金花茶体胚发生的调控及其解剖学和蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以金花茶(Camellia nitidissima Chi.)成年材料离体再生体系为材料来源,进行了体胚发生调控、发育解剖学观察,并对金花茶正常体胚发育和花状多子叶形胚体胚发育途径不同阶段的离体培养材料进行了蛋白质表达的双向电泳分析。金花茶花状多子叶形胚这一异常发育途径,是植物离体形态发生的一种特殊现象,在其他植物上未见报道。对该现象的研究,有助于了解植物离体形态过程的一些特殊机制,对完善发育生物学理论有重要意义。
     本试验主要研究结果如下:
     1、比较了不同激素组合对金花茶愈伤组织诱导的影响。发现将本实验室原有的金花茶体胚增殖再生系统中获得的子叶胚切块后接种在附加2mg/L 2,4-D和1mg/L KT的培养基上每7d继代一次,诱导出的部分愈伤组织,在不添加激素的分化培养基上分化出体胚,并且相当数量都是花状多子叶形胚类型。
     2、建立了金花茶花状多子叶形胚发育途径的体胚循环再生系统。通过逐步提高培养基渗透压,经过逐代筛选,在附加0.22mol/L甘露醇和0.12mol/L蔗糖的MS培养基上获得基本一致的花状多子叶胚。将体胚转入附加0.2mol/L NAA和2mol/L BA的1/2 MS培养基中,体胚变红甚至褐变,最后在褐变的胚体表面又生长出较同步的同一类型的次生胚。将其重新接种到原培养基上,又可重复这一发育途径。
     3、将花状多子叶形胚不同发育阶段的离体培养材料制作石蜡切片,并与正常发育的材料进行对比,发现了其组织形态上具有特殊性。同时发现子叶向真叶的转化是从两端叶缘向主脉方向进行的。与拟南芥lec突变体比较,发现二者不是同一类型的突变。
     4、用双向电泳的分析方法,得到了金花茶正常体胚发育途径和花状多子叶形胚体胚发育途径球形胚、子叶胚、成熟胚和幼苗4个阶段的离体培养材料以及2mg/L 2,4-D和1mg/L KT的激素组合诱导的愈伤组织的总蛋白的双向电泳图谱。
     金花茶正常体胚发育途径,从球形胚阶段发育至子叶胚阶段,明显消失或减弱的蛋白有4个:CnPG1(63.9kD)、CnPG2(29.9kD)、CnPG3(30.6kD)、CnPG4(29.1kD),其中CnPG2(29.9kD)、CnPG3(30.6kD)和CnPG4(29.1kD)从子叶胚阶段开始明显减弱;而在子叶胚阶段明显新增的蛋白,有9个:CnPC1(73.3kD)、CnPC2(70.5kD)、CnPC3(35.4kD)、CnPC4(44.1kD)、CnPC5(28.4kD)、CnPC6(20.1kD)、CnPC7(19.1kD)、CnPC8(17.4kD)、CnPC9(19.0kD),其中CnPC1(73.3kD)和CnPC2(70.5kD)在随后的发育进程中逐渐减弱,在幼苗阶段完全消失。从子叶胚发育至成熟胚阶段,明显消失或减弱的蛋白有25个CnPC10(58.4kD)、CnPC4(44.1kD)、CnPC11(48.1kD)、CnPC12(45.0kD)、CnPC13(40.0kD)、CnPC14(19.0kD)、CnPC15(42.1kD)、CnPC6(20.1kD),CnPG4(29.1kD),CnPC7(19.1kD),CnPC16(23.0kD)、CnPC17(18.8kD)、CnPC9(19.0kD),CnPC8(17.4kD),CnPC18(21.3kD)、CnPC19(35.1kD)、CnPC20(29.2kD)、CnPC21(30.4kD)、CnPC22(20.7kD)、CnPC23(19.0kD)、CnPC24(18.9kD)、CnPC25(16.0kD)、CnPC26(32.6kD)、CnPC27(32.3kD)、CnPC28(28.4kD)。其中CnPC4(44.1kD)、CnPC6(20.1kD)、CnPC7(19.1kD)、CnPC8(17.4kD)和CnPC9(19.0kD)仅在子叶胚阶段出现,CnPG4(29.1kD)在球形胚阶段开始明显减弱,至子叶胚阶段完全消失。而在成熟胚阶段新出现的蛋白有3个CnPM1(21.0kD)、CnPM2(18.5kD)、CnPM4(15.3kD),CnPM3(16.3kD)明显增强。成熟胚发育到幼苗阶段,明显消失的蛋白有16个:CnPM5(72.5kD)、CnPM6(73.1kD)、CnPM7(60.6kD)、CnPMS(71.1kD)、CnPG2(29.9kD)、CnPG3(30.6kD)、CnPM9(27.6kD)、CnPM1(21.0kD)、CnPM10(21.5kD)、CnPM11(21.0kD)、CnPM12(20.0kD)、CnPM3(16.3kD)、CnPM13(15.7kD)、CnPM14(14.1kD)、CnPM15(13.1kD)、CnPM16(12.2kD)。其中CnPM1(21.0kD)仅在成熟胚阶段出现,CnPG2(29.9kD)和CnPG3(30.6kD)在球形胚阶段开始明显减弱,至成熟胚阶段则完全消失。而在幼苗阶段新增的蛋白有5个:CnPP1(55.7kD)、CnPP3(57.2kD)、CnPP4(55.3kD)、CnPP5(55.3kD)、CnPP6(47.2kD),CnPP2(57.5kD)虽然存在于正常体胚所有的发育阶段,但在幼苗阶段的表达量特别大。
     而金花茶花状多子叶形胚发育途径蛋白表达变化的差异有:①CnPG5(31.4kD)在正常体胚发育过程中的球形胚阶段就已经出现;而在花状多子叶形胚体胚发育过程中,则要到子叶胚阶段才出现。②CnPC4(44.1kD)和CnPC5(28.4kD)在正常体胚发育过程中的子叶胚阶段才出现;而在花状多子叶形胚体胚发育过程中,在球形胚阶段就已经出现。③CnPG4(29.1kD)在正常体胚发育过程中的球形胚阶段开始减弱,在进入成熟胚阶段前消失;而CnPG 4(29.1kD)在花状多子叶形胚体胚发育过程中的球形胚阶段的表达量就明显低于正常发育的体胚,并且在于叶胚阶段就已消失。④花状多子形叶胚体胚发育过程的子叶胚至成熟胚阶段,CnPP2(57.5kD)和CnPM17(46.4kD)在此期间消失;而正常体胚发育过程中这一时期没有这一变化。⑤CnFM1(21.0kD)在花状多子叶形胚体胚发育过程中未见表达。⑥CnPD(14.9kD)是花状多子叶形胚体胚发育过程中特有的蛋白,从球形胚至成熟胚阶段一直稳定存在;而正常体胚发育过程中,没有见到该蛋白的表达。
     两种发育途径最终获得的幼苗的蛋白表达差异分析发现,正常体胚比花状多子叶形胚多出5个蛋白:CnPP1(55.7kD)、CnPP5(55.3kD)、CnPP6(47.2kD)、CnPP7(16.1kD)、CnPM4(15.3kD);而在花状多子叶形胚幼苗阶段,CnPC7(19.1kD)仍未消失。
     金花茶愈伤组织与花状多子叶形胚的蛋白表达差异分析发现,花状多子叶形胚发育途径的特有的CnPD(14.9kD)和提早出现的CnPC5(28.4kD)在愈伤组织阶段也有表达。
In this experiment the repetitive in vitro regenerating system originated from the adult stem-tips was used as the material resource for the studies on the regulation of somatic embryogenesis and the related developmental anatomy in Camellia nitidissima Chi.(yellow camellia; besides, 2-Dimensional Electrophoresis was applied to analyze protein expression of different developmental phases during somatic embryogenesis. The abnormal developing pathway in Camellia nitidissima Chi., through which somatic embryos formed multiple cotyledons and flower-like shape, (named as MCFS pathway) was a special phenomenon in plant development, which had not been reported. The studies on the phenomenon was conducive to fathom the mechanism of some specific processes of plant in vitro morphogenesis and important to consummate the theory of the developmental biology. The obtained results showed as follows:
     1.The effects of different combinations of plant growth regulators on the callus induction were compared. The results indicated that the pieces cut from somatic cotyledonary embryo derived from the repetitive somatic embryogenesis system established in our laboratory were cultured on the medium adding 2mg/L 2,4-D and 1mg/L KT and subcultured every 7 days, the calli formed after 3~4 times, and then somatic embryogenesis occurred on the differentiation medium without growth regulators, and many somatic embryos with multiple cotyledons and flower-like shape (named as MCFS embryo) were observed..
     2.The repetitive MCFS embryogenesis system was established. Almost the same type of MCFS embryos clould be obtained on MS medium adding 0.22mol/L mannitol and 0.12 mol/L sucrose after augmenting osmotic pressure of the medium step by step and selecting typical materials every generation. After being transferred onto the 1/2 MS medium adding 0.2mol/L NAA and 2mol/L BA, the abnormal somatic embryos turned magenta or even became brown; finally, the browned body generated nearly synchronized and identical secondary MCFS embryos on the surface. Going back to the first step with the secondary MCFS embryos could repeat the process.
     3.The anatomic observations on the materials of different developmental phases in the MCFS pathway and normal materials by paraffin sections were compared. The materials from MCFS embryos had unique morphologic features, and the transforming order from cotyledon to leaf was from leaf margins of both sides to main vein. The MCFS embryo was distinct from lee mutant of Arabidopsis by comparison.
     4.The 2-DE analyses of the expression of the total proteins of the materials in the different phases during the MCFS pathway and normal developmental pathway, including globular embryos, cotyledon embryos, mature embryos, plantlets, and the calli induced by adding 2mg/L 2,4-D and 1mg/L KT, was carried out..
     During the normal developmental pathway, from the globular embryo phase to the cotyledon embryo phase, there were 4 protein spots disappeared or weakened obviously, i.e., CnPGl(63.9KD), CnPG2(29.9kD), CnPG3(30.6kD) and CnPG4(29.1 kD), among which CnPG2(29.9kD), CnPG3(30.6kD) and CnPG4(29.1kD) weakened obviously since the cotyledon embryo phase; and there were 9 new protein spots in the cotyledon embryo phase, i.e., CnPCl(73.3kD), CnPC2(70.5kD), CnPC3(35.4kD), CnPC4(44.1 kD), CnPC5(28.4kD), CnPC6 (20.1kD), CnPC7(19.1kD), CnPC8( 17.4kD), CnPC9(19.0kD), among which CnPC1 (73.3kD) and CnPC2(70.5kD) weakened gradually later and completely disappeared in the plantlet phase. From the cotyledon embryo phase to the mature embryo phase, there were 25 protein spots disappeared or weakened obviously, i.e.,CnPC10(58.4kD), CnPC4(44.1 kD), CnPC11(48.1kD), CnPC12 (45.0kD), CnPC13(40.0kD), CnPC14(19.0kD), CnPC 15(42.1 kD), CnPC6(20.1 kD), CnPG4 (29.1kD), CnPC7(19.1kD), CnPC 16(23.0kD), CnPC17(18.8kD), CnPC9(19.0kD), CnPC8 (17.4kD), CnPC 18(21.3kD), CnPC 19(35.1kD), CnPC20(29.2kD), CnPC21(30.4kD), CnPC22 (20.7kD), CnPC23(19.0kD), CnPC24(18.9kD), CnPC25(16.0kD), CnPC26(32.6kD), CnPC27 (32.3kD), CnPC28(28.4kD). among which CnPC4(44.1 kD), CnPC6(20.1 kD), CnPC7(19.1kD), CnPC8(17.4kD), CnPC9(l9.0kD) appeared in the cotyledonary embryo phase only and CnPG4 (29.1kD) completely disappeared in the cotyledonary embryo phase. There were 3 new protein spots in the mature embryo phase, i.e., CnPM1(21.0kD), CnPM2(18.5kD), and CnPM4(15.3kD). CnPM3(16.3kD) strengthened obviously. From the mature embryo phase to the plantlet phase, there were 16 protein spots disappeared, i.e., CnPM5(72.5kD), CnPM6(73.1kD), CnPM7(60.6kD), CnPM8(71.1kD), CnPG2(29.9kD), CnPG3(30.6kD), CnPM9(27.6kD), CnPM 1(21.0kD), CnPM10 (21.5kD), CnPM 11(21.0kD), CnPM12(20.0kD), CnPM3(16.3kD), CnPM13(15.7kD), CnPM14 (14.1kD), CnPM15(13.1kD), CnPM16(12.2kD), among which CnPM 1(21.0kD) only appeared in the mature embryo phase, CnPG2(29.9kD) and CnPG3(30.6kD) weakened since the globular embryo phase, then disappeared in the mature embryo phase. There were 5 new protein spots in the plantlet phase, i.e., CnPP1(55.7kD), CnPP3(57.2kD), CnPP4(55.3kD), CnPP5(55.3kD), CnPP6 (47.2kD). CnPP2(57.5kD) existed in all the phases of the normal developmental pathway, and dramatically increased in expression level in the plantlet phase.
     The discrepancy of protein expression in MCFS pathway was as follows:①CnPG5(31.4kD) had already appeared in the globular embryo phase of the normal developmental pathway, but had not appeared until the cotyledonary embryo phase of MCFS pathway.②CnPC4(44.1kD) and CnPC5(28.4kD) had not appeared until the cotyledonary embryo phase of the normal developmental pathway, but had already appeared in the globular embryo phase of MCFS pathway.③CnPG4(29.1kD) weakened since the globular embryo phase and disappeared before the mature embryo phase during the normal developmental pathway. In contrast, during MCFS pathway, its expression amount was obviously less in the globular embryo phase than that of the normal developmental pathway, and the protein spot disappeared in the cotyledonary embryo phase.④From the cotyledonary embryo phase to the mature embryo phase during MCFS pathway, CnPP2(57.5kD) and CnPM17(46.4kD) disappeared, which had not yet happened during the normal developmental pathway.⑤CnPM 1(21.0kD) had never appeared during the MCFS pathway.⑥CnPD(14.9kD) which existed from the globular embryo phase to the mature embryo phase was exclusive for the MCFS pathway, but it never appeared in any phase during the normal developmental pathway.
     In the plantlet phase, there were 5 more protein spots during the normal developmental pathway than that during the MCFS pathway; besides, in the plantlet phase during the MCFS pathway, CnPC7(19.1kD) still existed.
     CnPD(14.9kD) and CnPC5(28.4kD) were also observed in the callus phase by comparing with the globular embryo phase during the MCFS pathway.
引文
[1] 贺善安.中国珍稀植物[M].上海:科学技术出版社,1998:215.
    [2] 张本能,黄广宾.金花茶的分类和地理分布[J].武汉植物学研究,1986,4(1):31-42.
    [3] 黄燮才.金花茶开发利用概况和前景预测[J].中国中药信息杂志,1994,1(6):10-11.
    [4] 林莉.金花茶离体培养研究[D].福建福州:福建农林大学,2005.
    [5] 陈俊愉.金花茶育种十四年[J].北京林业大学学报,1987,9(3):315-320.
    [6] 李道梅,莫树业,邓朝佐.建立金花茶基因库初报[J].北京林业大学学报,1986,8(4):80-85.
    [7] 赵世伟,程金水,陈俊愉.金花茶和山茶花的种间杂种[J].北京林业大学学报,1988,20(2):40-47.
    [8] 黄连东,莫树业.金花茶杂交新种初报[J].中国园林,1998,14(1):49-51.
    [9] 梁盛业.扶绥中东金花茶新种[J].广西林业科学,1994,23(1):52-53.
    [1]0 梁盛业,罗云延.中国山茶属新种[J].广西林业科学,1995,24(2):83-85.
    [1]1 梁盛业.广西金花茶新种——薄瓣金花茶[J].广西林业科学,1995,24(4):173.
    [12] 张宏达,杨成华,张廷中.贵州金花茶一新种[J].广西植物,1997,17(4):289-290
    [13] 叶创兴.关于金花茶学名更替小记[J].广西植物,1997,17(4):309-313
    [14] 韦美玲,赵瑞峰,黄启斌,等.六种金花茶生物学特性的观察[J].广西植物,1994,14(2):157-159.
    [15] 张宏达,叶创兴.山茶科系统发育诠释Ⅱ:金花茶的分类特征[J].中山大学学报(自然科学版),1993,32(3):118-120.
    [16] 叶创兴,张宏达,许兆然.金花茶植物的系统研究[J].广西植物,1993,(增4):115-149.
    [17] 叶创兴.山茶科系统发育诠释Ⅲ:关于金花茶组及山茶属演化若干问题[J].广西植物,1993,13(4):306-310.
    [18] 叶创兴.山茶科系统发育诠释Ⅳ:关于Camellia petelotii(merr.)Sealy的笔记和评论[J]广西植物,1995,15(1):3-5.
    [19] 李凤英,王玉国,唐绍清.山茶属金花茶组金花茶系的叶表皮特征及分类学意义[J].广西师范大学学报(自然科学版),2001(4):78-82.
    [20] 王任翔,胡长华,梁盛业,等.金花茶组植物叶表皮特征的扫描电镜观察[J].广西林业科学,2002(3):26-29.
    [21] 王任翔,梁盛业,李洁荣,等.金花茶组植物叶表皮特征的扫描电镜观察(Ⅱ)[J].广西林业科学,2003(1):7,13-17.
    [22] 张文驹,闵天禄.九种金花茶种皮的电镜扫描观察[J].广西植物,1995,15(1):36-38
    [23] 粱盛业.金花茶组植物核型比较.广西林业科学,1995,24(3):140-142.
    [24] 邓桂英,杨振德,卢天玲.我国金花茶研究概述[J].广西农业生物科学,2000,19(2):126-130.
    [25] 王任翔,胡长华,梁倩华,等.金花茶组植物花粉扫描电镜研究(一)[J].广西植物,1997,17(3):242-245.
    [26] 梁盛业,谢永泉.凹脉金花茶的识别及其花粉形态、木材构造[J].广西林业科技,1988,(3):25-27.
    [27] 汪小兰.几种金花茶花粉扫描电镜观察[J].武汉植物学研究,1985,3(2):131-135.
    [28] 汪小兰.金花茶系植物的金花茶粉形态[J].北京林业大学学报,1986,8(3):48-51.
    [29] 邹琦丽,梁盛业.广西金花茶花粉形态[J].广西植物,1984,4(3):223-226.
    [30] 梁盛业,邹琦丽.毛籽金花茶的识别及其花粉形态[J].广西林业科技,1983,(1):35-36.
    [31] 谢永泉,梁盛业.金花茶系植物花粉形态[J].广西林业科技,1991,20(2):65-70.
    [32] 梁机,杨振德,黄素梅.八种金花茶植物可溶性蛋白质电泳分析及其亲缘关系初探[J].广西农业大学学报,1998,17(增刊):1-5.
    [33] 宾晓芸.唐绍清.周俊亚.等.金花茶遗传多样性的ISSR分析[J].武汉植物学研究 2005,23(1):20-26.
    [34] 韦霄,韦记青,蒋水元,等.迁地保护的金花茶遗传多样性评价[J].广西植物,2005(3):25-28
    [35] 施苏华,唐绍清,陈月琴,等.11种金花茶植物的RAPD分析及其系统学意义[J].植物分类学报,1998,36(4):317-322.
    [36] 谭晓风,漆龙霖,贺晶,等.山茶属植物油茶组与金花茶组的分子分类[J].中南林学院学报,2005(4):35-38
    [37] 张宏达,施苏华,钟扬,等.Camellia nitidissima与C.petelotii之间的关系研究——来自nrDNA ITS的证据[J]. 武汉植物学研究,2001(6):449-452.
    [38] 唐绍清,施苏华,陈月琴,等.金花茶与近缘种的RAPD分析及分类学意义[J].中山大学学报(自然科学版),1998,37(4):28-32.
    [39] 唐绍清,杜林方,王燕.山茶属金花茶组金花茶系的AFLP分析[J].武汉植物学研究,2004,22(1):44-48.
    [40] 唐绍清,施苏华,钟杨,等.基于ITS序列探讨山茶属金花茶组的系统发育关系[J].广西植物,2004,24(6):488-492.
    [41] 程金水,熊和平.金花茶胚和子叶离体培养诱导植株的研究[J].北京林业大学学报,1986,8(3):31-32.
    [42] 罗忠泽.金花茶及其远缘杂种未成熟胚离体培养的初步研究[J].北京林业大学学报,1986,8(4):76-79.
    [43] 廖汉刃,周传明,董学军,等.金花茶组织培养及其试管苗嫁接繁殖试验初报[J].广西农学院学报,1987(2):66-71.
    [44] 黄小荣金花茶种质资源离体培养保存的研究[D].广西南宁:广西大学,2005.
    [45] 庄承纪,梁汉兴.金花茶子叶在离体培养中胚状体的发生和小植株的形成[J].云南植物研究,1985,7(4):446-457.
    [46] 李红.防城金花茶体细胞胚状体发生的研究[J].广西园艺,1999(3):2-3.
    [47] 颜幕勤,陈平,王以红 广西七种金花茶的组织培养快速繁殖[J].实验生物学报,1988 21(1):1-9
    [48] 彭艳华,庄承纪,段金玉.金花茶胚状体中游离氨基酸含量及花氨酸、丝氨酸对胚状体发育的影响[J].武汉植物学研究,1990,8(3):268-272.
    [49] 黄小荣,韦鹏霄.金花茶种质资源的组织培养保存[J].广西林业科学,2004,33(4):188-192.
    [50] 李懋学,尤瑞麟,白文力,等.金花茶花药愈伤组织的体细胞减数分裂[J].云南植物研究,1994,16(3):263-267.
    [51] 杨振德,梁机.外源激素对金花茶花蕾生长的影响(简报)[J].广西农业大学学报,1997,16(1):45-48.
    [52] 吴洪明,陶萌春,周良才.金花茶引种福州的适应性初报[J].福建农业大学学报,1998,27(4):428-431.
    [53] 梁机,杨振德,卢天玲,等.从茶多酚及氨基酸含量比较几种金花茶制茶适宜性[J].广西科学,1999,6(1):72-74.
    [54] 陈全斌,湛志华,义祥辉,等.金花茶抗氧化活性成分提取及其含量测定[J].广西热带农业,2005(3):1-2.
    [55] 苏忠民.金花茶组植物种群生态的初步研究[J].广西科学,1994,(1):31-36.
    [56] 李天庆,曹慧娟.金花茶小孢子囊、小孢子和雄配子体的发育[J].北京林业大学学报,1986,8(2):30-34.
    [57] 李天庆,曹慧娟.金花茶种子早期发育的胚胎学研究[J].北京林业大学学报,1986,8(2):43-46.
    [58] 李文钿,朱彤.胡杨的受精作用和胚胎发育[J].林业科学研究,1989(1):5-12,105-108.
    [59] 王秀玲,任秋萍.西瓜胚和胚乳的发育[J].广西植物,2002(5):437-440,T005-T006.
    [60] 申书兴,邹道谦.普通番茄的受精过程及胚胎发育的研究[J].河北农业大学学报,1989(4):85-91.
    [61] 薛妙男,杨小华.罗汉果胚,胚乳及胚乳有器的发育[J].广西植物,1995(2):154-157.
    [62] 黄坚钦,章滨森,金水虎.腊梅的受精作用及胚胎发生[J].植物学通报,1999(6):63-67.
    [63] 申瑞田,高瑞岩,史明云,等.红小豆胚胎学研究—Ⅰ小孢子发生和发育[J].河北农业大学学报,1988(4):60-62.
    [64] 张美萍,申家恒.桔梗胚胎学研究 Ⅰ.小孢子发生和雄配子体发育[J].吉林农业大学学报.1991(4):33-36,103.
    [65] 张美萍,申家恒,关贺群.桔梗(Platycodon grandiflorum A.DC)胚胎学研究——Ⅱ.大孢子发生、雌配子体发育、胚及胚乳发育[J].1992(2):27-32,105-106.
    [66] 张智俊,金晓玲,罗淑萍,等.油茶子叶体细胞胚形成的细胞学观察[J].植物生理学通讯,2004(5):48-50.
    [67] 陈春玲,赖钟雄.龙眼胚性愈伤组织体胚发生同步化调控及组织细胞学观察[J].福建农林大学学报(自然科学版),2002(2):57-59.
    [68] 慈忠玲,于福杰,魏学增.珍稀濒危树种—沙冬青体细胞胚胎发生的组织学观察[J].内蒙古林学院学报,1994(1):36-39.
    [69] 曾黎辉,吕柳新.荔枝、龙眼胚性愈伤组织的细胞组织学观察[J].福建农林大学学报(自然科学版),2002(3):331-333.
    [70] 邓朝军,易干军,曾继吾,等.荔枝体胚发生过程中的细胞学观察[J].果树学报.2006(5):760-762.
    [71] 伍碧华,郑有良,骆建明.小麦组织培养体细胞胚胎的次生胚状体发生研究[J].西南农业学报,2005(8):373-377.
    [72] 张书标,庄伟建.花生体细胞胚胎发生的组织细胞学研究.广西农业生物科学[J],2002(1):48-51.
    [73] 张建光,李俊奇.杏授粉受精及胚胎发育观察[J].河北农业大学学报,1990(4):18-21.
    [74] 许方,姚宜轩.甜樱桃胚和胚乳发育及其与果实生长的相关性研究[J].莱阳农学院学报,1992(4):4-8.
    [75] 谭素英,梁毅.同源四倍体西瓜的胚胎发育研究[J].中国西瓜甜瓜,1990(1):2-5.
    [76] 胡金良,徐汉卿,刘惠吉,等.二倍体和四倍体小白菜的胚胎学研究[J].南京农业大学学报,1996(4):18-22.
    [77] 杨琴军,黄燕文,李和平.桂花胚和胚乳发育过程的研究[J].华中农业大学学报,2003(2):175-178.
    [78] 林顺权.枇杷胚胎发生的观察.福建农林大学学报(自然科学版)[J],1992(1):69-73.
    [79] 钟云,刘勇,蒋依辉,等.柿胚胎发生发育的研究[J].园艺学报,2004(3):353-356.
    [80] 叶秀粦,王伏雄,钱南芬.荔枝的胚胎学研究[J].云南植物研究,1992(1):63-69,125-126.
    [81] 罗丽娟,刘国道.西卡柱花草受精作用和胚及胚乳发育的研究[J].热带作物学报,2001(2):30-37.
    [82] 刘建全.款冬的胚胎学.[J]西北植物学报,2001(3):141-146,235-137.
    [83] 叶晓青,徐汉卿,李惠芬,等.梅果实的发育解剖学初探[J].北京林业大学学报,1999(2):32-37.
    [84] 刘建全,薛春迎,何廷农.藏药抱茎獐牙菜的胚胎学研究[J].西北师范大学学报(自然科学版),1998(4):63-70.
    [85] 刘玫,王臣,刘鸣远.泽泻个体发育早期器官发育顺序的研究[J].2002(2):45-47,132.
    [86] 唐赛春,夏念和,林汝顺.两种竹果的胚体类型及系统分类意义[J].广西植物,2005(9):437-439.
    [87] 张芝玉,路安民,潘开玉,等.杜仲科的解剖学和胚胎学及其系统关系[J].植物分类学报,1990,28(6):430-441.
    [88] 田兰馨,阎红.杜仲胚发育过程的研究[J].武汉植物学研究,1993(3):15-20,101-102.
    [89] 汪矛,孙克莲,王丽.莲幼苗的胚根发育及其筛分子研究[J].西北植物学报,2002(1):154-157,233.
    [90] 杨琴军,黄燕文,李和平.桂花胚和胚乳发育过程的研究[J].华中农业大学学报,2003(2):175-178.
    [91] 阎永庆,王岜,王洪亮.仙客来种子结构与幼苗发育规律的研究[J].北方园艺,2000(2):39-40.
    [92] 刘玫,王臣,刘鸣远.芡个体发育早期的研究[J].植物研究,2001(1):97-99,178.
    [93] 庄重,李国强,安争夕,等.鞑靼滨藜胚胎学研究[J].西北植物学报,1997(3):332-338.
    [94] WASINGER, V. C., S. J. CORDWELL. et al. Progress with gene-product mapping the Mollicutes: mycoplasma genitalium[J]. Electrophoresis, 1995, 16: 1090-1094.
    [95] 梁宇,荆玉祥,沈世华.植物蛋白质组学研究进展[J].植物生态学报,2004,28(1):114-125.
    [96] CLARK A J. An embryo-specific protein of barley[J]. Eur J Biochem, 1991, 199(1): 115-121.
    [97] CHEN L J, LUTHEDS. Analysis of protein from embryonic and nonembryonie rice (Oryza sativa L.) [J]. Calli Plant Science, 1987,48:181-188.
    [98] FRANZ P F, DE RUIJTER N C A, SCHEL JH N. Isozyme as biochemical and cytological markers in embryogenic callus cultures of maize(Zea mars L.) [J].Plant Cell Rep,1989,8:67-70.
    [99] STIZN S, JACOBSEN H J. Marker proteins for embryogenic differentiation patterns in pea callus[J].Plant Cell Rep, 1987,6:50-54.
    [100] ALLEN R D, DAYTON W, CRAIG L N. Analysis of differential gene expression during somatic embryogenesis in opium poppy (Papaver somniferum L.)[J].Amer J Bot, 1984,71: 120.
    [101] HUNG B C. Search of molecular marker the somatic embryogenesis in Arabidopsis thaliana L[J].. Chinese J Bot, 1989,1:25-34.
    [102] 杨和平,程井辰.马唐胚性和非胚性愈伤组织生殖差异的初步研究[J].植物生理学通讯,1991,27:337-340.
    [103] VENDENHOU T H, SWENNEN R, DEMOT R, et al. Protein changes associated with somatic embryogenesis in cotton (Gossypiurn hirsutera L.) [J]. Mededelinge Facultei Land Bouwkundigeen Toegepaste Biolgische Wetenschap-pen Universiteit Gent, 1999, 64 (56): 451-454.
    [104] HVOSLEFEIDE A K, CORKE F M K. Embryogenesis specific protein changes in birch suspension cultures[J].Plant Cell Tissue and Organ Culture, 1997,51:35-41.
    [105] 朱长甫,镰田博,何弈昆,等.胡箩卜(Daucus carota L.)胚性细胞蛋白的分离研究.实验生物学报[J],1997,30(1):13-18.
    [106] 郑晓峰,黄百渠.几种植物体细胞胚胎发生标记蛋白的研究[J].植物学报,1994,36(3):175-180.
    [107] 高述民,陆帼一,杜慧芳.大蒜体细胞胚发育分化中特异蛋白和某些生理生化变化(简报)[J].植物生理学通讯,2001,37(3):207-210.
    [108] 陈婷,栾恒淳,李力,等.水稻悬浮体细胞胚胎发生及其特异蛋白[J].东北师大学报自然科学版,2000,32(4):52-58.
    [109] 刘天磊,江晓雯,王仑山.苜蓿组织培养中球形胚发生时特异蛋白质和同工酶分析[J].西北植物学报 2002,22(3):625—628.
    [110] GIROUX R W, PAULS K P. Characterization of embryogenesis-related protein in alfalfa (Medieago sativa) [J]. Physiologia Plantarum, 1996, 96(4):585-592.
    [111] SALLANDROUZE A, FAUROBERT M, E MAATAOUI M. Two-dimensional electrophoretic analysis of proteins associated with somatic embryogenesis development in Cupressus sempervirens L[J]. Electrophoresis. 1999,20(4-5):1109-19.
    [112] 陈伟,吕柳新,黄春梅,等.‘乌叶’荔枝胚胎发育过程特异蛋白的变化[J].园艺学报,2001,28(6):504-508.
    [113] 陈春玲,赖钟雄.龙眼体胚发生过程中特异蛋白的IEF和SDS-PAGE分析[J].福建农林大学学报(自然科学版),2002,31(1):135-136.
    [114] 安娜.龙眼体细胞胚胎发生的蛋白质组学研究[D].福建福州:福建农林大学.2006.
    [115] 江波,杨映根,郭奕明,等.松柏类植物体细胞胚胎发生的研究进展[J].植物学通报,2004,21(4):495-505.
    [116] OLIVIER M, PIERRE C T, THIERRY J, et al. Influence of extracellular proteins, proteases and protease inhibitors on grapevine somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture, 1997,50(2):97-105.
    [117] ANKE J D J, JAN C, FIORELLA L S, et al. A Carrot Somatic Embryo Mutant ls Rescued by Chitinase[J]. The Plant Cell, 1992,Vol. 4: 425-433.
    [118] THOMAS T L, WILDE H D. Analysis of gcnc expression in carrot somatic embryos[J]. TERZI J, PITTO L, SUNG Z R. Somatic Embryogenesis[C].Rome:IPRA,1985.77-85.
    [119] FRANZ G, HATZOPOULOS P, JONES T J, et al. Molecular and genetic analysis of an embryonic DC8, from Daucus carto L[J].Mol Gen Genet, 1989,218:143-151.
    [120] KIYOSUE T, YAMAGUCHI-SHINOZAKIK, SHIHOZAKIK, et al. Isolation and characterization of a cDNA that encodes ECP31, ah embryogenic-cell protein from carrot[J]. Plant Mol Biol, 1992,19:239-249.
    [121] KIYOSUE T, YAMAGUCHI-SHINOZAKIK, SHINOZAKIK, et al. cDNA cloning of ECP40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis[J]. Plant Mol Biol,1993,21:1053-1068.
    [122] 朱长甫,镰田博,原田宏,等.与胡箩卜胚胎发生相关的胚性细胞蛋白63cDNA分离及其基因表达的研究[J].植物学报,1997,39(12):1091-1098.
    [123] 许智宏.植物发育与生殖的研究:进展和展望[J].植物学报,1999,41(9):909-920.
    [124] URSULA U, LOTHAR W, THOMAS A. Inactivation of a Glycyl-tRNA Synthetase Leads to an Arrest in Plant Embryo Development[J]. The Plant Cell,1998, Vol. 10, 1277-1294.
    [125] HUAI W, LEONARDO V C, A. BRUCE D, et al. The Embryo MADS Domain Protein AGAMOUS-Like 15 Directly Regulates Expression of a Gene Encoding an Enzyme Involved in Gibberellin Metabolism[J]. The Plant Cell,2004,16:1206-1219.
    [126] QI H, MAURA C C. The Cell Wall Hydroxyproline-Rich Glycoprotein RSH Is Essential for Normal Embryo Development in Arabidopsis[J]. The Plant Cell,2002, Vol. 14:1161-1172,
    [127] LU P, PORAT R, NADEAU J A, et al. Identification of ameristem LI layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes[J]. Plant Cell, 1996,8:2155-2168.
    [128] LOTAN T, OHTO M A, YEF K M, et al. Arabidopsis LEAFY COTYLEDON I is sufficient to induce embryo development in vegetative eells[J].Cell, 1998,93: 1195-1205.
    [129] SARA V A. Somatic embryogenesis in conifers - a tool for studying embryology and for vegetative propagation[J], http://www2.vbsg.slu.se/eng/research/projects/SArnold_proj.html.2005-02-23/2005-06-11.
    [130] 王盈,张美,杨礼香,等.一个在水稻胚胎中差异表达基因的分离鉴定[J].武汉大学学报(理学版),2004,50(4):501-504.
    [131] 郑娥香,杨志行,朱治平,等.水稻bicoid反义基因转基因植株胚胎发育的形态变化[J].植物学通报,2001,18(6):707-713.
    [132] MANAK J R, SCOTT M P. A class act: Conservation of homeodomain protein functions. In: The Evolution of Development Mechanisms[J]. Development, 1994 (suppl): 61-77.
    [133] SMITH L G, JACKSON D, HAKE S. Expression of knottedl marks shoot meristem formation during maize embryogenesis[J].Dev Genet, 1995,16:344-348.
    [134] KERSTETTER R, LAUDENICIA-CHINGCAUANCO D, SMITH G. et al. Loss-of-function mutations in the maize homeobox gene, knottedl, are defective in shoot meristem maintenance [J]. Development, 1997,124:3045-3054
    [135] POSTMA-HAARSMA A D, VERWOERT II G S, STRONK O S, et al.. Characterization of the KNOX class homeobox genes Oskn2 and Oskn3 identified in a collection of eDNA libraries covering the early stages of rice embryogenesis[J].PI Mol Biol, 1999,39:257~271
    [136] SATO Y, SENTOKU N, NAGATO Y, et al.. Isolation and characterization of a rice homebox gene,OSH15 [J].PI Mol Biol, 1998,38:983-998.
    [137] SENTOKU N, SATO Y, KURATA M, et al. Regional expression of the rice KN1-type homeobox gane family during embryo, shoot, and flower development[J]. Plant Cell,1999,11:1651-1663.
    [138] 张智俊.油茶优良无性系组织培养、RAPD分子鉴别和cDNA文库构建的研究[D]湖南长沙:中南林学院,2003.
    [139] 黄学林,李筱菊.高等植物组织离体培养的形态建成及其调控[M].北京:科学技术出版社,1995:23-29.
    [140] MEINKE D W. A homeotic mutant of Arabidopsis thaliana with leafy cotyledons[J]. Science, 258: 1647-1650.
    [141] MEINKE D W. Leafy cotyledon mutants of Arabidopsis[J].Plant Cell, 6: 1049-1064.
    [142] 赖钟雄,林莉.山茶属植物体胚发生研究进展[J].福建农林大学学报(自然科学版),2004,33(4):471-476.
    [143] 郭尧君.蛋白质电泳实验技术(第二版)[M].北京,科学出版社,2005:195.
    [144] MAYER U. Mutations affecting body organization in the Arabidopsis embryo [J].Nature, 353: 402-407.
    [145] H M OTTOLINE LEYSER,IAN J FURNER. Characterisation of three shoot apical meristem mutants of Arabidopsis thaliana[J]. Development 1992 (116):397-403.
    [146] J I MEDFORD, FRIEDRICH J,BEHRINGER, et al. Normal and Abnormal Development in the Arabidopsis Vegetative Shoot Apex[J]. The Plant Cell, 1992(4): 631~643.
    [147] KAREN B, ISABELLE C,CATHERINE B, et al. AGOI defines a novel locus of Arabidopsis controlling leaf development[J]. The EMBO Journal, 1998, 17 (1): 170-180.
    [148] LI J, S M ASSMANN. Mass spectrometry: An essential tool in proteome analysis [J]. Plant Physiology, 2000, 123: 807-809.
    [149] 何大澄,肖雪嫒.差异蛋白质组学及其应用[J].北京师范大学学报(自然科学版),2002,38(4):558-562.
    [150] SCHIAVONE F M, RACUSEN R H. Microsurgery reveals regional capabilities for pattern establishment in somatic carrot embryos[J]. Dev Biol, 1990,141:211-219.
    [151] FISCHER C,NEUHAUS G. Influence of auxin on the establishment of bilateral symmetry in monocots[J].Plant J,1996,9:659-669.
    [152] OKADA K, UEDA J,KOMAKI M K,et al.Requirement of auxin polar transport system in early stage of Arabidopsis floral bud formation[J].PlantCell, 1991,3:677-684.
    [153] LONG J A, MOAN E I,MEDFORD J I,et al.A member of the KNOTTED class of homeodomain proteins encoded by STM gene in Arabidopsis[J].Nature, 1996,379:66-69.
    [154] ELLIOTT R C,BETZNER A S,HUTTNER E; et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth[J].PlantCell, 1996,8:155-168.
    [155] 彭华正,潘建伟,朱睦元.基因网络研究进展[J].生物化学和生物物理进展,2001,28(6):815-818.
    [156] PATRIK D. Reconstructing gene networks from large scale gene expression data[D]. Albuqueque: The University of New Mexico,2000.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.