and R. G. Johnson, Satellite observations of an ionospheric acceleration mechanism, Geophys. Res. Lett., 3, 654-656, 1976.
    Slavin J. A., R. E. Holzer, The solar wind interaction with Mars revisited, J. Geophys .Res., 87, 10285-10296, 1982.
    Slavin J. A., K. Schwingenschuh, W. Reidler, et al., The solar wind interaction with Mars: Mariner-4, Mars-2, 3, 5, and Phobos-2 observation of bow shock position and shape, J. Geophys. Res., 96, 11235-11241,1996.
    Shi J. K., Z. X . Liu, Analysis and research of detective results about Martian magnetosphere, Prog. Geophys.(in Chinese), 11, 77-86, 1996.
    Shinagawa H., The ionospheres of Venus and Mars, Adv. Space Res., 33: 1924-1931, 2004.
    Spreiter J. R., et al., Solar wind flow past nonmagnetic planets- Venus and Mars, Planet Space Sci., 18, 1281-1299,1970.
    Tatsuki O., R. J. Walker, M. A. Abdalla, A Three-Dimensional MHD Simulation of the Interaction of the Solar Wind With Comet Halley, J. Geophys. Res., 93, 9568-9676, 1988.
    Trauger J. T., J. T. Clarke, G. E. Ballester, et al., Saturn's hydrogen aurora: Wide field and planetary camera 2 imaging from the Hubble Space Telescope, J. Geophys. Res., 103, 20237-20244, 1998.
    Tong D. S., C. X .Chen, A model of Martian induced magnetic field and the distribution of magnetic field lines, Chin. J. Geophys.( in Chinese), 53, 2155-2160, 2010.
    Vennerstrom S., N. Olsen, M. Purucker, M. H. Acuna, and J. C. Cain, The magnetic field in the pile-up region at Mars, and its variation with the solar wind, Geophys. Res. Lett., 30, 1369-1372, 2003.
    Verigin M., G. Kotova, N. Shutte, A. Remizov, K. Szego, M. Tatrallyay, I. Apathy, S. Livi, H. Rosenbauer, A. K. Richter, K. Schwingenschuh, T. L. Zhang, J. Slavin, and J. Lemaire, Quantitative model of the Martian magnetopause shape and its variation with the solar wind ram pressure based on Photos 2 observations, J. Geophys. Res., 102, 2147-2155, 1997.
    Vignes D., et al., The Solar Wind interaction with Mars: locations and shapes of the Bow Shock and the Magnetic Pile-up Boundary from the observations of the MAG/ER experiment onboard Mars Global Surveyor, Geophys. Res. Lett., 27, 49-52, 2000.
    Waite J. H., F. Bagenal, T. Seward, et al., ROSAT Observations of the Jupiter Aurora, J. Geophys. Res., 99, 14799-14809, 1994.
    Wang J. S., E. Nielsen, Behavior of the Martian dayside electron density peak during global dust storms, Planet Space Sci., 51, 329-338, 2003.
    Wang J. S., E. Nielsen, Solar wind modulation of the Martian ionosphere observed by Mars Global Surveyor, Ann. Geophys., 22, 2277-2281,2004a.
    Wang J. S., E. Nielsen, Evidence for topographic effects on the Martian ionosphere, Planet Space Sci., 51, 881-886, 2004b.
    Wang T. Y., W. J. Kuang, S. Z. Ma, Numerical simulation of ancient generator of Martian magnetic field: Influence of Rayleigh number on system, Sci. China D-Earth Sci.( in Chinese), 39 ,157-165, 2009.
    Watters T. R., P. J. Mcgovern, and R. P. Irwin, Hemispheres Apart: The crustal dichotomy on Mars, Annu. Rev. Earth Planet. Sci., 35:621-52, 2007. Whitten R. C., L. Colin, The ionosphere of Mars and Venus, Rev. Geophys.,12,155-192, 1974.
    Withers P., M. Mendillo, H. Rishbeth, D. P. Hinson, and J. Arkani-Hamed,Geophys.Res. Lett., 32, 16204-16207, 2005.
    Zhang T. L., et al., Interplanetary magnetic field control of the Mars bow shock: Evidence for Venuslike interaction, J. Geophys. Res., 96, 11256-11269, 1991.
    Zhang M. H. G., J. G. Luhmann, A. J. Kliore, et al., A post-pioneer Venus reassessment of the Martian dayside ionosphere as observed by radio occultation methods, J. Geophys. Res., 95, 14829-14839, 1990.
    Zou H., H. F. Chen, N. Yu, et al., Effects of Martian crustal magnetic field on its ionosphere, Sci. China Tech. Sci., 53,1717-1724,2009.
    Zou H., J. S. Wang, E. Nielsen, Reevaluating the relationship between the Martian ionospheric peak density and the solar radiation, J. Geophys. Res., 111, 7305-7320, 2006.
    Zou H., J. S. Wang, E.Nielsen, Effect of the seasonal variations in the lower atmosphere on the altitude of the ionospheric main peak at Mars, J. Geophys. Res., 110, 9311-9317, 2005.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.