Am(Ⅲ)与Eu(Ⅲ)的萃取分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于镧锕系收缩使得三价的镧系和锕系元素的物理化学性质非常相似,分离十分困难,是分离化学领域中的难题之一。本文就金属离子的萃取分离方法进行了概述,主要总结了溶剂萃取、固相萃取及分子印迹技术的基本原理、特点及应用,概述了溶剂萃取及固相萃取在镧锕系元素分离方面的研究进展。
     本论文主要以Eu(Ⅲ)与Am(Ⅲ)为代表的三价镧锕系元素的萃取分离为目的,合成了多种萃取分离材料,并就其对Eu(Ⅲ)与Am(Ⅲ)的分离性能能进行了初步探讨。具体内容主要包括以下两个方面:
     一、以实现Eu(Ⅲ)与Am(Ⅲ)的溶剂萃取分离为目的,合成了两类不同的萃取剂:(1)合成了多种水杨醛系列席夫碱,详细研究了双水杨醛缩乙二胺、邻苯二胺及环己二胺席夫碱对Am(Ⅲ)和Eu(Ⅲ)的萃取分离性能,推测了其与金属离子的作用机理,在此研究基础上,我们从两醛分子之间桥连链长,两醛分子之间桥连链刚性和醛分子上取代基三方面研究了该类芳香席夫碱分子作为萃取剂时,其分子结构对Am(Ⅲ)和Eu(Ⅲ)萃取能力的影响,并对其结果进行了规律总结。(2)基于胺类良好的耐辐射性能,我们合成了一种三支叔胺配体,并得到了该配体及其中间体的单晶,并对晶体结构进行了解析,推测了配体的生成机理,测定了该三支配体对Am(Ⅲ)和Eu(Ⅲ)的萃取分离性能,发现只有在高pH值时,该配体才对Am(Ⅲ)和Eu(Ⅲ)有萃取分离能力且在pH=12时萃取分离能力最强。这可归因于在该三支配体中存在较强的分子内或分子间氢键。
     二、以实现Am(Ⅲ)和Eu(Ⅲ)的固相萃取分离为目的,合成了四类不同的固萃剂,包括:(1)高分子负载型固萃剂:通过共沉淀法,以FeSO4·7H2O和FeCl3·6H2O为原料,以氨水为沉淀剂,在一定温度条件下制备了磁性纳米四氧化三铁,并进一步以硅酸钠为硅源采用化学沉淀法制备了Fe3O4/SiO2复合颗粒,并对制备的Fe304及Si02包覆的Fe304复合产物进行了表征。利用X射线衍射分析测定了其结构为尖晶石结构,利用振动样品磁强计研究了纳米四氧化三铁的磁学性质。结果表明,所制备的Fe304及Fe3O4/SiO2纳米颗粒均未出现明显磁滞现象,剩余磁化强度及矫顽力均接近于零,说明产物具有超顺磁性;应用超声波技术,以氯丙基三甲氧基硅烷为偶联剂,以普通硅胶、纳米Si02及磁性硅胶为载体,在温和条件下制备了嫁接型双水杨醛缩二乙烯三胺席夫碱和其还原产物,并对相应产物进行了结构表征;利用接枝在表面的席夫碱及还原席夫碱易与金属离子发生配位作用的特点,将其作为固相萃取吸附剂,初步测定了其对Eu(Ⅲ)的固萃分离性能,结果表明普通硅胶、纳米Si02及磁性硅胶负载席夫碱后对Eu(Ⅲ)的固萃性能均有提高。(2)金属离子印迹类固萃剂:以4-乙烯基吡啶为功能单体,以Eu(Ⅲ)为模板离子,分别以N-苯基邻氨基苯甲酸、1-(2-吡啶偶氮)-2-萘酚(PAN)和2-((allyl(benzyl)amino)methyl)phenol(实验室合成)为第二配体,制备了三种Eu(Ⅲ)离子印迹聚合物,结构表征显示,制备的三种三元聚合物微球形貌均较好,粒径分散较均匀,BET测定显示以N-苯基邻氨基苯甲酸为第二配体的离子印迹聚合物比非印迹聚合物的比表面大很多,通过对Eu(Ⅲ)的固相萃取性能的测定,发现印迹聚合物对Eu(Ⅲ)的吸附性能强于非印迹聚合物(3)表面离子印迹类固萃剂:以N-苯基邻氨基苯甲酸为第二配体,分别以纳米二氧化硅和磁性硅胶为载体,制备了Eu(Ⅲ)的表面离子印迹聚合物,对聚合物结构进行了表征,并初步考察了其对Eu(Ⅲ)的萃取分离性能。实验结果显示,相同条件下印迹聚合物对Eu(Ⅲ)的固萃性能优于非印迹聚合物(4)海藻酸钙杂化材料固萃剂:为了得到一种安全清洁的金属离子处理剂,我们以海藻酸钙为基质制备了海藻酸钙/磁性硅胶,海藻酸钙/氧化碳纳米管,海藻酸钙/氧化碳纳米管/磁性硅胶三种杂化材料,磁性测定表明海藻酸钙包覆后磁性硅胶的磁化强度降低非常多,还考察了其对Eu(Ⅲ)的分离性能,实验结果显示不同的包覆杂化对Eu(Ⅲ)的吸附能力有一定影响。
The separation of trivalent actinides ((An (Ⅲ)) from lanthanides cations ((Ln(Ⅲ)) is difficult because of the similar chemical properties, such as ionic radii and oxidation states, thia caused by the lanthanide and actinide' constriction. In this pape we reviewed the ectraction separation method of metal ions, introduced the mechanism, the characteristic and the application of solvent extraction, solid phase extraction and the ion-imprinting method. We reviewed the development of study on separation.
     In this paper, we have synthesized several materials as extractants and investigated their extracton ability for Am(Ⅲ) and Eu(Ⅲ), this paper include two sections
     1. (1) N, N'- bis(salicilidene)ethylenediamine (H2salen)- and its derivatives were investigated as extractants for the separation of Am(Ⅲ) and Eu(Ⅲ). As results, H2salen is effective extractant for the mutual separation of Am(Ⅲ) and Eu(Ⅲ) under the experiment conditions. The maximum SFAm/Eu of 96 was obtained in the extraction system using nitrobenzene as diluent. Eu(Ⅲ) can be extracted from hydrochloric acid solution in the different form M (H3salen)·Cl4, M (H2salen)Cl3 and M (salen)Cl at different pH by H2salen/nitrobenzene. And yet Am (Ⅲ) can be extracted from hydrochloric acid solution in M(H2salen)Cl3 only. The effect of molecular structure of four ligan on the extraction for Am (Ⅲ) and Eu(Ⅲ)were studed. The extacion of Am (Ⅲ) and Eu (Ⅲ)from 0. 1 mol/L LiCl medium with these schiff base ligands in chloroform, as the results showed that the order of extraction ability for Am(Ⅲ) and Eu(Ⅲ) is sci4>sci2>sic3>schiff baseⅠ> schiff baseⅡ, and the extraction selectivity for Am(Ⅲ) is sci4> schiff baseⅠ> sic3> sci2. The obtained maximum separation factors (SFAm/Eu) are 9.4,2.8,2.5,2.1. Sci4 was thus chosen as an extractant to detected the effect of concentration on Am(Ⅲ) and Eu(Ⅲ)extraction from acid solution and the content of the coordination complex were deduced, sci4 conplexed with Eu(Ⅲ) in form 1:1, with Am(Ⅲ) in form 2:1 or 3:1.
     (2) A tripodle ligand was synthesised and crystal structure of tripod liand and a intermediate product were obtained. The reaction mechanism of the tripod was proposed. As extractant for Am(Ⅲ) and Eu(Ⅲ) the tripod ligand was studied, as the result showed that the ligand could extract Am(Ⅲ) and Eu(Ⅲ) only at high pH.
     2. (1) he Fe3O4 magnetic nanoparticles were synthesized by chemical coprecipitation of FeSO4·7H2O and FeCl3·6H2O in ammonia solution at a certain temperature. Then, silica was coated on the surface of Fe3O4 nanoparticles using a chemical precipitation method of sodium silicate. The X-ray diffraction(XRD) of Fe3O4 demonstrated that the magnetic nanoparticle was Fe3O4 and the structure of the magnetite nanopartides is spinel, According to the image of Fe3O4/SiO2 by TEM, the morphology is obviously core-shell structure, and the vibrating sample magnetometer(VSM) showed that magnetic materials was superparamagnetic as their magnetization and coercive force are almost zero. Schiff base ((1E,N1E)-N1-benzylidene-N2-((E)-2-((E)-benzylideneamino)vinyl) ethene-1,2-diamine) modified SiO2 were prepared with 3-chloropropyl trimethoxysilane (CPTMS) as coupling agents with ulrasonic technique under mild conditions. The samples were characterized by IR spectroscopy, XRD, TGA and Magnetic hysteresis loop
     (2)Three molecularly imprinted polymeric microspheres (MIPMs) were prepared by suspension polymerization method in aqueous system using Eu (Ⅲ) as ion-printing template, N-Phenylanthranilicacid,1-(2-pyridiny lazo)-2-Naohthalenol and-((allyl(benzyl)amino)methyl)phenol as coordination ligand, respectively,4-vinylpyridine as functional monomers and Divinylbenzne as cross-linker, The morphology including the size, size dist ribution, pore and pore dist ribution of the polymer beads was analyzed by BET analysis. The molecule selecting property of the Eu (Ⅲ) ions was detected through statics liquid method. The results showed that uniform-sized spherical IIPMs had been prepared in aqueous system by suspension polymerization method, the printing molecules selectively.
     (3) combining the high selectivity and good mass transport of surface molecular imprinting technique, high surface-to-volume ratio of nanoparticles and speediness of magnetic separation, two kinds of novel core—shell surface molecularly imprinted nano-composite system were synthesized for separation and recognition of Am(Ⅲ) and Eu(Ⅲ) using surface imprinting technique. .N-Phenylanthranilic acid and 4-vinylpyridine, which are the coordination ligand and functional monomer respectively and divinylbenzne (DVB) as cross-linking monomer, EuCl3·6H2O as template and then ion-imprinted thin films were coated onto the nano-silica or silica-modified Fe3O4 nanoparticle's surface through oxidation with AIBN in organic solution. The morphology and recognition properties of the surface ion-imprinted nanomaterial were investigated by transmission electron microscopy(TEM), X-ray diffraction(XRD), thermogravimetric analysis(TGA), vibrating sample magnetometer(VSM) and the recognition mechanism of template ion identification Was discussed. The Eu(Ⅲ) ion adsorption results showed that Eu(Ⅲ) ion-IP-coated silica or magnetic nanoparticles have high adsorption capacity for template ion due to specific recognition sites for template metal ions on the imprinted shell make this nanoparticles with specific selectivity and high stability,the imprinted magnetic nanoparticles could easily reach the adsorption equilibrium and magnetic separation under an external magnetic field
     (4) To obtained a clean and safe materials for separation of Am (Ⅲ) and Eu (Ⅲ). We get three kinds gel beads, containing sodium alginate (SA)/Ca2+/multil-wall carbon nanotubes(MWNTs), (SA)/Ca2+/Fe3O4-SiO2and (SA)/Ca2+/MWNTs/Fe304-SiO2.In this study, MWNTs are individually dispersed in aqueous solution using SA with ultrasonic wave method. Their adsorption capacity for Eu3+was investigated The result showed that it has better adsorption for Eu(Ⅲ)at pH 6.
引文
[1]Marcus, Y.; Kertes, A. S., Ion Exchange and Solvent Extraction of Metal Complexes. Wiley-Inter-science:London,1969.
    [2]Ritcey, G. M.; Ashbrook, A. W., Solvent Extraction;Principles and Applications to Process Metal lurgy. Elsevier:Amsterdam,1979.
    [3]周春山,化学中的分离与富集方法及应用.中南工业大学出版社:长沙,2000;Vol.3.
    [4]邓凡政;石影;江玉波,双水相体系中钛、锆的分离.稀有金属2001,25,(6),471-473.
    [5]邓凡政;石影;张广军,聚乙二醇-硫酸钠-硫氰酸钾体系中Co(Ⅱ), Ni(Ⅱ)、Mo(Ⅵ)的萃取分离研究.稀有金属1998,22,(3),188-190.
    [6]谭天伟;沈忠耀,用双水相萃取分离纯化磷酸甘油酸酶和磷酸甘油醛脱氢酶.生物工程学报1996,1,167-171.
    [7]俞堔捷;马宏佳;周志华,超临界流体技术的应用研究进展.化学世界2007,2,188-120.
    [8]郭红星;陈庆华;陈岚,超临界流体技术在药学领域制备微粒中的应用.中国医药工业杂志2008,39,(2),136-141.
    [9]Munoz, M.; Cuevam, L.; Palop, A., Determination of the effect of plant essential oils obtained by superpritical fluid extraction on the growth and viability of listeria monocytogees in broth and food systems using flow cytometry LWT-Food Science and Technology 2009,42, (11),27-31.
    [10]尹献忠;石国强;胡军,超临界流体新技术在烟用香精工业中的应用展望.烟草科技2003,11,27-31.
    [11]陶小工;梅成效;王挺,超临界流体技术在环境保护中的应用研究.化工矿物与加工2003,4,33-37.
    [12]Keskin, S.; Kayrak-Talay, D.; Akman, U., A review of ionic liquids towards supercritical fluid applications. The Journal of Supercritical Fluid 2007,43,150-180.
    [13]Letisse, M.; Rozieres, M.; Hiol, A., Enrichment of EPA and DHA from sardine by supercritical fluid extraction without organic modefier I. Optimization of extraction conditions. Journal of Supercritical Fluid 2006,1,18.
    [14]Wang, S. F.; Elshani, S.; Wai, C. M., Selective extraction of mercury with jonizanle crown ethers in supercritical carbon dioxide. Anal. Chem 1995,67,919-923.
    [15]Visser; P, S. R.; D, R. R., Liquid/liquid extraction of metal ions in room temperature ionic liquids. Separation&Science Technology 2001,36, (5-6),785-804.
    [16]Visser, A. E.; Swatloski, R. P.; Reichertw, M., Task-spocific ionic liquids for the extraettion of metal ions from aqueons solutions. Chem Commun 2001, (1),135-136.
    [17]Visser, A. E.; Jesnsen, M. P.; Rogers, R. D., Ura-nylcoordination endronment in hydrophobie ionic liquids:an insitu investigation. Inorg Chem 2003,42, (7),2197-2199.
    [18]]I-Iimyama, N.; Deguchl, M.; Kawasumi, H., Use of I-alky1-3-methylimidazolium hexafluomphosphate room ternperature ionic liquids as chelate extraction solvent with 4,4,4-trifluoro-1(2-thienyl)-1,3-butanedione. Talanta 2005,65, (1),255-260.
    [19]]Cocaliav, A.; Jeusen, M. P.; Holbrey, J. D., Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents. Dalton Trans 2005,11,1966-1971.
    [20]Shlmojo, K.; Goto, M., Solvent extraction and stripping of silver ions in room-temperature ionic liquids containing calixsrenes. Anal Chem 2004,76, (17),5039-5044.
    [21]Wei, G. T.; Yang, Z. S.; Chen, C. J., Room temperature ionic liquid a novel medium for liquid /liquid extraction of metal ions. Anal. Chim. Acta.2003,488, (2),183-192.
    [22]Jensen, M. P.; Neuefeind, J.; Beitz, J. V.; Skanthakuma, S.; Soderholm, L., Mechanisms of metal ion transfer into room-temperature ionic liquids:The role of anion exchange. J Am Chem Soc 2003,125,(50),15466-15473.
    [23], Dai, S.; Ju, Y. H.; Barnes, C. E., Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic Ilqllids. JChem Sec Tram 1999, (8),1201-1202.
    [24]孙玉柱,乳状液膜分离技术的研究进展.湿法冶金2005,24,(4),10-17.
    [25]孙志娟;张心亚;黄洪;陈焕钦,乳状液膜分离技术的发展与应用.现代化工2006,26,(9),63-66.
    [26]杜军;周堃;陶长元,支撑液膜研究及应用进展.化学研究与应用.化学研究与应用2004,16,(2),160-164.
    [27]王俊九;褚立强;范广宇,支撑液膜分离技术.水处理技术2001,27,(4),187-191.
    [28]张保成,支撑液膜分离技术的研究进展.膜科学与技术2000,20,(6),46-54.
    [29]黄万抚,乳状液膜静电破乳器破乳机理研究.化学工程2003,31,(3),58-61.
    [30]柳畅先;曾令强,乳状液膜法分离水中的铬.化学研究与应用2003,15,(3),429-430.
    [31]Matsumura, T.; Takeshita, K., Progress in Nuclear Energy.2008,50,470.
    [32]Choppin, G. R., Comparison of the Solution Chemistry of the Actinides and Lanthanides. J Less-common Metals 1983,93,323.
    [33]Pearson, R. G., Hard and Soft Acids and Bases. J. Am. Chem 1963,85, (22),3533-3539.
    [34]Choppin, G. R., Solution Chemistry of the Actinides. Radio chimicaActa 1983,32,43.
    [35]Nash, K. L., A Review of the Basic Chemistry and Recent Developments in T rivalent
    f-elements Separations. Solvent Extrlon Exch 1993,11, (4),729.
    [36]Abe, S.; Mochizuki, J.; Sone, T., Liquid-liquid extraction of iron(Ⅲ) and gallium(Ⅲ) with
    macrocyclic Schiff bases containing bisphenol A subunits. Anal Chim Acta 1996,319,387.
    [37]Hirayama, N.; Takeuchi, I.; Honjo, T., Ion-Pair Extraction System for the Mutual Separation of Lanthanides Using Divalent Quadridentate Schiff Bases. Anal Chem 1997,69, (23),4814-4818.
    [38]Bartosova, A.; Rajec, P.; Reich, M., Preparation and characterization of an extraction chromatography column for technetium separation based on Aliquat-336 and silica gel support. Journal of Radioanalytical and Nuclear Chemistry 2004,261,(1),119-124.
    [39]许启初;杨裕生,二芳基二硫代膦酸对Am(Ⅲ)和Ln(Ⅲ)的萃取.核化学与放射化学2006,28,(4),207-212.
    [40]Mariania, M.; Macerata, E.; Galletta, M.; Buttafava, A.; Casnati, A.; Ungaro, R.; Faucitano, A.; Giola, M., Partitioning of minor actinides:Effects of gamma irradiation on the extracting capabilities of a selected calixarene-based picolinamide ligand. Radiation Physics and Chemistry 2007,76,1285-1289.
    [41]袁承业,稀土萃取分离中有机配位体的结构空间效应 中国稀土学报1983,1,(1),13.
    [42]张平伟,Cl-P_(350)萃淋树脂及其对钪的萃取.稀土1990,11,(2),12.
    [43]李声崇;吴闓云;徐光宪HTTA和P_(350)对三价稀土离子的协同萃取.北京大学学报1985,(1),17.
    [44]罗国添,有机磷萃取剂在稀土萃取分离中的应用.赣南师范学院学报1991,6,(S2),93.
    [45]Siddall, T. H., J.Inorg.Nuel.Chem 1963,25, (27),883.
    [46]Siddall, T. H., J.Inorg.Nuel.Chem.1964,26, (11),1991.
    [47]Siddall, T. H. U.S.Patent.3243254,1962.
    [48]Howrwitz, E. P.; Muscatello, A. C.; Kalina, D. G., Sep. Science Tech 1981,16,417.
    [49]Novikov, A. P.; Myasoedov, B. F., Solv. Extr. Ion. Exch 1987,5-11.
    [50]朱永睿,-核化笋与放彩化学1997,19,(1),36.
    [51]Zhu, Y. J., The Separation of Americium from Light Lanthanides by Cyanex 301 Extraction. Radiochim.Radiochim. Acta 1995,68,95-98.
    [52]Chen, J.; Jiao, R. Z.; Zhu, Y. J., A Cross-folw Hot Test for Separating Am from Fission Product Lanthanides by Bis (2,4,4-trimethyl phentyl) dithio-phosphinc Acid Extraction. Radiochim Acta 1997,76,129.
    [53]Zhu, Y. J.; Chen, J.; Jiao, R. Z., Extraction of An (Ⅲ) and Eu(Ⅲ) from Nitrate Solution with Purfied Cyanex 301. Sol. Extr. Ion Exch 1996,14, (1),61-68.
    [54]Zhu, Y. J.; Xu, J. M.; Chen, J.; Chen, Y. Z., Extraction of americium and lanthanides by dialkyldithiophosphinic acid and f-f absorption spectra of the extraction complexes Journal of Alloys and Compounds 1998,271-273,742-745.
    [55]Modolo, G.; Odoj, R., Influence of the Pur ity and Irradition Stability of Cyanex 301 on the Separation of Trivalent Actinides From Lanthanides by Solvent Extraction. J Radioanal Nucl Chem 1998,228, (1-2),83-88.
    [56]Hill, C.; Madic, C.; Baron, P., Trivalent Minor Actinides/Lanthanides Separat ion:Using Organophosphinic Acids. J Alloy Compd 1998,271-273,159-162.
    [57]彭燕斌;陈靖,二(2,4,4-三甲基戊基)二硫代膦酸从不同水相介质中萃取示踪量的镅和铕.核化学与放射化学2006,28,(3),178-182.
    [58]刘德敏;邵芸;刘翔峰,Cyanex301和Cyanex302对镅和稀土元素的萃取研究.核化学与放射化学1997,19,(4),18-22.
    [59]许启初;张利兴;杨裕生,二(2-乙基己基)单(或二)硫代磷(膦)酸对示踪量镅和稀土元素的萃取.核化学与放射化学1998,20,(2),123-128.
    [60]许启初;张利兴;杨裕生,二(2-乙基己基)二硫代磷酸对镅和稀土元素协同萃取的研究.核技术2004,27,(7),547-550.
    [61]Sasaki, Y.; Choppin, G. R., Extraction of Np(Ⅲ), by N, N-dimethyl-N,N-dihexyl-3-oxapentanediamide. Radiochim Acta 1998,80,85-88.
    [62]Gasparini, G. M.; Grossi.G, Long Chain Disubstitute Alphatic Amides as Extraeting Agents in Industrial Applications of Solvent Extraction. Solvent Extr. IonExeh 1986,4, (6),1233.
    [63]GasParini, G. M.; Grossi, G., Applieation of N, N—Dialkyl AliPhatie Amidesinthe Separation of some Aetinides[J]. Sep. Sei. Technol.1980,15, (4),825—844.
    [64]沈朝洪;包伯荣;王高栋,N-(2-乙基己基)己内酞胺对主要裂片元素的萃取及丫辐照对萃取行为的影响.核技术1993,16,(1),42-47.
    [65]杨裕生;丁玉珍;谭干祖;徐浚哲;姚钟麒;张复昇,链状聚醚用作萃取剂的研究—Ⅰ.三甘酰双(二苯胺)和四甘酰双(二苯胺)对裂变产物的萃取J. Nucl.and Radiochem(核化学与放射化学)1984,6,(4),196.
    [66]丁玉珍;卢加春;杨裕生;谭干祖;徐浚哲,链状聚醚用作萃取剂的研究(Ⅱ)——不同取代基的三甘酰双胺萃取轻稀土.化学试剂'Chemical Reagent)1986,1986,(8),4.
    [67]Stephan, H.; Gloe, K.; Beger, J., Solvent Extran. Ion Exch 1991,9, (3),459.
    [68]Cuillerdier, C.; Musikas, C.; Hoel, P., Maloamides as New Ex tractants for Nuclear Waste Solutions. Sep Sci Tech 1991,26, (9),1229-1244.
    [69]叶国安;何建玉;姜永青,酰胺荚醚对Am(Ⅲ)和Eu(Ⅲ)的萃取行为研究Ⅰ.萃取机理研究.核化学与放彩化学2000,22,(2),65-72.
    [70]叶国安;何建玉;罗方祥,酰胺荚醚对Am(Ⅲ)和Eu(Ⅲ)的萃取行为研究Ⅱ.萃取热力学和萃合物光谱研究.核化学与放射化学2000,22,(3),136-143.
    [71]陈文浚;祝霖;丁颂东;刘忠群;陈绍金;金永东,二酰胺结构对其萃取Am(Ⅲ)和Eu(Ⅲ)性能的影响.高等学校化学学报1998,11,1724-1726.
    [72]Thiollet, G.; Musikas, C., Solvent Extn. Ion Exch 1989,7, (5),813.
    [73]金永东;冯立;丁颂东;夏传琴;陈文浚;叶国安;罗方祥,酰胺荚醚对镧系和锕系元素萃取性能的研究.化学研究与应用2002,14,(2),174-177.
    [74]Berthon, L.; Ycordier, P., ISEC 1996,1339-1344.
    [75]. Alyapyshev, M.; Babain, V.; Borisova, N.; Eliseev, I.; Kirsanov, D.; Kostin, A.; Legin, A.; Reshetova, M.; Smirnova, Z.,2,20-Dipyridyl-6,60-dicarboxylic acid diamides:Synthesis, complexation and extraction properties. Polyhedron 2010,29,1998-2005.
    [76]Chmutova, M. K.; Ivanova, L. A.; Kochetkova, N. E.; Nesterova, N. P.; Myasoedov, B. F.; Rozen, A. M., Radiochemistry 1995,37,427.
    [77]Musikas, C., Proceeding of the international symposium on actinides/lanthanides separation. World Scientific Publish:Singapore,1985.
    [78]Mirvaliev, R.; Watanabe, M.; Matsumura, T.; Tachimori, S.; Takeshita, K., J. Nucl. Sci. Technol.2004,41,1122.
    [79]Kolarik, Z.; Mullich, U.; Gassner, F., Solvent Extr. Ion Exch 1999,17,1155.
    [80]Hill, C.; Berthon, L.; Madic, C., Proc. of Global 2005 Int. Conf. In Tsukuba, Japan,2005.
    [81]Andersson, S.; Ekberg, C.; Liljenzin, J. O., Separation of Chemically Similar Elements Such as Trivalent Actinides and Lanthanides. In The Proceeding of the International Workshopon P&T and ADS Development,2003
    [82]Nomura, K.; Ozawa, M.; Zaka, Y. T., Study on Am/Eu Extraction and Separation With Acid Extractant and TPTZ. In JAERI-Conf-2002-004, Tokai:JAER1,,2002.
    [83]Wietzke, R.; Mazzanti, M.; Latour, J.-M.; Pecaut, J.; Cordie, P.-Y.; Madic, C., Lanthanide(Ⅲ) Complexes of Tripodal N-Donor Ligands:Structural Models for the Species Involved in Solvent Extraction of Actinides(Ⅲ). Inorg. Chem 1998,37, (26),6690-6697.
    [84]Heitzmann, M.; Bravard, F.; Gateau, C., Inorganic Chemistry 2009,48,246-256.
    [85]Kolarik, Z.; Mullich, U.; Gasner, F., Selective Extraction of Am(Ⅲ) Over Eu(Ⅲ) by 2,6-Dit riazolyl-and 2,6-Ditriazinylpyridines. Solv Extr Ion Exch 1999,17, (1),23.
    [86]Hill, C.; Guillaneux, D.; Berthon, L., SANEX-BTP Process Development Studies. In JAERI-Conf-2002-004, Tokai.JAERI,2002.
    [87]程琦福;叶国安;唐洪彬;蒋德祥;叶玉星;朱志轩,2,6-双(5,6-二异丙基-1,2,4-三唑-3)吡啶对镅和铕的萃取.核化学与放射化学2007,29,(1),23-26.
    [88]唐洪彬;叶国安;程琦福;叶玉星;蒋德祥;朱文彬,硝酸介质中镅与镧系元素的DPTP分离研究.原子能科学技术2008,42,(5),390-395.
    [89]KUCA, L.; SOO, K. C., Journal of Radioanalytical and Nuclear Chemistry 1985,91,269-275.
    [90]候瑞琴;焦荣洲;朱永睿,2-羟基-5-烷基苯乙肟萃取Am3+和镧系元素行为的研究Ⅱ配合物结构与萃取机理的分析.核化学与放射化学1995,17,(1),19-25.
    [91]Stronski, I., Extraction of chelates of some metal ions with aromatic schiff bases JRadioanal NuclChem.1976,33,153-161.
    [92]Panda, C. R.; Chakravortty, V.; Dash, K. C., A quadridentate Schiff base as an extractant for thorium/IV/, uranium/VI/and zirconium/IV/. J. RADIOANAL NUCL.CHEM., LETTERS 1986, 108,65-75.
    [93]王会娟.用示踪法研究开链大环化合物萃取分离Am(Ⅲ)与Eu(Ⅲ).兰州大学,兰州,2008.
    [94]Geng, Y.; Wu, W.,Acta Ctyst. E2011,67, [doi:10.1107/S1600536811016990].
    [95]Arnaud-Neu, F.; B€ohmer, V.; Dozol, J.-F.; Gr€uttner, C; Jakobi, R. A.; Kraft, D.; Mauprivez, O.; Rouquette, H.; chwing-Weill, M.-J.; Simon, N.; Vogt, W., Calixarenes with diphenylphosphoryl acetamide functions at the upper rim. A new class of highly efficient extractants for lanthanides and actinides. Journal of the Chemical Society, Perkin Transactions 21996,2, (6),1175-1182.
    [96]Barboso, S.; Carrera, A. G.; Matthews, S. E.; Arnaud-Neu, F.; B€ohmer, V.; Dozol, J.-F.; Rouquette, H.; Schwing-Weill, M.-J., Calix[4]arenes with CMPO functions at the narrow rim. Synthesis and extraction properties. J. Chem. Soc, Perkin Trans21999,2,719-724.
    [97]Emanuel, M. P.; Vanura, P.; Selucky, Solvent extraction of europium trifluoromethanesulfonate into nitrobenzene in the presence of p-tert-butylcalix[6]arene and p-tert-butylcalix[8]arene. J Radioanal Nucl Chem 2011,287,277-280.
    [98]Sansone, F.; Fontanella, M.; Casnati, A.; Ungaro, R.; Bohmer, V.; Saadioui, M.; Liger, K.; Dozol, J.-F., CMPO-substituted calix[6]-and calix[8]arene extractants for the separation of An3+/Ln3+from radioactive waste Tetrahedron 2006,62, (29),6749-6753.
    [99]曹卫国;包伯荣;黄炜;杨兴存;杭建忠;陈杰,锕系、镧系元素分离中新萃取剂的研究(Ⅲ)——新萃取剂HMBMPPT的合成及其对铀(Ⅵ)的萃取研究.核技术2003,(5),26-78.
    [100]Cocalia, V.; Jensen, M. P.; Holbrey, J. D., Identical Extraction Behavior and Coordination of Trivalent or Hexavalent f-Element Cations Using Ionic Liquid and Molecular Solvents. J Chem Soc, Dalton Trans 2005,11,1966-1971.
    [101]刘德敏;刘翔峰;杨裕生,5,7-二溴-8-羟基喹啉与含N协配体对镅和铕的萃取研究.核化学与放彩化学1997,19,(3),12-17.
    [102]张海霞;朱彭玲,固相萃取.分析化学评述与进展2000,9,1172-1180
    [103]楼蔓藤;商振华,固相萃取技术的发展与应用.分析仪器1998,1,(1-16).
    [104]. 张莘民;杨凯,固相萃取技术在我国环境分析中的应用.中国环境监测2000,16,(6),53-57.
    [105]Zhuravlev, L. T., The surface chemistry of amorphous silica.Zhuravlev model. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2000,173,1-38.
    [106]Evans, O.; B.JJacobs; A.L.Cohen, Liquid-solid extraction of tributyltin from marine sediments. Analyst 1991,116,15.
    [107]Sturgeon, R. E.; Berman, S. S.; Willie, S. N., Concentration of trace metals from sea-water by complexation with 8-hydroxyquinoline and adsorption on C 18-bonded silica gel. Talanta 1982,29,167.
    [108]Cox, A. G.; Cook, I. G.; McLeo, C. W., Rapid sequential determination of chromium(III)-chromium(VI)by flow injection analysis-inductively coupled plasma atomicemissionspectrometry.Analyst. Analyst 1985,110,331.
    [109]Abollino,O.; Mentasti, E.; Porta, V.; Sarzanini, C., Immobilized 8-oxine unitson different solid sorbents for the uptake of metal traces. Anal.Chem 1990,62,21.
    [110]Isshiki, K.; Tsuji, F.; T.Kuwamoto, Preconcentration of trace metals from seawater with 7-dodecenyl-8-quinolinol impregnated macroporous resin. Anal. Chem 1987,59,2491.
    [111]Saxena, J. R.; Singh, A. K.; Rathore, D. P. S., Salicylic acid functionalized polystyrene sorbent Amberlite XAD-2:Synthesis and applications as a preconcentrator in the determination of zinc(Ⅱ)and lead(Ⅱ)by using atomic absorption spectrometry. Analyst 1995,120,403.
    [112]Tewari, P. K.; Singh, A. K., Amberlite XAD-7 impregnated with Xylenol Orange:a chelating collector for preconcentration of Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Zn(Ⅱ) and Fe(Ⅲ)ions prior to their determination by flame AAS. Fresenius J Anal Chem 2000,367,562.
    [113]Ferreira, C. S. L.; D.S.Jesus; R.J.Cassella, An on-line solid phase extraction system using polyurethane foam for the spectrophotometric determination of nickel in silicates and alloys. Anal.Chim.Acta 1999,378,287.
    [114]Dichey, F. H., The preparation of specific adsorbents. J. Proc. Natl. Acad. Sci., USA 1949, 35, (277-299).
    [115]Wulff, G.; Sahan, A., Enzyme-analongne built polymers and their USe for the resolution of race-mates. Tetrahedron Lett 1973,14, (44),4329-4332.
    [116]Vlatakis, G.; Andersson, L. I.; Muller, R.; Mosbach, K., Drug assay using antibody mimics made by molecular imprinting. Nature 1993,361,645-647.
    [117]Whitcomb, M. J.; Rodriguez, M. E.; Villar, P.; Vulfson, E. N., A new method for the introduction of recognition site functionality into polymer by molecular imprinting:synthesis and characterization of polymeric receptor for cholesterol. J. Am. Chem.Soc.1995,117, 7105-7110.
    [118]Sellergren, B.; Lepistoe, M.; Mosbach, K., Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition. Journal of the American Chemical Society 1988,110(17),5853-5860.
    [119]闫有旺;于汝生,分子印迹技术及其应用[J].化学教学2005,4,28-30.
    [120]Sellergren, B., Direct Drug Determination by Selective Sample Enriehment on all Imprinted Polymer. Anal. Chem.1994,66,1578-1582.
    [121]Kempe, M., Klans Mosbach Separation of Animo Acids. Peptides and Proteins on Molecularly Imprinted Stationary Phases. J Chromatogrphy 1995,691, (2),317-323.
    [122]Caro, E.; Masqu, N.; M. Marc, R.; Borrull, F.; Peter, A. G.; Cormack; Sherrington, D. C., Non-covalent and semi-covalent molecularlyimprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples. Journal of Chromatography A 2002,963,(1-2),169-178.
    [123]Kempe, M.; Fischer, L.; Mosbach, K., Chiral separation using molecular imprinted heteroaromatie polymers[J]. J. Mo. L. Recngnit.1993,6, (1),25-29.
    [124]Zander, A.; Findlay, P.; Renner, T.; Sellergren, B.; Swietlow, A., Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid phase extraction[J]. Anal. Chem.1998,70, (15),3304-3314.
    [125]Andersson, L. I., Efficient sample pre-concentration of bupivacalne from human plasma by solid-phase extraction on molecularly imprinted polymers. Analyst 2000,125, (9),1515-1517.
    [126]RAYNIE, D. E., Modern extraction techniques[J]. Anal. Chem.2006,78, (12),3997-4004.
    [127]Poole, C. F., New trends in solid-phase extraction [J]. Trends in Analytical Chemistiy 2003,22, (6),362-373.
    [128]Nishide, H.; Tsuchida, E., Selective adsorption of metal ions on poly(4-vinylpyridine) resins in which the ligand chain is immobilized by crosslinking. Makromol Chem 1976,177, 2295-2310.
    [129]Daniel, S.; Praveen, R. S.; Rao, T. P., Ternary ion-association complex based ion imprinted polymers (IIPs) for trace determination of palladium(II) in environmental samples. Analytica ChimicaActa 2006,570, (1),79-87.
    [130]Su, H.; Zhao, Y.; Li, J.; Tan, T., Biosorption of Ni2+ by the surface molecular imprinting adsorbent Proc. Biochem.2006,41, (6),1422-1426.
    [131]Say, R.; Birlik, E.; Ersoz, A.; Yilmaz, F.; Gedikbey, T.; Denizli, A., Preconcentration of copper on ion-selective imprinted polymer microbeads Anal. Chim. Acta.2003,480, (2), 251-258.
    [132]Candan, N.; Tuzmen, N.; Andac, M.; Andac, C. A.; Say, R.; Denizli, A., Cadmium removal out of human plasma using ion-imprinted beads in a magnetic column Materials Science and Engineering:C2009,29, (1),144-152.
    [133]Zhai, Y.; Liu, Y.; Chang, X.; Ruan, X.; Liu, J., Metal ion-small molecule complex imprinted polymer membranes:Preparation and separation characteristics Reactive and Functional Polymers 2008,68, (1),284-291.
    [134]Metilda, P.; Gladis, J. M.; Rao, T. P., Influence of binary/ternary complex of imprint ion on t he preconcentration of uranium(Ⅵ) using ion imprinted polymer materials. Analytica Chimica Acta 2004,512, (1),63-73.
    [135]Biju, V. M.; Gladis, J. M.; Rao, T. P., Ion imprinted polymer particles:synthesis, characterization and dysprosium ion uptake properties suitable for analytical applications. Analytica Chimica Acta 2003,478,43-51.
    [136]Kala, R.; Gladi, J. M.; Rao, T. P., Preconcentrative separation of erbium from Y, Dy, Ho, Tb and Tm by using ion imprinted polymer particles via solid phase extraction. Analytica Chimica Acta 2004,518, (1-2),143-150.
    [137]Hobday, M. D.; Smith, T. D., Coord Chem Rev 1973 9,311.
    [138]Vigato, P. A.; Tamburini, S., Advances in acyclic compartmental ligands and related complexes. Coord Chem Rev 2008,252, (18-20),1871-1995.
    [139]Houjou, H.; Ito, M.; Araki, K., Twin Salphen:Asymmetric Heterodinuclear Complexes {MaMbL| Ma, Mb=Ni, Cu, Zn} of a Symmetrically Fused Salphen Ligand. Inorg Chem 2009,48,(22),10703-10707
    [140]Dash, K. C.; Mahanta, H. N., Transit Metal Chem 1977,2,229.
    [141]Fathi, S. A. M.; Parinejad, M.; Yaftian, M. R., Sep PurifTechnol 2008,64.,1.
    [142]Agget, J.; Richardson, R. A., Solvent extraction of copper(Ⅱ) by schiffs bases Anal Chim Acta 1970,50, (2),269-275.
    [143]Ziyadanogullar, B.; Cevizici, D.; Temel, H.; Ziyadanogullan, R., Synthesis, characterization and structure effects on preconcentration and extraction of N,N(?)-bis-(salicylaldehydene)-1,4-bis-(p-aminophenoxy) butane towards some divalent cations. J Hazard Mater 2008 150, (2),285-289.
    [144]Aggett, J.; Richardson, R. A., Bissalicylidene-o-phenylenediimine as a solvent extraction-spectrophotometric reagent for nickel(Ⅱ). Analyst (London) 1980,105,1118-1120.
    [145]Aggett, J.; Khooa, A. W.; Richardson, R. A., Solvent extraction of Cu(Ⅱ) by Schiff bases—Ⅱ. Journal of Inorganic and Nuclear Chemistry 1981,43, (8),1867-1872.
    [146]Panda, C. R.; Chakravortty, V.; Dash, C. K., J Radioanal Nucl Chem 1987,108,65.
    [147]Sahu, S. K.; Chakravortty, V., Extraction of uranium(VI) with binary mixtures of a quadridentate Schiff base and various neutral donors. J Radioanal Nucl Chem.1998,227, 163-165.
    [148]Bharara, M. S.; Strawbridge, K.; Vilsek, J. Z.; Bray, T. H.; Gorden, A. E. V., Novel Dinuclear Uranyl Complexes with Asymmetric Schiff Base Ligands:Synthesis, Structural Characterization, Reactivity, and Extraction Studies. Inorg Chem 2007,46, (20),8309-8315.
    [149]Fallis, I. A.; Murphy, D. M.; Willock, D. J.; Tucker, R. J.; Robert D. Farley; Jenkins, R.; Strevens, R. R., Direct Observation of Enantiomer Discrimination of Epoxides by Chiral Salen Complexes Using ENDOR. J Am Chem Soc 2004,126, (48),15660-15661.
    [150]Qiang, Z.; Adams, C., Water Res 2004,38,2874.
    [151]Mohapatra, P. K.; Manchanda, V. K., The unusual extraction behavior of americium(Ⅲ) and dioxouranium(VI) from picric acid medium using neutral oxodonors Ⅱ. A thermodynamic study. J Radioanal Nucl Chem 1999,240,159-164.
    [152]Dutt, N. K.; Nag, K., J. Inorg. Nucl. Chem 1968,30,2493.
    [153]Dutt, N. K.; Nag, K., J Inorg Nucl Chem.1968,30,2779.
    [154]Iqbal, M. S.; Rizvi, M. H.; Naqvi, A., Preparation, characterization and biodistribution of salicylidene-and pyridoxylidene-thyroxine complexes of technetium-99m. Journal of Radioanalytical Chemistry 1992,162,139-144.
    [155]Takayama, T.; Sekine, T.; Kudo, H., Substituent effect on redox potential of nitrido technetium complexes with Schiff base ligand:Theoretical calculations. J Radioanal Nucl Chem 2003,255,97-99.
    [156]Zheng, G. X.; Wang, Q. F.; Luo, S. G., Synthesis and characterization of complexes of UO2(Ⅱ) and Th(IV) of bis-schiff bases derived from furoylpyrazolone. J Radioanal Nucl Chem 2003, 258,693-696.
    [157]KUCA, L.; KIM CHOL, S., J Radioanal Nucl Chem.1985,91,26.
    [158]Tan, X. L.; Fang, M.; Li, J. X.; Lu, Y.; Wang, X. K., Adsorption of Eu(Ⅲ) onto TiO2:Effect of pH, concentration, ionic strength and soil fulvic acid J Hazard Mater.2009,168, (1),458-465.
    [159]Fan, Q. H.; Zhang, M. L.; Zhang, Y. Y., Radiochim Acta.2010,98,19.
    [160]Fan, Y. H.; Bi, C. F.; Li, J. J., Synthesis and characterization of UO2(Ⅱ) and Th(Ⅳ) binuclear complexes with o-vanillylidene anthranilic acid. J Radioanal Nucl Chem.2002,254,641.
    [161]Bi, C. F.; Fan, Y. H.; Sun, G. X.; Chang, J., Synthesis and Characterization of Th(Ⅳ) and U(VI) Complexes with O-Vanillin-P-Phenylenediamine. Journal of Radioanalytical and Nuclear Chemistry 2000,246,221.
    [162]Rozou, S.; Voulgari, A.; Vyza, E. A., Eur J Pharm Sci.2004,21,661.
    [163]Danesi, P. R.; Chiarizia, R.; Scibona, G., The meaning of slope analysis in solvent extraction chemistry:The case of zinc extraction by trilaurylammonium chloride J Inorg Nucl Chem, 1970,32, (2349-2355).
    [164]Schrock, R. R., Transition Metal Complexes That Contain a Triamidoamine Ligand. Acc. Chem. Res.1997,30, (1),9-16.
    [165]Verkade, J. G., Main group atranes:chemical and structural features Coordination Chemistry Reviews 1994,137,233-295.
    [166]Verkade, J. G., Atranes:new examples with unexpected properties. Acc. Chem. Res.1993,26, (9),483-489.
    [167]Redshaw, C.; Rowan, M. A.; Homden, D. M.; Dale, S. H.; Elsegood, M. R. J.; Matsui, S.; Matsuura, S., Vanadyl C and N-capped tris(phenolate) complexes:influence of pro-catalyst geometry on catalytic activity. Chem. Commun.2006,,(31),3329-3331.
    [168]Groysman, S.; Goldberg, I.; Kol, M.; Genizi, E.; Goldschmidt, Z., Adv. Synth. Catal.2005, 347,409-415.
    [169]Groysman, S.; Goldberg, I.; Kol, M.; Goldschmidt, Z., Organometallics 2003,22,3793.
    [170]Davidson, M. G.; Doherty, C. L.; Johnson, A. L; Mahon., M. F., Isolation and characterisation of transition and main group metal complexes supported by hydrogen-bonded zwitterionic polyphenolic ligands. Chem. Commun.2003,1832-1833.
    [171]Ugrinova, V.; Ellis, G. A.; Brown, S. N., Remarkable thermodynamic stability toward hydrolysis of tripodal titanium alkoxides. Chem. Commun.2004, (4),468-469.
    [172]Kim, Y.; Verkade., J. G., Organometallics 2002,21,2395-2399.
    [173]Bull, S. D.; Davidson, M. G.; Johnson, A. L.; Robinson, D. E. J. E.; Mahon, M. F., Synthesis, structure and catalytic activity of an air-stable titanium triflate, supported by an amine tris(phenolate) ligand Chem. Commun.2003, (14),1750-1751.
    [174]Fortner, K. C.; Bigi, J. P.; Brown, S. N., Six-Coordinate Titanium Complexes of a Tripodal Aminetris(phenoxide) Ligand:Synthesis, Structure, and Dynamics. Inorg. Chem 2005,44, (8), 2803-2814.
    [175]Cortes, S. A.; Hernandez, M. A. M.; Nakai, H.; Castro-Rodriguez, I.; Meyer, K.; Fout, A. R.; Miller, D. L.; Huffman, J. C.; Mindiola, D. J., Titanium complexes supported by a sterically encumbering N-anchored tris-arylphenoxide ligand Inorg. Chem. Commun.2005,8, (10), 903-907.
    [176]Kol, M.; Shamis, M.; Goldberg,l.; Goldschmidt, Z.; Alfi, S.; Hayut-Salant, E., Inorg. Chem. Commun.2001,4,177-179.
    [177]Mba, M.; Prins, L. J.; Licini, G., Org. Lett.2007,9,21-24.
    [178]Motekaitis, R. J.; Martell, A. E.; Koch, S. A.; Hwang, J.; Quarless, D. A.; Jr; Welch, M. J, The Gallium(III) and Indium(III) Complexes of Tris(2-mercaptobenzy)amine and Tris(2-hydroxybenzyl)amine. Inorg. Chem.1998,37 (22),5902-5911.
    [179]Timosheva, N. V.; Chandrasekaran, A.; Day, R. O.; Holmes, R. R., Synthesis of Silatranes with All Six-Membered Rings. Influence of Steric Effect on Structure and NMR Behavior. Organometallics 2001,20, (11),2331-2337.
    [180]Kim, Y. J.; Kapoor, P. N.; Verkade, J. G., Inorg. Chem.2002,41,4834-4838.
    [181]Groysman, S.; Segal, S.; Goldberg, I.; Kol, M.; Goldschmidt, Z., Inorg. Chem. Commun.2004, 7938-941.
    [182]Sopo, H.; Sviili, J.; Valkonen, A.; Sillanpaa, R., Uranyl ion complexes with aminoalcoholbis(phenolate) [O,N,O,O'] donor ligands. Polyhedron 2006,25, (5),1223-1232.
    [183]Sopo, R. S.; Vaisanen, A.; Sillanpaa, R., Uranyl ion complexes with long chain aminoalcoholbis(phenolate) [O,N,O,O'] donor ligands Polyhedron 2007,26, (1),184-196.
    [184]Barbette, F.; Rascalou, F.; Chollet, H.; Babouhot, J. L.; Denat, F.; Guilard, R., Extraction of uranyl ions from aqueous solutions using silica-gel-bound macrocycles for alpha contaminated waste water treatment. Anal. Chim. Acta.2004,502, (2),179-187.
    [185]Sopo, H.; Goljahanpoor, K.; Sillanpaa, R., Aminoalkylbis(phenolate) [O,N,O] donor ligands for uranyl(VI) ion coordination:Syntheses, structures, and extraction studies. Polyhedron 2007,26,3397-3408.
    [186]Baaden, M.; Schurhammer, R.; Wipff, G., Molecular Dynamics Study of the Uranyl Extraction by Tri-n-butylphosphate (TBP):Demixing of Water/"Oil"/TBP Solutions with a Comparison of Supercritical CO2 and Chloroform. J. Phys. Chem. B 2002,106, (2),434-441.
    [187]Ikeda, Y.; Wada, E.; Harada, M.; Chikazawa, T.; Kikuchi, T.; Mineo, H.; Morita, Y.; Nogami, M.; Suzuki, K., J. Alloy Compd.2004,374,420.
    [188]Burke, W. J.; Kolbezen, M. J.; Stephens, C. W., Formation of Aldehydes from Partially Hydrogenated N-Acyl-Pyridine,-Quinoline and-Isoquinoline Derivatives. J. Am. Chem. Soc. 1952,74, (14),3601-3605.
    [189]Roy, R.; Komarneni, S.; Roy, D. M., Mater. Res. Soc. Symp. Proa 1984,32,347.
    [190]严东生;冯瑞,材料新星--纳米材料科学(New Star of Materials-Nanomaterials Science).In湖南:科学技术出版社(Hunan:Science and Technology Press):1997.
    [191]Goodwin, H. A.; Jr, J. C. B., Coordination Compounds Derived from Polymeric Schiff's Bases. J.Am.Chem.Soc.1961,83, (11),2467-2471.
    [192]Drago, R. S.; Gaul, J.; Zombeck, A.; Strairb, D. K., Preparation and Catalytic Oxidizing Potential of Polymer Supported Chelating Amine and Schiff Base Complexes. J.Am.Chem.Soc. 1980,102,(3),1033-1038.
    [193]陈行琦;吴耀勋,Schiff碱螫合树脂的合成及其对金属离子的吸附规律.高等学校化学学报1990,11,(9),1037.
    [194]刘理中;俞善信;肖立新,高分子负载希夫碱对金属离子的吸附特性.离子交换和吸附1995,11,(2),122-127.
    [195]Weitkamp, J.; Hunger, M.; Rymsa, U., Base catalysis on microporous and mesoporous materials:recent progress and perspectives Microporous Mesoporous Mater.2001,48, (1-3), 255-270.
    [196]Berthod, A., Silica:backbone material of liquid chromatographic column ackings. J Chromatogrphy 1991,549,1-28.
    [197]Lin, X. H.; Chuah, G. K.; Jaenicke, S., J. Mol. Catal. A 1999,150.,287.
    [198]Wei, Y.; Qiu, K.-Y., SYNTHESIS AND BIOTECHNOLOGICAL APPLICATIONS OF VINYL POLYMERINORGANIC HYBRID AND MESOPOROUS MATERIALS. Chinese Journal of Polymer Science 2000,18,(1),1-7.
    [199]Antonietti, M.; Breulmann, M.; G, C.; Goltner; Colfen, H.; Wong, K. K. W.; Walsh, D.; Mann, S., Inorganic/Organic Mesostructures with Complex Architectures:Precipitation of Calcium Phosphate in the Presence of Double-Hydrophilic Block Copolymers. Chem.-Eur. J.1998,4, (12),2493.
    [200]Gimon-Kinsel, M. E.; Jimenez, V. L.; Washmon, L.; Balkus, K. J., Mesoporous Mol. Sieves 1998,117,373.
    [201]Cicicopol, C.; Peters, J.; Lupas, A.; Cejka, Z.; Muller, S.; Golbik, R.; Pfeifer, G.; Lilie, H.; Engle, A.; Baumeister, W., Novel Molecular Architecture of the Multimeric Archaeal PEP-synthase Homologue (MAPS) from Staphylothennus marinus. J. Mol. Biol.1999,290, (1),347-361.
    [202]Paddock, R. L.; Hiyama, Y.; McKay, J. M.; Nguyen, S. T., Tetrahedron Lett.2004,45,2023.
    [203]郝成君;赵晓军,高分子担载苯丙氨酸希夫碱钴配合物催化氧化环己烯研究.平顶山工学院学报2007,16,(2),14-17.
    [204]张雪红;管莲秀;李军平;魏伟,嫁接型席夫碱配合物的制备及其催化性能.化学学报2006,64,(24),2479-2485.
    [205]Schmid., G., Large Clusters and Colloids Metals in the Embryonic States [M]. Chem. Rev. 1992,92 17091.
    [206]梁淑敏,乙烯基三乙氧基硅烷改性Si02纳米粒子的研究.化学工程师2004,7,15-16.
    [207]王平华,纳米粒子表面修饰与改性-SiO2纳米粒子表面接枝聚合.高分子材科学与工程2003,19,(5),183-186.
    [208]Zhang, X. H.; Chen, B.; Wei, W.; Sun, Y. H., Preparation of Functional ized Porous Silica by Ultrasonic Technique for the Methylation Reaction of Phenol with Dimethyl Carbonate. Chin. J. Chem.2005,23 1376-1380.
    [209]张冠东;官月平;单国彬;安振涛;刘会洲,纳米Fe304颗粒的表面包覆及其在磁性氧化铝载体制备中的应用.过程工程学报2002,2,(4),319-324.
    [210]Dhal, P. K.; Arnold, F. H., Metal-coordination interactions in the template-mediated synthesis of substrate-selective polymers:recognition of bis(imidazole) substrates by copper(II) iminodiacetate containing polymers. Macromolecules 1992 25, (25),7051-7059.
    [211]Say, R.; Ersoz, A.; Turk, H.; Denizli, A., Selective separation and preconcentration of cyanide by a column packed with cyanide-imprinted polymeric microbeads. Sep. Pur if. Tech.2004,40, (1),9-14.
    [212]Uezu, K.; Nakamura, H.; Ooto, M., Metal-imprinted microsphere prepared by surface-template polymerization with W/OAV emulsion. J Chem Eng Jpn 1999,32, 262-267.
    [213]Masahiro, Y.; Uezu, K.; Goto, M., Metal ion imprinted microsphere prepared by surface molecular imprinting technique USing water-in-oil-in-water emulsions. J Appl Polym Sei 1999,73,1223-1230.
    [214]徐伟箭;项伟中;周晓;徐丰,基于硅胶表面修饰的分子印迹技术研究进展.应用化学2003,20,(10),919-923.
    [215]邴乃慈;李庆华;许振良,硅材料表面印迹技术研究进展.化学世界2007,(12),754-757.
    [216]张栓红;孙昌梅;曲荣君,表面分子(离子)印迹硅胶/聚合物的制备及性能研究进展.高分子通报2010,4,17-29.
    [217]Ebner, A. D.; Ritter, J. A.; Navratil, J. D., Adsorption of Cesium, Strontium, and Cobalt Ions on Magnetite and a Magnetite-Silica Composite. Ind. Eng. Chem. Res.2001,40,1615-1623.
    [218]纪明侯,海藻化学.北京:科学出版社:1997.
    [219]Draget, K. I.; Strand, B.; Hartmann, M., Ionic and acid gel formation of epimerised alginate: the effect of AlgFA. Imernational Journal of Biological Macromolecules 2000,27,117-122.
    [220]Vos, P. D., Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomateriats 1997,18,273-278.
    [221]Star, A.; Stoddart, J. F., Dispersion and Solubilization of Single-Walled Carbon Nanotubes with a Hyperbranched Polymer. Macromolecules 2002,35, (19),7516-7520.
    [222]Rajdip, B.; Einst, N. R.; Oren, R., Nano Letters 2002,2,25228.
    [223]Rinsufo, M, Progress in Polymer Science 2006,31,603-632.
    [224]隋坤艳;谢丹;高耸;吴智明;吴文文;夏延,海藻酸钠/碳纳米管复合凝胶球的制备及其吸附性能[J].功能材料2010,41,(2),268-270.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.