大鼠视上核胶质细胞对高渗刺激的反应及其与神经元相互关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统观点认为胶质细胞是一种支持细胞,起支持、营养和保护神经元的作用。近20多年来随着研究手段的进步,对神经胶质细胞的研究不断深入,越来越多的实验显示,胶质细胞与神经元之间存在双向通讯,并能主动调控神经元的活动,参与多种信号的整合。现已发现星形胶质细胞在对低渗刺激的反应中起关键性的作用:星形胶质细胞感受渗透压的变化,通过大量释放牛磺酸(taurine),作用于神经元上的甘氨酸(glycine)受体,从而抑制神经元释放血管加压素(vasopressin,VP)。但是,关于胶质细胞在高渗刺激状况下,是否参与渗透压的调节及其与神经元的关系的研究尚未见报道。
     因此在以往研究的基础上,本课题通过观察视上核神经元和胶质细胞(星形胶质细胞和小胶质细胞)对高渗刺激的反应及其相互关系,探讨视上核胶质细胞在高渗刺激后调节过程中的作用。
     应用免疫组织化学方法光镜下观察高渗刺激后,大鼠视上核胶质细胞(星形胶质细胞和小胶质细胞)受体(NMDAR2)、信号分子、骨架蛋白及缝隙连接蛋白的表达的时空变化;应用放免测定检测高渗刺激前后血浆中VP含量。
     应用免疫电镜观察高渗刺激后被激活的视上核星形胶质细胞和神经元之间的超微结构的变化。
     侧脑室注射缝隙连接阻断剂甘珀酸(carbenoxolone,CBX)后,再给予高
    
     第四军医大学博士学位论文
    渗刺激,观察视上核胶质细胞和神经元免疫组化反应的改变,并检测血浆VP
    含量的变化。
     应用 western blot技术检测高渗刺激后视上核缝隙连接蛋白(connexin,Cx)
    32和 43含量。
     原代培养神经元和星形胶质细胞,给予高渗刺激,免疫荧光化学法检测缝
    隙连接蛋白(CX32和 CX43)在神经元和星形胶质细胞上的表达;应用 FllJO-3八M
    荧光探针,激光扫描共聚焦显微镜检测培养的星形胶质细胞和小胶质细胞内
    Ca‘”瞬间 时空变化。
     通过实验得到主要研究结果包括:
     (l)高渗刺激后,大鼠 SON内出现 PLC、NMDARZ、FOS、CX43、GFAP
    样兔疫反应阳性星形胶质细胞,PLC。NMDARZ、F。S、CX32样免疫反应阳性
    的神经元和 OX42样免疫反应阳性的小胶质细胞,反应性星形胶质细胞和小胶
    质细胞的出现要早于反应性神经元。反应性星形胶质细胞和小胶质细胞与反应
    性神经元之间有密切的时空关系。
     (2)免疫电镜观察,SON内星形胶质细胞与神经元接触部位可以观察到
    膜增厚的结构——电子致密区(EDAS),在神经元一侧可见Cx32阳性金颗粒,
    而在星形胶质细胞一侧可见CX43阳性物质分布。高渗刺激后,EDAS的数量明
    显增多。
     门)高渗刺激后扔dn,血浆中*P含量明显升高,若事先经侧脑室注入
    CBX后再给高渗刺激,血浆中VP含量不升高,视上核内星形胶质细胞GFAP
    阳性反应与单纯高渗组无差别,而FoS阳性神经元明显减少。
     (4)Western blot结果显示高渗刺激后,SON内 Cx43和 Cx32表达增加,
    并从胞浆向胞膜转移。而对培养的神经元和星形胶质细胞施予高渗刺激,星形
    胶质细胞膜上CX43样阳性颗粒迅速增多,神经元CX32表达明显增强。
     门)高渗刺激后,培养的星形胶质细胞和小胶质细胞胞内游离 Cay水平迅
     4
    
     第四军医大学博士学位论文
    速出现先升高随之降低的变化,星形胶质细胞的 CaV水平的下降比小胶质细胞
    缓慢。
     根据实验结果,得出以下结论:
     l、高渗刺激可以引起大鼠SON内的星形胶质细胞和小胶质细胞快速的反
    应,星形胶质细胞的反应要早于神经元。
     2、反应性星形胶质细胞和小胶质细胞与反应性神经兀之问有密切关系。星
    形胶质细胞可能通过类似缝隙连接的结构-EDAS的信息通道主动调节神经元的
    反应,共同参与对高渗刺激的调节。
Glias are traditionally thought to assume a structural, trophic, and protective role to neurons. With the development of research techniques and the further study on glias, mounting evidences have suggested the bidirectional signaling between neurons and glias. Glias may be an integral part of the communication network within the central nervous system and regulate neuronal activity. It is known that astrocytes take a key role in the response to hypoosmotic stimulation: astrocytes can perceive the change of osmotic pressure and release taurine which then activates glycine receptors on the neurons, and inhibits the release of VP from the neurons in SON. While it is not clear that whether SON astrocytes respond to hyperosmotic stimuli and what's the relationship between them and neurons?
    Based on the previous researches, the present study investigated the response of SON neurons and glias (astrocytes and microglias) to hyperosmotic stimulation and their relationship to find out the roles of glias in regulating hyperosmotic stimulation.
    Immunohistochemistry method was used to observe the temporal and spatial
    
    
    
    
    expression of NMDAR2, signal molecules, skeleton proteins and connexins in SON neurons and glias (astrocytes and microglias). Radioimmunoassay was used to detect vasopressin (VP) content in plasma before and after hyperosmotic stimulation.
    Ultrastructure between activated SON astrocytes and neurons was observed by double immune-electron-microscopic staining method.
    We injected carbennoxolone, a gap junction blocker, into the lateral ventricle, which was followed by hyperosmotic stimulation, the immunohistochemical staining of neurons and astrocytes and VP content in plasm were studied.
    Western blot was performed to detect the content of Cx43 and Cx32 in SON following hyperosmotic stimulation.
    Treat primary cultured neurons and astrocytes with hyperosmotic stimulation. Immunofluorescence was used to study the expression of Cx43 and Cx32 in SON neurons and astrocytes. By means of Fluo-3/AM and laser scanning confocal microscopy, we also observed intracellular calcium transient in astrocytes and microglias.
    The main results included:
    1, After hyperosmotic stimulation, there emerged in rat SON the activated astrocytes which showed NMDAR2, Fos/GFAP and Cx43 positive immuno-histochemical staining, the activated neurons which showed PLC, NMDAR2, Fos and Cx32 staining, and also OX42 positive stained microglias. The activated astrocytes and microglias emerged earlier than the activated neurons. These activated cells formed intimate temporal and spatial relationship.
    2, The electron dense area (EDA) consisting of the astrocytic process on one side and the neuron (dendrite) on the other side was observed in immune-electron-microscopic staining studies, and the EDA was characterized with
    
    
    
    double layers thickening and dark staining cytomembranes with a narrow cleft between them. Cx32-LI appeared on the neuron side or and Cx43-LI on the astrocyte side respectively. This structure increased obviously following hyperosmotic stimulation.
    3, VP content in plasma increased significantly 45min after hyperosmotic stimulation. When pre-injected carbennoxolone, a gap junction blocker, into the lateral ventricle, followed by hyperosmotic stimulation, VP content remained the base line. The expression of GFAP-LI astrocytes showed no difference, while that of Fos-LI neurons decreased significantly.
    4, Western blot showed increase of Cx43 and Cx32 in SON and also a translocation of them from plasm to membrane. After hyperosmotic treatment, Cx43-LI granules increased quickly on the plasm of the cultured astrocytes and Cx32-LI increased apparently in the cultured neurons.
    5, After being treated with hyperosmotic stimulation, the cultured astrocytes and microglias showed a fast increase of intracellular calcium concentration followed by a decrease. The [Ca2+]j of astrocytes decreased slower than that of microglia
引文
1. Akiyama H., Itagaki S., McGeer RL. Major histocompatibility complex antigen expression on rat microglia following epidural kainic acid lesions, J Neuronsci Res, 1998; 20:147-157.
    2. Alvarez-Maubecin V., Garcia-Hernandez F., Williams J.T., Van Bockstaele E.J. Functional coupling between neurons and gl ia. J Neurosci, 2000; 20:4091-4098.
    3. Aradachi H., Honda K., Negoro H., Kubota T. Median preoptic neurones projecting to the supraoptic nucleus are sensitive to haemodynamic changes as well as to rise in plasma osmolality in rats. J Neuroendoc, 1996; 8:35-43.
    4. Araque A., Carmignoto G., Haydon P.G. Dynamic signaling between astrocytes and neurons. Annu Rev Physiol, 2001; 63:795-813.
    5. Araque A., Li N.Z., Doyle R.T., Haydon P.G. SNARE proteindependent glutamate release from astrocytes, J Neurosci, 2000; 20:666-673.
    6. Araque A., Parpura V., Sanzgiri R.P., Haydon P.G. Glutamatedependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci, 1998a; 10:2129-2142.
    7. Araque A., Sanzgiri R.P., Parpura V., Haydon P.G. Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons, J Neurosci, 1998b; 18: 6822-6829.
    8. Araque A., Parpura V., Sanzgiri R.P., Haydon P.G. Tripartite synapses: gila, the unacknowledged partner. TINS, 1999; 22:208-215.
    9. Araque A., Sanzgiri R.P., Parpura V., Haydon P.G. Astrocyte induced modulation of synaptic transmission. Can J Physiol Pharmacol, 1999; 77: 699-706.
    10. Armstrong W.E. Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog Neurobiol, 1995; 47:291-339.
    11. Attwell D., Barbour B., Szatkowski M. Nonvescicular release of neurotransmitter. Neuron, 1993; 11:401-407.
    12. Bacci A., Verderio C., Pravettoni E., Matteoli M. The role of glial cells in synaptic function. Philos Trans R Soc Lond B Biol Sci, 1999; 354:403-409.
    13. Baertschi A.J., Pence R.A. Gut-brain signaling of water absorption inhibits vasopressin in rats. Am J Physiol, 1995; 268:R236-247.
    14. Baertschi A.J., Vallet P.G. Osmosensitivity of the hepatic portal vein area and vasopressin release in rats. J Physiol, 1981; 315:217-230.
    15. Banati R.B., Gehrmann J., Schubert P., Kreatzberg G.W. Cytotoxicity of microglia. Glia, 1993; 7:111-118.
    16. Bergles D.E., Jahr C.E. Synaptic activation of glutamate transporters in hippocampal
    
    astrocytes. Neuron, 1997; 19:1297-1308.
    17. Bergles D.E., Roberts J.D.B., Somogyi P., Jahr C.E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature, 2000; 405: 187-191.
    18. Bernstein M., Behnisch T., Balschun D., Reymann K.G., Reise, G. Pharmacological characterisation of metabotropic glutamatergic and purinergic receptors linked to Ca~(2+) signalling in hippocampal astrocytes. Neuropharmacology, 1998; 37:169-178.
    19. Bezzi P., Carmignoto G., Pasti L., Vesce S., Rossi D., Lodi-Rizzini B., Pozzan T., Volterra A. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature, 1998; 391: 281-285.
    20. Bezzi P., Domercq M., Brambilla L., Galli R., Schols D., De Clercq E., Vescovi A., Bagetta G., Kollias G., Meldolesi J., Volterra A. CXCR4-activated astrocyte glutamate release via TNF α: amplification by microglia triggers neurotoxicity. Nat Neurosci, 2001; 4:702-703.
    21. Bezzi P., Domercq M., Versce S., Volterra A. Neuron-astrocyte cross-talk during synaptic transmission: physiological and neuropathological implications. Prog Brain Res, 2001; 132:255-265.
    22. Bezzi P., Volterra A. A neuron-gila signalling network in tile active brain. Curr Opin Neurobiol, 2001; 11:387-394.
    23. Bourque C.W. Osmoregulation of vasopressin neurons: a synergy of intrinsic and synaptic processes. Prog Brain Res, 1998; 119:59-76.
    24. Bourque C.W., Oliet S.H.R., Richard D. Osmoreceptors, osmoreception and osmoregulation. Front Neuroendoc, 1994; 15:231-274.
    25. Boxall A.R., Lancaster B. Tyrosine kinases and synaptic transmission. Eur d Neurosci, 1998; 10:2-7.
    26. Braet K., Paeleire K., D'Herde K., Sanderson M.J., Leybaert L. Astrocyte-endothelial cell calcium signals conveyed by two signaling pathways. Eur J Neurosci, 2001; 13:79-91.
    27. Brimble M.J., Dyball R.E.J. Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation, J Physiol, 1977; 271:253-271.
    28. Brueck W., Friede R.L. Anti-macrophage CR3 antibody blocks myelin phagocytosis by macrophage in vitro. Acta Neuropathol, 1990; 80:415-418.
    29. Bukauskas F.F., Angele A.B., Verselis V.K., Bennett M.V. Coupling asymmetry of heterotypic connexin 45/connexin 43-EGFP gap junctions: properties of fast and slow gating mechanisms. Proc Natl Acad Sci USA, 2002; 99:7113-7118.
    30. Calegari F., Coco S., Taverna E., Bassetti M., Verderio C., Corradi N., Matteoli M. A regulated secretory pathway in cultured hippocampal astrocytes, J Biol Chem, 1999; 274:22539-22547.
    31. Carmignoto G. Reciprocal communication systems between astrocytes and neurons. Prog Neurobiol, 2000; 62:561-581.
    
    
    32. Chapman G.A., Moores K., Harrison D., Campbell C.A., Stewart B.R., Strijbos P.J. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci, 2000; 20:RC871-875.
    33. Chen J., Backus K.H., Deitmer J.W. Intracellular calcium transients and potassium current oscillations evoked by glutamate in cultured rat astrocytes, J Neurosci, 1997; 17:7278-7287.
    34. Chiu S.Y., Kriegler S. Neurotransmitter-mediated signalling between axons and glial cells. Glia, 1994;11:191-200.
    35. Choi-Kwon S., Baertschi A.J. Splanchnic osmosensation and vasopressin: mechanisms and neural pathways. Am J Physiol, 1991; 261 :E18-25.
    36. Colburn R.W., Rickman A.J., DeLeo J.A. The effect of site and type of nerve injury on spinal glial activation an neuropathic pain behavior. Exp Neurol, 1999; 157:289-304.
    37. Dani J.W., Chernjavsky A., Smith S.J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron, 1992; 8:429-440.
    38. Decavel C., Hatton G.I. Taurine immunoreactivity in the rat supraoptic nucleus: prominent localization in glial cells, J Comp Neurol, 1995; 354:13-26.
    39. Deitmer J.W., Verkhratsky A.J., Lohr C. Calcium signalling in glial cells. Cell Calcium, 1998; 24:405-416.
    40. Deleo J.A., Colbum R.W. Proinflammatory cytokines and glial cells: their role in neuropathic pain. In: Watkins LR ed, Cytokines and pain. Birkhauser, 1999:159-182.
    41. Deleuze C., Duvoid A., Hussy N. Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus, J Physiol, 1998; 507:463-471.
    42. Deleuze C., Duvoid A., Moos F.C., Hussy N. Tyrosine phosphorylation modulates the osmosensitivity of volume-dependent taurine efflux from glial cells in the rat supraoptic nucleus. J Physiol, 2000; 523:291-299.
    43. Dermietzel R., Spray D.C. Gap junctions in the brain: where, what type, how many and why? Trends Neurosci, 1993; 16:186-192.
    44. Diamond J.S., Bergles D.E., Jahr C.E. Glutamate release monitored with astrocyte transporter currents during LTP. Neuron, 1998; 21:425-433.
    45. Do K.Q., Benz B., Sorg O., Pellerin L., Magistretti P.J. Beta-adrenergic stimulation promotes homocysteic acid release from astrocyte cultures. Evidence for a role of astrocytes in the modulation of synaptic transmission, J Neurochem, 1997; 68:2386-2394.
    46. Duan L., Yuan H., Liu Y.Y., Rao Z.R. Ultrastructural study on the junction areas between neurons and astrocytes in the supraoptic nucleus of rats with po 30g/L NaCl solution. World J Gastroenterol, 2003, In Press.
    47. Fam S.R., Gallagher C.J., Salter M.W. P2Y1 purinoceptormediated Ca~(2+) signalling and Ca~(2+) wave propagation in dorsal spinal cord astrocytes. J Neurosci, 2000; 20:2800-2808.
    48. Fatatis A., Russell J.T. Spontaneous changes in intracellular calcium concentration in type 1
    
    astrocytes from rat cerebral cortex in primary culture. Glia, 1992; 5:95-104.
    49. Finsenm B.R., Jorgemsen M.B., Diemer N.H., Zimmer J. Microglis MHC antigen after ischemic and kainic acid lesions of the adult rat hippocampus. Glia, 1993; 7:41-49.
    50. Fischer-Colbrie R., Kirchmair R., Schobert A., Olenik C., Meyer D.K., Winkle H. Secretogranin Ⅱ is synthesized and secreted in astrocyte cultures, J Neurochem, 1993; 60:2312-2314.
    51. Froes M.M., Correia A.H., Garcia-Abreu J., Spray D.C., Campos de Carvalho A.C., Neto M.V. Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures. Proc Natl Acad Sci USA, 1999; 96:7541-7546.
    52. Fu K.Y., Light A.R., Matsushima G.K. Microglial reactions after subcutaneous formalin injection into the rat hind paw. Brain Res, 1999; 825:59-67.
    53. Geppert M., Südhof T.C. RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu Rev Neurosci, 1998; 21:75-95.
    54. Grafstein B., Liu S., Cotrina M.L., Goldman S.A., Nedergaard M. Menigeal cells can communicate with astrocytes by calcium signalling. Ann Neurol, 2000; 47:18-25.
    55. Grosche J., Matyash V., Moiler T., Verkhratsky A., Reichenbach A., Kettenmann H. Microdomains for neuron-gila interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci, 1999; 2:139-143.
    56. Gullans S.R., Verbalis J.G. Control of brain volume during hyperosmolar and bypoosmolar conditions. Annu Rev Med, 1993; 44:289-301.
    57. Guo-Ross S.X., Yang F.Y., Walsh T.J., Bondy S.C. Decrease of glial fibrillary acidic protein in rat printal cortex following aluminum treatment. J Neurochem, 1999; 73:1609-1614.
    58. Guthrie P.B., Knappenberger J., Sega M., Bennett M.V.L., Charles A., Kater S.B. ATP released from astrocytes mediates glial calcium waves, J Neurosci, 1999; 19:520-528.
    59. Hanson P.I., Heuser J.E., Jahn R. Neurotransmitter release: four years of SNARE complexes. Curr Opin Neurobiol, 1997; 7:310-315.
    60. Hartley R.S., Margulis M., Fishrnan P.S., Lee V.M., Tang C.M. Functional synapses are formed between human Ntera2 (NT2N, hNT) neurons grown on astrocytes, J Comp Neurol, 1999; 407:1-10.
    61. Hashizume H., DeLeo J.A., Colburn R.W., Weinstein J.N. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine, 2000; 25:1206-1217.
    62. Hassinger T.D., Atkinson P.B., Strecker G.J., Whalen L.R., Dudek F.E., Koseel A.H., Kater S.B. Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. J Neurobiol, 1995; 28:159-170.
    63. Haydon P.G. GLIA: listening and talking to the synapse. Nat Rev Neurosci, 2001; 2:185-193.
    64. Hepp R., Perraut M., Chasserot-Golaz S., Galli T., Aunis D., Langley K., Gran N.J.
    
    Cultured glial cells express the SNAP-25 analogue SNAP-23. Glia, 1999; 27:181-187.
    65. Hide I., Tanaka M., Inoue A., Nakajima K., Kohsaka S., Inoue K., Nakata Y. Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J Neurochem, 2000; 75:965-972.
    66. Hoffmann E.K., Dunham P.B. Membrane mechanisms and intracellular signalling in cell volume regulation, Iht Rev Cytol, 1995; 161:173-262.
    67. Honda K., Aradachi H., Higuchi T., Takano S., Negoro H. Activation of paraventricular neurosecretory cells by local osmotic stimulation of the median preoptic nucleus. Brain Res, 1992; 594:335-338.
    68. Honda K., Negoro H., Dyball R.E.J., Higucbi T., Tadokoro Y. The osmoreceptor complex in the rat: evidence for interactions between the supraoptic and other diencephalic nuclei. J Physiol, 1990a; 431:225-241.
    69. Honda K., Negoro H., Higuchi T., Tadokoro Y. Activation of neurosecretory cells by osmotic stimulation of anteroventral third ventricle. Am J Physiol, 1987; 252:R1039-1045.
    70. Honda K., Negoro H., Higuchi T., Tadokoro Y. The role of the anteroventral 3rd ventricle area in the osmotic control of paraventricular neurosecretory cells. Exp Brain Res, 1989; 76:497-502.
    71. H(?)sli E., H(?)sli L. Receptors for neurotransmitters on astrocytes in the mammalian central nervous system. Prog Neurobiol, 1993; 40:477-506.
    72. H(?)sl E., H(?)sli L. Colocalization of neurotransmitter receptors on astrocytes in explant cultures of rat CNS. Neurochem Int, 2000; 36:301-311.
    73. Huang W., Lee S.L., Sjo(?) quist M. Natriuretic role of endogenous oxytocin in male rats infused with hypertonic NaCl. Am J Physiol, 1995; 268:R634-640.
    74. Hussy N., Deleuze C., Bres V., Moos FC. New role of taurine as an osmomediator between glial cells and neurons in the rat supraoptic nucleus. Adv Exp Med Biol, 2000a; 483:227-237.
    75. Hussy N., Deleuze C., Desarmenien M.G., Moos F.C. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Prog Neurobiol, 2000b; 62:113-134.
    76. Hussy N., Deleuze C., Pantaloni A., Desarménien M.G., Moos F. Regulation by taurine of the activity of rat supraoptic magnocellular neurones. J Physiol, 1996; 495:119-120.
    77. Hussy N., Deleuze C., Pantaloni A., Desarménien M.G., Moos F. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neuroncs: possible role in osmoregulafion. J Physio], 1997; 502:609-621.
    78. Huxtable R.J. Taurine in the central nervous system and the mammalian action of taurine. Prog Neurobiol, 1989; 32:471-533.
    79. Huxtable R.J. Physiological actions of taurine. Physiol Rev, 1992; 72:101-163.
    80. Innocenti B., Parpura V., Haydon P.G. Imaging extracellular waves of glutamate during
    
    calcium signaling in cultured astrocytes. J Neurosci, 2000; 20:1800-1808.
    81. Jackson P.S., Strange K. Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am J Physiol, 1993; 265: 1489-1500.
    82. Janigro D., Wender R., Ransom G., Tinklepaugh D.L., Winn H.R. Adenosine-induced release of nitric oxide from cortical astrocytes. Neuroreport, 1996; 7:1640-1644.
    83. Jeftinija S.D., Jeftinija K.V., Stefanovic G. Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res, 1997; 750:41-47.
    84. Jeremic A., Jeftinija K.V., Stevanovic J., Glavaski A., Jeftinija S.D. ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem, 2001; 77:664-675.
    85. Johnson A.K., Gross P.M. Sensory circumventricular organs and brain homeostatic pathways. Faseb J, 1993; 7:678-686.
    86. Kang J., Jiang L., Goldman S.A., Nedergaard M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci, 1998; 1: 683-692.
    87. Kettenmann H., Ransom B.R. Neuroglia. In: New York: Oxford University Press, 1995.
    88. Kimelberg H.K., Goderie S.K., Higman S., Pang S., Waniewski R.A. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci, 1990; 10:1583-1591.
    89. Kimelberg H.K., Mongin A.A. Swelling-activated release of excitatory amino acids in the brain: relevance for pathophysiology. In: Lang F. (Ed.), Cell Volume Regulation, Contrib Nephrol, 1998; 123:240-257.
    90. Kreutzberg G.W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci, 1996; 19:312-318.
    91. Lang F., Busch G.L., Ritter M,, Vlkl H., Weldegger S., Gulbins E., Hussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev, 1998; 78:247-306.
    92. Lang F., Busch G.L., Volkl H. The diversity of volume regulatory mechanisms. Cell Physiol Biochem, 1998; 8:1-45.
    93. Law R.O. The effects of pregnancy on the content of water, taurine and total amino nitrogen in rat cerebral cortex. J Neurochem, 1989; 53:300-302.
    94. Law R.O. Taurine efflux and the regulation of cell volume 131 in incubated slices of rat cerebral cortex. Biochim Biophys Acta, 1994a; 1221:21-28.
    95. Law R.O. Regulation of mammalian brain cell volume. J Exp Zool, 1994b; 268:90-96.
    96. Leng G. Rat supraoptic neurones: the effects of locally applied hypertonic saline. J Physiol, 1980; 304:405-414.
    97. Leng G., Mason W.T., Dye R.G. The supraoptic nucleus as an osmoreceptor. Neuroendocrinology, 1982; 34:75-82.
    98. Levi G., Patrizio M. Astrocyte heterogeneity:endogenous aminoacid levels and release
    
    evoked by non-N-methyl-d-aspartate receptor agonists and by potassium induced swelling in type-Ⅰ and type-Ⅱ astrocytes, J Neurochem, 1992; 58:1943-1952,
    99. Luscher C., Malenka R.C., Nicoll R.A. Monitoring glutamate release during LTP with glial transporter current. Neuron, 1998; 21:435-441.
    100. Maciejewski-Lenoir D., Chen S., Feng L., Maki R., Bacon K.B. Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol, 1999; 163:1628-1635.
    101. Maienschein V., Marxen M., Volknandt W., Zimmermann H. A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Gila, 1999; 26: 233-244.
    102. Manning T.J., Sontheimer H. Spontaneous intracellular calcium oscillations in cortical astrocytes from a patient with intractable childhood epilepsy (Rasmussen's Encephailitis). Glia, 1997; 21:332-337.
    103. Marriott D.R., Wilkin G.P. Substance P receptors on O-2A progenitor cells and type-2 astrocytes in vitro. J Neurochem, 1993; 61:826-834.
    104. Marsais F., Madelian V. Ectopic expression of non-catecholaminergic tyrosine hydroxylase in rat hypothalamic magnocellular neurons. Neuroscience, 1999; 94:151-161.
    105. Martin D.L. Synthesis and release of neuroactive substances by glial cells. Glia, 1992; 5:81-94.
    106. Miyata S., Matsushima O., Hatton G.I. Taurine in rat posterior pituitary: localization in astrocytes and selective release by hypoosmotic stimulation. J Comp Neurol, 1997; 381:513-523.
    107. Mollace V., Colasanti M., Muscoli C., Lauro G.M., Iannone M., Rotiroti D., Nistico G. The effect of nitric oxide on cytokine-induced release of PGE2 by human cultured astroglial cells. Br J Pharmacol, 1998; 124:742-746.
    108. Morioka T., Kalehua A.N., Streit W.J. Progressive expression of immunomolecules on microglial cells in rat dorsal hippocampus following transient forebrain ischemia. Acta Neuropathol, 1992; 83:149-157.
    109. Mothet J.P., Parent A.T., Wolosker H., Brady Jr. R.O., Linden D.J., Ferris C.D., Rogawski M.A., Snyder S.H. D-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA, 2000; 97:4926-4931.
    110. Muller T., Moiler T., Berger T., Schnitzer J., Kettenmann H. Calcium entry through kainate receptors and resulting K1-channel blockade in Bergmann glial cells. Science, 1992; 256:1563-1566.
    111. Nadarajah B., Thomaidou D., Evans W.H., Parnavelas J.G. Gap junctions in the adult cerebral cortex: regional difference in their distribution and cellular expression of connexins, J Comp Neurol, 1996; 376:326-342.
    112. Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain
    
    cells. Science, 1994; 263:1768-1771.
    113. Newman E.A., Zahs K.R. Modulation of neuronal activity by glial cells in the retina. J Neurosci, 1998; 18:4022-4028.
    114. Newman E.A. Calcium signaling in retinal glial cells and its effect on neuronal activity. Prog Brain Res, 2001; 132:241-254.
    115. Nielsen S., Nagelhus E.A., Amiry-Moghaddam M., Bourque C., Agre P., Ottersen O.P. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci, 1997; 17:171-180.
    116. Oja S.S., Saransaari P. Relations of taurine release and influx to cell volume in cerebral cortical slices. In: Huxtable, R., Michalk, D.V. (Eds.), Taurine in Health and Disease. Plenum Press, New York, 1994:269-277.
    117. Oja S.S., Saransaari P. Taurine release and swelling of cerebral cortex slices from adult and developing mice of different ionic compositions. J Neurosci Res, 1992; 32:551-561.
    118. Oldfield B.J., Bicknell R.J., McAllen R.M., Weisinger R.S., McKinley M.J. Intravenous hypertonic saline induces FOS immunoreactivity in neurons throughout tile lamina terminalis. Brain Reasch, 1991; 561:151-156.
    119. Oliet S.H.R., Bourque C.W. Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature, 1993a; 364:341-343.
    120. Oliet S.H.R., Bourque C.W. Steady-state osmotic modulation of cationic conductance in neurons of rat supraoptic nucleus. Am J Physiol, 1993b; 265 :R1475-1479.
    121. Oliet S.H.R., Bourque C.W. Osmoreception in magnocellular neurosecretory cells: from single channels to secretion. Trends Neurosci, 1994; 17:340-344.
    122. Osaka T., Kannan H., Kasai M., Inenaga K., Yamashita H. Osmotic responses of rat paraventricular neurons by pressure ejection method. Brain Res Bull, 1990; 24:493-497.
    123. Palkovits M., Elekes I., Lóng T., Patthy A. Taurine levels in discrete brain nuclei of rats. J Neurochem, 1986; 47:1333-1335.
    124. Parpura V., Basarsky T.A., Liu F., Jeftinija K., Jefiinija S., Haydon PG. Glutamate-mediated astrocyte-neuron signaling. Nature, 1994; 369:744-747.
    125. Parpura V., Fang Y., Basarsky T., Jahn R., Haydon P.G. Expression of synaptobrevin Ⅱ, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett, 1995a; 377: 489-492.
    126. Parpura V., Liu F., Brethorst S., JeftinijaK.V., Jeftinija S.D., Haydon P.G. Alpha-latrotoxin stimulates glutamate release from cortical astrocytes in cell culture. FEBS Lett, 1995b; 360:266-270.
    127. Parpura V., Liu F., Jeftinija K.V., Haydon P.G., Jeftinija S.D. Neuroligand-evoked calcium-dependent release of excitatory amino acids from Schwann cells. J Neurosci, 1995c; 15:5831-5839.
    128. Parpura V., Haydon P.G. Physiological astrocytic calcium levels stimulate glutamate
    
    release to modulate adjacent neurons. Proc Natl Acad Sci USA, 2000; 97:8629-8634.
    129. Parri H.R., Crunelli V. Pacemaker calcium oscillations in thalamic astrocytes in situ, NeuroReport, 2001a; 12:3897-3900.
    130. Parri H.R., Gould T.M., Crunelli V. Spontaneous astrcoytic Ca~(2+) oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci, 2001b; 4:803-812.
    131. Pasantes-Morales H., Morán J., Schousboe A. Volume-sensitive release of taurine from cultured astrocytes: properties and mechanism. Glia, 1990; 3:427-432.
    132. Pasantes-Morales H., Schousboe A. Role of taurine in osmoregulation in brain cells: Mechanisms and functional implications. Amino Acids, 1997; 12:281-292.
    133. Pasti L., Pozzan T., Carmignoto G. Long-lasting changes of calcium oscillations in astrocytes: a new form of glutamate-mediated plasticity. J Biol Chem, 1995; 270:15203-15210.
    134. Pasti L., Volterra A., Pozzan T., Carmignoto G. Intracellular calcium oscillations in astrocytes: a highly plastic, bi-directional form of communication between neurons and astrocytes in situ. J Neurosci, 1997; 17:7817-7830.
    135. Pasti L., Zonta M., Pozzan T., Vicini S., Carmignoto G. Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci, 2001; 21:477-484.
    136. Popovich P.G., Wei P., Stokes B.T. Cellular inflammatory response after spinal cord injury in Sprague- Dawley and Lewis rats. J Comp Neurol, 1997; 377:443-464.
    137. Porter J.T., McCarthy K.D. Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol, 1997; 51:439-455.
    138. Porter J.T., McCarthy K.D. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci, 1996; 16:5073-5081.
    139. Pow D.V. Immunocytochemistry of amino-acids in the rodent pituitary using extremely specific, very high titre antisera. J Neuroendoc, 1993; 5:349-356.
    140. Queiroz G., Meyer D.K., Meyer A., Starke K., von Kügelgen I. A study of the mechanism of the release of ATP from rat cortical astroglial cells evoked by activation of glutamate receptors. Neuroscience, 1999; 91:1171-1181.
    141. Randle J.C.R., Renaud L.P. Actions of gamma-aminobutyric acid on rat supraoptic nucleus neurosecretory neurones in vitro, J Physiol, 1987; 387:629-647.
    142. Rash J.E., Yasumura T., Dudek F.E., Nagy J.I. Cell-specific expression of connexins and evidence of restricted gap junctional coupling. J Neurosci, 2001; 21:1983-2000.
    143. Reiser G., Zimmermann H. Astrocytic signalling in the nervous system. In: Elsner, N., Kreuzberg, G.W.,(Eds.),Neuroscience at the Turn of the Century. Thieme (Georg), Stuttgart, 2001:626-631.
    144. Robitaille R. Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron, 1998; 21:847-855.
    145. Rohlmann A., Laskawi R., Hofer A., Dermietzel R., Wolff J.R. Astrocytes as rapid sensors
    
    of peripheral in tile facial nucleus of rat. Neuroreport, 1994; 5:409-413.
    146. Rosen H., Gorden S. Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo. J Exp Med, 1987; 166:1685-1701.
    147. Rozental R., Andrade-Rozental A.F., Zheng X., Urban M., Spray D.C., Chiu F.C. Gap junction mediated bi-directional signaling between human fetal hippocampal neurons and astrocytes. Dev Neurosci, 2001; 23:420-431.
    148. Sayer R., Hubbard J.I., Sirett N.E. Rat organum vasculosum laminae terminalis in vitro: responses to transmitters. Am J Physiol, 1984; 247:R374-379.
    149. Scemes E., Suadicani S.O., Spray D.C. Intercellular communication in spinal cord astrocytes. Fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation, J Neurosci, 2000; 20:1435-1445.
    150. Schell M.J., Brady Jr. R.O., Molliver M.E., Snyder S.H. D-Serine, as a neuromodulator: regional and developmental localization in rat brain glia resemble NMDA receptors, J Neurosci, 1997; 17:1604-1615.
    151. Schell M.J., Molliver M.E., Snyder S.H. D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA, 1995; 92:3948-3952.
    152. Schwei M.J., Honore P., Rogers S.D., Salak-Johnson J.L., Finke M.P., Ramnaraine M.L., Clohisy D., Mantyh P.W. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci, 1999; 19:10886-10897.
    153. Seri B., Garcia-Verdugo J.M., McEwen B.S., Alvarez-Buylia A. Astrocytes give rise to new neurons in the adult mammalian hippocampus, J Neurosci, 2001; 21:7153-7160.
    154. Solis J.M., Herranz A.S., Herreras O., Lerma J., Martin del RioR. Does taurine act as an osmoregulatory substance in the rat brain? Neurosci Lett, 1988; 91:53-58.
    155. Sontheimer H. Glial neuronal interactions: a physiological perspective. The Neuroscientist, 1990; 1:328-337.
    156. Steinhauser C., Gallo V. News on glutamate receptors in glial cells. Trends Neurosci, 1996; 19:339-345.
    157. Strange K. Regulation of solute and water balance and cell volume in the central nervous system, J Am Soc Nephrol, 1992; 3:12-27.
    158. Strange K. Are all cell volume changes the same? News Physiol Sci, 1994; 9:223-228.
    159. Strange K., Emma F., Jackson P.S. Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol, 1996; 270:C711-730.
    160. Strange K., Jackson P.S. Swelling-activated organic osmolyte e.ux: a new role for anion channels. Kidney Int, 1995; 48:994-1003.
    161. Strange K., Morrison R. Volume regulation during recovery from chronic hypertonicity in brain glial cells. Am J Physiol, 1992; 263:C412-419.
    
    
    162. Streit W.J. The role of microglia in brain injury. Neurotoxicology, 1996; 17:671-678.
    163. Stricker E.M., Verbalis J.G. Interaction of osmotic and volume stimuli in regulation of neurohypophyseal secretion in rats. Am J Physiol, 1986; 250:R267-275.
    164. Sweitzer S.M., Colburn R.W., Rutkowshi M., DeLeo J.A. Acute peripheral inflammation induces moderate glial activation and spinal IL-lbeta expression that correlates with pain behavior in the rat. Brain Res, 1999; 829:209-221.
    165. Takuma K., Matsuda T., Hashimoto H., Kitanaka J., Asano S., Kishida Y., Baba A. Role of Na~+-Ca~(2+) exchanger in agonist-induced Ca~(2+) signaling in cultured rat astrocytes. J Neurochem, 1996; 67:1840-1845.
    166. Tamada Y., Tanaka M., Munekawa K., Hayashi S., Okamura H., Kubo T., Hisa Y., Ibata Y. Neuron-glia interaction itl the suprachiasmatic nucleus: a double labeling light and electron microscopic immunocytochemical study in the rat. Brain Res Bull, 1998; 45:281-287.
    167. Teichberg V.I. Glial glutamate receptors: likely actors in brain signalling. FASEB J, 1991; 5:3086-3091.
    168. Theodosis D.T., El Majdoubi M., Pierre K., Poulain D.A. Factors governing activity-dependent structural plasticity of the hypothalamoneurohypophysial system. Cell Molec Neurobiol, 1998; 8:285-298.
    169. Theodosis D.T., MacVicar B. Neurone-glia interactions in the hypothalamus and pituitary. Trends Neurosci, 1996; 19:363-367.
    170. Theodosis D.T., Poulain D.A. Activity-dependent neuronalglial and synaptic plasticity in the adult mammalian hypothalamus. Neuroscience, 1993; 57:501-535.
    171. Tilly B.C., van den Berghe N., Tertoolen L.G.J., Edixhoven M.J., de Jonge H.R. Protein tyrosine phosphoprylation is involved in osmoregulation of ionic conductances. J Biol Chem, 1993; 268:19919-19922,
    172. Ullian E.M., Sapperstein S.K., Christopherson K.S., Barres B.A. Control of synapse number by gila. Science, 2001; 291:657-661.
    173. Van den Pol A.N., Finkbeiner S.M., Cornell-Bell A.H. Calcium excitability and oscillations in suprachiasmatic nucleus neurons and gila in vitro. J Neurosci, 1992; 12:2648-2664.
    174. Vega-Agapito V., Almeida A., Heales S.J.R., Medina J.M., Bolanos J.P. Peroxynitrite anion stimulates arginine release from cultured rat astrocytes. J Neurochem, 1999; 73:1446-1452.
    175. Venance L, Piomelli D., Glowinski J., Giaume C. Inhibition by anandamide of gap junctions and intercellular calcium signaling in striatal astrocytes. Nature, 1995; 376:590-594,
    176. Verderio C., Bruzzone S., Zocchi E., Fedele E., Schenk U., De Flora A., Matteoli M. Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J Neurochem, 2001; 78:646-657.
    177. Verderio C., Coco S., Rosetto O., Montecucco C., Matteoli M. Internalization and
    
    proteolytic action of botulinum toxins in CNS neurons and astrocytes, J Neurochem, 1999; 73:372-379.
    178. Verkhratsky A., Kettenmann H. Calcium signalling in glial cells. Trends Neurosci, 1996; 19:346-352.
    179. Verleysdonk S., Hamprecht B. Synthesis and release of 1-serine by rat astroglia-rich primary cultures. Glia, 2000; 30:19-26.
    180. Vernadakis A. Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiol, 1996; 49:185-214.
    181. Vesce S., Bezzi P., Volterra A. The active role of astrocytes in synaptic transmission. Cell Mol Life Sci, 1999; 56:991-1000.
    182. Vitkovic L., Konsman J.P., Bockaert J., Dantzer R., Homburger V., Jacque C. Cytokine signals propagate through the brain. Mol Psychiatry, 2000; 5:604-615.
    183. Voisin D.L., Bourque C.W. Integration of sodium and osmosensory signals in vasopressin neurons. Trends Neurosci, 2002; 25:199-205.
    184. Wade J.V., Olson, J.P., Samson F.E., Nelson S.R., Pazdernik T.L. A possible role for taurine in osmoregulation within the brain, J Neurochem, 1988; 51:740-745.
    185. Walton S.S., McCart P.G. Synaptogenesis in the stratum griseum superficial of the rat superior colliculus. Anal Chem, 2000; 72:2001-2007.
    186. Wang K., Guldendaar S.E., McCabe J.T. Fos and Jun expression in rat supraoptic nucleus neurons after acute vs. Repeated osmotic stimulation. Brain Res, 1997; 746:117-125.
    187. Watkins L.R., Maier S.F. The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu Rev Psychol, 2000; 51:29-57.
    188. Watkins L.R., Milligan E.D., Maier S.F. Glial activation: a driving force for pathological pain. Trends Neurosci, 2001; 24:450-455.
    189. Wells T. Vesicular osmorneters, vasopressin secretion and aquaporin-4: a new mechanism for osmoreception? Mol Cell Endoc, 1998; 136:103-107.
    190. Ye Z.C., Sontheimer H. Glioma cells release excitotoxic concentrations of glutamate. Cancer Res, 1999; 59:4383-4391.
    191.宿长军.大鼠脑内AST和神经元在正常或失重状态下对血压变化的反应及其相互关系的形态学研究.第四军医大学博士论文,2000:63-78.
    192.宿长军,段丽,张辉,饶志仁.大鼠脑内显形胶质细胞对低血压的反应及其与神经元的关系.解剖学报,2002;3:33-35.
    193.葛煦,饶志仁,杨志军.LPS激发大鼠延髓内脏带星形胶质细胞GFAP和神经元FOS表达水平的变化.中国神经科学杂志,2001;17:214-218.
    194.韩济生主编.神经科学原理.第二版.北京:北京医科大学出版社,1999:857-878.
    195.刘伟.血管加压素的研究进展.国外医学.神经病学神经外科学分册,2002;29:38-41.
    196.杨志军,葛煦,饶志仁,段丽,鞠躬.Fos蛋白在LPS免疫激发大鼠脑内的分布.解剖学报,2000;31:297-300.
    
    
    197.杨志军.大鼠脑内星形胶质细胞对渗透压改变的反应及其和神经元相互关系的形态学研究.第四军医大学博士论文,2002:85-90.
    198.张辉,段丽,饶志仁.大鼠脑干星形胶质细胞和神经元对一侧胫腓骨骨折后的即刻应激反应及其相互关系.第四军医大学学报,2002;23:415-418.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.