麻疯树遗传变异与多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻疯树(Jatropha curcas L.)为大戟科麻疯树属小乔木或大灌木,起源于墨西哥和中美洲,现广泛分布于热带和亚热带地区;麻疯树易扦插繁殖,种子籽油可以制备生物柴油,为一种高效可再生的生物能源树种。
     本试验首次对不同国家种子特性、种苗生长;家系、无性系田间生长指标;AFLP分子标记3个方面阐述了麻疯树遗传变异及多样性情况,并对麻疯树EST-SSR引物开发进行了初步研究。研究结果阐明了不同种源麻疯树的亲缘关系及引种可能性,为培育稳产、高产、含油量高的优良品种提供了理论依据。主要结果如下:
     1.本试验对来自8个国家40个地区的种子特性及苗期生长状况进行了检测,种子种仁千粒重在种源间差异显著;印度种源的种子、种仁千粒重较轻,中国种子与平均值相当,马里种源种子、种仁千粒重值较大;印度种源和中国种源的种子与其他国家相比均比较小;种子、种仁平均含油量为29.65%,48.45%;种子、种仁含油量变幅为14.85—40.17%,34.02—61.39%;2009年8月在越南林科院苗圃育苗试验结果调查统计发现,种子出苗率变幅为1.7—90.80%,2个月后平均株高、地径分别为22.69cm、0.80 cm;3个月后为25.73 cm、1.09 cm;种子长、宽、重及含油量、种苗发芽率、生长量方面不同种源间均存在变异,经综合考虑得到10个种源可应用在以后的育种中。
     2.从形态学上调查了海南麻疯树试验基地2年生195个家系及1年37个无性系的田间生长指标。家系平均成活率为93.65%、树高1.97 m、地径6.85 cm、每棵树结果枝数1.38个,结果数量为20个;家系成活率在家系间差异显著而在省级水平上差异不显著,树高、地径、结果枝数及结果等级在省及县(市)水平差异极显著而在家系间差异不显著。无性系成活率为84%,平均株高为101.48 cm,平均一级枝量2.77,二级枝量1.67,平均结果量16.5个;方差结果显示树高在无性系及县级水平上差异不显著,存活率及第二分枝数在无性系和县级水平差异均显著,第一分枝数及每棵树的结果总量在各无性系间差异显著并均达到极显著水平,但在县级水平差异不显著。
     由于麻疯树分布区自然条件差异较大,来自不同省份、县(市)的麻疯树家系、无性系在生长指标特征上存在显著差异,不同区域分布的麻疯树遗传基础存在差异,具有丰富的遗传变异。
     3.利用9对AFLP引物组合中国6省37个种源及印尼1个种源进行了分子标记分析,9对引物扩增出246条条带,其中多态性条带为72条,多态性比率为26.99%。评价引物的PIC,MI和RP三个属性均能很好的代表引物的区分能力,且均与遗传多样百分率呈很强的正相关(r2>0.9)。
     Jaccard相似系数介于0.866和0.977之间,表明这38个种源的遗传多样性很低。非加权聚类平均法UPGMA及主成份分析聚类结果与地理种源的地理位置没有很大的相关性。中国麻疯树种源相对较低的遗传多样性暗示在以后的育种工作中应当引进原产地种源以扩大遗传基础。
     4.采用4对荧光AFLP的方法对10个国家不同地区的64个种源310个个体进行遗传多样性分析,4对引物共扩增出89条清晰的多态性条带,平均多态性百分率(Pp)为18.31%,平均每位点等位基因数(Na)为1.183,平均有效等位基因数(Ne)为1.117,平均Nei's基因多样性指数(H)为0.070,平均香农指数(I)为0.103,群体间的遗传分化系数Gst为0.5057,麻疯树种源间的遗传变异占总变异的50.57%,稍大于种源内变异,基因流Nm为0.473。
     10个国家中Pp,Na,Ne,H和I变化趋势相同,墨西哥国家麻疯树的遗传多样性最丰富,其次为越南、印度、泰国、巴布亚新几内亚、中国、菲律宾、马里、印度尼西亚,遗传多样性最低的为老挝。
     麻疯树种源间的遗传距离介于0.002—0.308之间;以Nei's(1973)遗传距离D为参数对麻疯树64个种源进行UPGMA聚类,64个种源可划分为4个组,第一组为混合亚洲组,第二组为印度组,第三组为中国种源组,第四组为墨西哥组;另外海南的一个种源HN7单独据为一类;由此可以推断聚为同一类的种源可能由同一原产地引种而来,聚类结果与地理区划有一定的相关性,但是在每一个国家内聚类与地理位置没有相关性。
     5.从NCBI上已经公布的13,201条麻疯树EST中得到了37个SSR-ESTs;在这37个序列中,二核苷酸重复单元占59.46%,GA、GT各占28.205%;三核苷酸重复单元占40.54%,AAG重复单元最多,占17.949%;SSR长度在18—45bp之间,平均长度27.69 bp;设计的37对EST-SSR引物,28对引物可在麻疯树材料中能够扩增出目标片段,其中7对引物具有多态性,扩出的等位位点数从2—14个不等。
     该研究结果揭示了不同种源在种子特性、田间生长指标方面存在差异,通过选择可以获得高产、稳产、含油量高的品种;同时试验结果进一步确定了中国麻疯树种源的遗传多样性低,在以后的育种中应引进更多的不同基因型的材料,扩大麻疯树的遗传基础。
Jatropha curcas L. belonging to the family Euphorbiaceae is a deciduous, multipurpose shrub or small tree up to 6 m tall. Its natural distribution range is centre in Mexico and Central America. It has been extensively cultivated outside its natural range, and become naturalized throughout the tropical and subtropical regions due to the ease of propagation either by seed or cuttings. The species is a highly effective, renewable bio-energy tree species because the seed can be extracted for bio-diesel oil.
     The main objective of this study was to determine the genetic diversity of J. curcas using genetic material deriverd from sources within China and many other countries. Field growth indices:seed morphology, branching habit, fruit yield, seed oil content and molecular diversity were determined. The results showed the relationship between J. curcas populations and suggested the probable sources of original introductions into China. The results also provided a basis for genetic improvement by selection of superior genotypes in terms of growth, high seed yield and high oil content. Main results obtained from this study are described as follows.
     1. J. curcas seeds from 8 countries 40 sources were included in the study. The 1000-seed weightand 1000-seed kernel weight were quite different between populations. The 1000-seed weight,1000-kernel weight, seed length, seed width, seed oil content, kernel oil content and seed germination and seedling growth were determined. The results showed that seeds from Mali were the heaviest and those from India were generally the lightest; Seed weight of the Chinese sources was around the overall mean. In term of seed size, Indian and Chinese seeds were smaller than other countries. The range of seed oil content among the 40 sources was 14.85-40.17%, while the kernel oil content was 34.02-61.39%. Seed germination varied form 1.7% to 90.80%. Mean diameter and height of three-month-old seedlings were 25.73 cm and 1.09 cm respectively. The highest oil content was recorded for seed from Mali. Overall, there were marked variations in seed length, seed width, seed weight and oil content. At last 10 populations with high oil content could be used for further research.
     2. The field growth indices at 2 years age of 195 families of China and at 1 year old of 37 clones were assessed. Analysis results revealed that survival differed significantly at family level but not at province level, while height, diameter at ground level, number of fruiting branches and fruit yield varied at province and county levels but not at family level. The family trial results showed that overall mean survival, height, diameter at ground level, number of fruiting branches and fruit yield were 93.65%,1.97 m,6.85 cm,1.38 per tree and 20 per tree respectively. Clone trial results showed that mean survival, height, first order branch (FOB), second order branch (SOB) and fruit yield were 84%,101.48 cm, 2.77,1.67 and 16.5 respectively. Analysis of variance indicated that there were no differences in height at county and clone levels. Survival and SOB differed at county and clone levels. FOB and fruit yield varied at clone level but did not differ at county level.
     The results described above show that families and clones of J. curcas from different counties and provinces performed differently in many growth characteristics. Thus, genetic variations in J. curcas exist and it is possible to make selection for superior genotypes.
     3. Amplified fragment length polymorphism (AFLP) was used to determine the genetic diversity among 37 Chinese populations and 1 Indonesia of J. curcas grown in a seed source trial in Hainan. Nine AFLP primer combinations were used to generate a total of 246 fragments, of which 72 (26.99%) were polymorphic. Three marker attributes: polymorphism information content (PIC), marker index (MI) and Resolving power (RP), were all found to be reliable to determine the discriminatory power of the nine primer combinations.
     The Jaccard's similarity coefficient showed a high similarity range from 0.866 to 0.977, suggesting a low genetic diversity among the 38 populations. The UPGMA-based dendrogram and biplot of a principal component analysis did not reveal a clear pattern of groupings by geographic locations of the seed sources; populations from across different provinces were mixing in the same groups. The low genetic diversity and a lack of variation pattern among the populations in China suggest that it is necessary to import new germplasm preferably from the species'natural distribution range to broaden the genetic base for improvement program.
     4. Four selected AFLP fluorescence primer combinations were employed to test the genetic diversity of 310 individuals from 64 populations from ten countries. Eighty nine AFLP markers were observed. The genetic diversity parameters at species level was PP= 18.31%, Na= 1.183, Ne= 1.117, H= 0.070, I= 0.103. The genetic differentiation coefficient was 0.5057 which indicated that 50.57% variability occurred between populations. The gene flow was 0.473.
     All the genetic diversity parameters Pp, Na, Ne, H and I had similar tendency in these ten countries. Mexico had the highest genetic diversity followed by Vietnam, India, Thailand, Papua New Guinea, China, Philippines, Mali and Indonesia.
     The genetic distance of these 64 populations varied form 0.002 to 0.308. The UPGMA dendrogram was built according to Nei's genetic distance. The 64 populations were clustered into 4 main groups, i.e. mixed Asian group, India group, China group and Mexico group. The populations clustered in the same group are likely to be introduced from the same original population. The cluster result had some relationship with geographic distribution, but within each group there was no relationship with geographic distribution.
     5. Thirty seven SSR-ESTs were obtained from 13,201 EST sequences. Among these 37 SSR-ESTs, dinucleotide repeat was more dominant motif than trinucleotide repeat. For dinucleotide repeat, GA and GT were the most abundant motif. As for trinucleotide, AAG was dominant. The length of SSR repeat was between 18 bp and 45 bp, the mean length was 27.69 bp. At last 37 EST-SSR primers were gained, of which 28 worked for J. curcas, and 7 primers were polymorphic. The amplified loci ranged from 2 to 14.
     This study showed variations in many growth characteristics of J. curcas from a wide range of seed sources through seed and field growth assessment. These results indicate that it is feasible to select genotypes which possess fast growth and high seed oil contents. Molecular analysis confirmed low genetic diversity among Chinese populations, suggesting the need to introduce more genetic material to broaden the genetic base in China.
引文
1.邓志军,程红焱,宋松泉.麻疯树种子的研究进展[J].云南植物研究,2005,27(6):605—612.
    2.邓国富.奇特的花卉————佛肚树[J].中国花卉盆景,2003,11:17.
    3.董玉芝,白根本.用同工酶研究胡杨天然群体遗传结构[J].东北林业大学学报,1998,26(5):16—20.
    4.方卫国,韦宇拓.一种新的DNA银染方法[J].遗传,2000,22(3):167—168.
    5.葛永奇,邱英雄,丁炳扬,等.孑遗植物银杏群体遗传多样性的ISSR分析[J].生物多样性,2003,11(4):276—287.
    6.葛颂,王海群,张灿明,等.八面山银杉林的遗传多样性与群体分化[J].植物学报,1997,39(3):266—271.
    7.葛颂,王明庥,陈岳武.用同工酶研究马尾松群体的遗传结构[J].林业科学,1988,24(4):399—409.
    8.辜云杰,何朝均,张俊,等.凉山州麻疯树天然群体种子性状多样性研究[J].西南林学院学报,2009,29(6):11—14.
    9.何明霞.航天搭载对小桐子SPl诱变效应的初步研究.四川大学,硕士学位论文,2009.
    10.何玮.麻疯树遗传多样性的ISSR分析.四川大学,硕士学位论文,2007.
    11.何玮,郭亮,王岚,等.麻疯树种质资源遗传多样性的ISSR分析[J].应用与环境生物学报,2007,13(4):466—470.
    12.何文淑,肖荣贵,杨晓琼,等.麻疯树在贫湖地区农村发展和生态建改中的开发前景[J].中国中医药信息杂志,2002,9(10):33—36.
    13.侯宽昭.中国种子植物科属词典[M].北京:中国科学出版社,1950.
    14.胡志昂.杨属植物的同工过氧化物酶[J].植物分类学报,1981,19(3):291—297.
    15.胡守荣,夏铭,郭长英,等.林木遗传多样性研究方法概况[J].东北林业大学学报,2001,29(3):72—75.
    16.江东,钟广炎,洪棋斌.柑橘EST—SSR分子标记分析.遗传学报,2006,33(4):345—353.
    17.季维智,宿兵.遗传多样性研究的原理与方法[M].杭州:浙江科学技术出版社,1999.
    18.贾宏林.中国小桐子不同地理种源差异比较与种源亲缘关系的研究.北京林业大学,博士论文.2008.
    19.金振洲.滇川于热河谷与干暖河谷植物区系特征[M].昆明:云南,科技出版社,2002.
    20.蒋培东.对生玉米核型、同工酶及其对生性状遗传表现的研究.安徽农业大学,硕士学位论文,2004.
    21.金航标,戴文圣,李崇廉,等.麻疯树扦插育苗试验[J].浙江林业科技,2009,29(4),89—91.
    22.孔秋生.基于公共序列数据库的Cucumis属EST-SSR标记的鉴定、开发和利用.华中农业大学,博士论文,2006,9.
    23.李明芳,郑学勤.开发SSR引物之研究动态[J].遗传,2004,26(5):769—776.
    24.李卫国,常天俊,龚红梅.EST—SSR及其在植物基因组学研究中的应用[J].生物技术,2008(4):90—93.
    25.李作洲,巩俊杰,王瑛,等.水杉残留居群AFLP遗传变异空间分布[J].生物多样性,2003,11(4):265—275.
    26.梁慧,彭彤,颜钫,等.不同产地麻疯树种仁的含油量及脱油种仁的佛波酯含量[J].应用与环境生物学报,2009,4:108—110.
    27.刘三军,孔庆山,顾宏,等.我国野生葡萄过氧化物酶同工酶研究[J].果树科学,1998,15(4):322—326.
    28.刘振,王新超,赵丽萍,等.基于EST-SSR的西南茶区茶树资源遗传多样性和亲缘关系分析[J].分子植物育种,2008,6(1):100—110.
    29.林晓辉.福建南安麻疯树引种试验初报[J].中南林业调查规划,2006,3:68—70.
    30.林忠旭,张献龙,聂以春.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适应性分析[J].遗传学报,2004,31(6):622—626.
    31.林忠旭,张献龙,聂以春.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):90—93.
    32.林娟,周选围,唐克轩,等.麻疯树植物资源研究概况[J].热带亚热带植物学报,2004,12(3):285—290.
    33.陆伟达,魏琴,唐琳,等.麻疯树愈伤组织的涛导及快速繁殖[J].应用环境生物学报,2003,9(2):27—30.
    34.罗建勋,和献峰,辜云杰,等.攀枝花地区麻疯树天然群体表型多样性研究[J].西南林学院学报,2008,28(6):31—35.
    35.罗建勋,辜云杰,唐平,等.攀西地区膏桐不同群体种子性状与出仁率变异规律[J].西南林学院学报,2009,29(3):1—4.
    36.马克平.论生物多样性概念.生物多样性,1993,1(1):20—23.
    37.欧文军,王文泉,李开绵.120份小桐子种质的分子遗传多样性分析[J].热带作物学报,2009,30(3):284—292.
    38.丘华兴.中国植物志44卷[M].北京:科学出版社,1996.
    39.钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社.1994,123—140.
    40.沈浩,刘登义.遗传多样性概述[J].生物学杂志,2001,18(3):5-9.
    41.沈熙环主编.林木育种学.北京:中国林业出版社,1990
    42.孙静,吕效波,张方正,等.盐胁迫下小麦过氧化物酶同工酶与全蛋白变化的研究[J].生物技术,2005,15(3):27—28.
    43.孙晴,徐莺,颜钫,等.麻疯树RAPD分析的影响因素[J].应用与环境生物学报,2002,8(3):259—261.
    44.孙雪忠,金国庆,叶文国,等.三尖杉扦插育苗技术研究[J].浙江林业科技,2008,28(3):17-28.
    45.唐平,罗建勋,王雪婧.麻疯树综合开发利用研究进展[J].攀枝花科技与信息,2007,32(3),22-28.
    46.唐敏.桂西南麻疯树生长、种仁含油率及其与环境的相关性研究.广西大学,硕士学位论文.2007,6.
    47.唐遒冥,谭建荣.美丽的庭院树———琴叶珊瑚[J].FLOWERS,2008,1:24.
    48.王长彪,郭旺珍,蔡彩平,等.雷蒙德氏棉EST—SSRs分布特征及开发与利用[J].科学通报,2006,51(3):316—320.
    49.王成树,李增智.分子数据的遗传多样性分析方法[J].安徽农业大学学报,2002,29(1):90—94.
    50.王军辉,张建国,张守攻,等.川西云杉硬枝扦插生根特性的研究[J].浙江林学院学报,2006,23(3):351—356.
    51.王斌,翁曼丽.AFLP的原理及其应用[J].杂交水稻,1996,5:27—30.
    52.王明麻主编.林木遗传育种学[M].北京:中国林业出版社,2000.
    53.王岩,龙春林,程治英.能源植物小桐子的利用与研究进展[J].安徽农业科学,2007,35(2):426—427,429.
    54.王兆玉,林敬明,徐增富.几个不同产地的小油桐种子含油率及其脂肪酸组成[J].南方医科大学,2008,28(6),1045—1046.
    55.吴国江,刘杰,娄志平,等.能源植物的研究现状及发展建议[J].科学与社会,2006,2l(1):53—55.
    56.吴卫,郑有良,陈黎,等.利用1SSR标记分析鱼腥草种质资源的遗传多样性[J].世界科学技术—中医药现代化,2003,5(1):70—77.
    57.吴跃开,欧国腾,孙建昌等.麻疯树病虫害种类综述[J].热带农业科学,2008,28(5):89—94.
    58.许绍斌,陶玉芬,杨昭庆,等.简单快速的DNA和胶银染保存方法[J].遗传,2002,24(3):338—336.
    59.续九如,黄智慧.林业试验设计[M].中国林业出版社.1992.
    60.徐刚,王定川.不同施肥处理对麻疯树雌雄花比例和挂果的影响[J].林业实用技术2009:11.10—11.
    61.夏铭.遗传多样性研究进展[J].生态学杂志,1999,18(3):59—65.
    62.杨自湘,顾万春,李玲.毛白杨种内过氧化物同工酶变异[J].林业科学研究.1990,3(4):335—340.
    63.杨孟冬.过氧化物酶同工酶与杨树种及品种间亲缘关系的研究[J].无锡教育学院学报.1997,3:74—79.
    64.杨顺林,范月清,沙毓沧,等.麻疯树资源的分布及综合开发利用前景[J].西南农业学报,2006,19,447—452.
    65.杨清,彭代平,段柱标,等小桐子(膏桐)传粉生物学研究[J].华南农业大学学报,2007,28 (3):62—66.
    66.姚利华,滕元文.EST—SSR标记及其在果树研究中的应用[J].果树学报,2008,25(2):219—224.
    67.叶林奇.11种蕨类植物过氧化物酶同工酶比较[J].涪陵师范学院学报,2005,21(5):104—106.
    68.袁理春,徐中志.云南麻疯树资源及利用[J].云南农业科技,2006(3):16—18.
    69.张昀主编.生物进化[M].北京:北京大学出版社,1998.
    70.张志毅,朱之梯,Muele:G,Hatteme H.毛白杨无性系同工酶基因标记的研究[J].北京林业大学学报,1992,14(3):9—29.
    71.张无敌,宋洪川,韦小岿,等.麻疯树开发与元谋县生态环境保护[J].云南师范人学学报,2001a,21(5):37—42.
    72.张无敌,宋洪川,韦小岿,等.元谋县小桐子种植的适应性研究[J].农业与技术,2001b,21(2):22—25.
    73.张增翠,侯喜林.SSR分子标记开发策略及评价[J].遗传,2004,26(5):763—768.
    74.钟志权.膏桐(麻疯树)-一种大有希望的能源植物[J].热带植物研究,1984,25:62—65.
    75.赵翀,刘法央,郭玉霞,等.AFLP荧光标记和银染技术的比较分析[J].甘肃农业大学学报,2007,42(2):125—129.
    76.中国科学院华南植物研究所编辑.海南植物志(第二卷)[M],北京:科学出版社,1965,17.
    77.郑成木.植物分子标记原理与方法[M].长沙:湖南科学技术出版社,2003.
    78.郑万均.中国树木志(第三卷)[M].北京:中国林业出版社,1998,2977—2979.
    79.朱振东,贾继增.小麦SSR标记的发展及应用[J].遗传,2003,25:(3):355—360.
    80.朱之梯主编.林木遗传学基础.北京:中国林业出版社,1990
    81.臧润国,蒋有绪.热带树木构筑学研究概述[J].林业科学,1998,34(5):112—119.
    82.曾庆波,李意德,陈步峰,等.海南岛尖峰岭地区生物物质名录.中国利用出版社,1995.
    83. Achten WMJ, Mathijs E, Verchot L, et.al. Jatropha biodiesel fueling sustainability? [J]. Biofuel. Bioprod. Bior.2007,1(4),283-291.
    84. Achten WMJ, Verchot L, Franken YJ et.al. Jatropha bio-diesel production and use [J]. Biomass Bioenerg.2008,32(12),1063-1084.
    85. Anonymous Jatropha curcas L. introduction. The 2007 biological conference-biological resource.2007, http://218.89.108.58/ptl/kjxxw/html/news/news_view.asp?newsid= 1664. Accessed 21
    86. Azam MM, Waris A, Nahar NM. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenerg.2005,29(4), 293-302.
    87. Barbier EB, Schulz CE, Wildlife, biodiversity and trade. Environment and Development Economics,1997,22:145-172.
    88. Basha SD, Sujatha M. Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers [J]. Euphytica,2007,156:375-386.
    89. Basha SD, Francis G, Makkar HPS, et.al. A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci.176(6),812-823 (2009).
    90. Basha S, Sujatha M. Genetic analysis of Jatropha species and interspecific hybrids of Jatropha curcas using nuclear and organelle specific markers. Euphytica,2009,168(2),197-214.
    91. Carvalho CR, Clarindo WR, Praca MM, et.al. Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant [J]. Plant Sci.2008,174(6),613-317.
    92. Chang-wei L, Kun L, You C, et.al. Floral display and breeding system of Jatropha curcas L. For. Stud. China,2007:9(2),114-119.
    93. Collevatti RG, Brondani RV, Grattapaglia D. Development and characterization of microsatellite markers for genetic analysis of a Brazilian endangered tree species Caryocar brasiliense [J]. Heredity,1999,83(6):748-756.
    94. Emil Akbar, Zahira Yaakob, Siti Kartom Kamarudin, et.al. Characteristic and composition of Jatropha curcas oil seed form Malaysia and its potential as biodiesel feedstock. European journal of scientific research,2009,29(3):396-403.
    95. Eujayl I, Sledge MK, Wang L, et al. Medicago truncatula EST- SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet,2004,108:414-422.
    96. FACT Foundation. Jatropha Handbook. FACT Foundation, Eindhoven, The Netherlands.2006.
    97. FAO. Report of the First Session of the FAO Panel of Experts on Forest Gene Resources, Rome, October 1968, FAO:FGR/1/Rep. FAO Rome.1969.
    98. Fairless D. The little shrub that could-maybe. Nature.2007,449:652-655. DOI: 10.1038/449652a.
    99. Fernandez M, Figueiras A, Benito C The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. TheorAppl Genet 2002,104:845-851.
    100. Fisher PJ, Gardner RC, Richardson TE. Single locus microsatellites isolated using 5'anchored PCR. Nucleic Acids Research.1996,24(21):4369-4371.
    101. Fitzsimmons NN, Moritz C, Moore SS. Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Molecular biology and evolution,1995,12(3):432-440.
    102. Fraser LG, Harvey CF, Crowhurst RN, et al. EST-derived microsatellites from Actinidia species and their potential for mapping. Theor Appl Genet,2004,108:1010-1016.
    103. Ganesh RS, Parthiban KT., Senthil KR. et al. Genetic diversity among Jatropha species as revealed by RAPD markers [J]. Genet Resour Crop Evol.2008,55:803-809.
    104. GEXSI. Global Market Study on Jatropha-Final Report. Global Exchange for Social Investment LLP, Berlin, Germany,2008.
    105. Ginwal HS, Rawat PS, Srivastava RL, et al. Seed source variation in growth performance and oil yield of Jatropha curcas in Central India. Silvae Genet,2004,53(4):186-192.
    106. Gunn, B. Australian Tree Seed Centre Operations Manual. CSIRO Forestry and Forest Products, Canberra, Australia.2001.
    107. Gupta PK, Rustgi S, Sharma S, et.al. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular Genetics and Genomics,2003, 270:315-323.
    108. Hamrick JL, Godt MJW, Sherman-Broyles SL. Factors influencing levels of genetic diversity in woody plant species [J]. New Forests,1992,6(1-4):95-124.
    109. Harris SA. RAPDs in systematics-a useful methodology [J]. Molecular Systematics and Plant Evolution.1999,211-228.
    110. Hartmann HT, Kester DE. Plant Propagation:Principles and Practices [J]. Soil science,1963.
    111. Henning RK. Jatropha curcas L. In. Plant Resources of the Tropical Africa (Volume 14). van der Vossen HAM, Mkamilo GS (Eds). Vegetable oils PROTA Fondation, Wageningen, The Netherlands,2007,116-122.
    112. Heller J. Physic Nut-Jatropha curcas L.-Promoting the Conservation and Use of Underutilized and Neglected Crops. PhD dissertation at the Institute of Plant Genetic and Crop Plant Research, Rome, Italy.1996.
    113. Huang HB, Song YQ, Hsei M. Development and characterization of genetic mapping rescources for turkey (Meieagris gallopavo). The Journal of Heredity,1999,90(1):240-242.
    114. Ines S, Fernado A, Mikkel G, et al Variability of chloroplast DNA in the genus Passiflora. L. Euphytica,1999,106:15-26.
    115. Jaccard P. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Nat,1908,44:223 -270.
    116. Jones N, Miller J.H. Jatropha curcas - a multipurpose species for problematic sites. Land Resources Series.1991,1:1-12.
    117. Jung S, Abbott A, Jesudurai C, et.al. Frequency type distribution and annotation of simple sequence repeats in Rosaceae ESTs. Funct Integr Genomics,2005,5:136-143.
    118. Kader JC, Delseny M. Botanical research.2009:45.
    119. Kandpal JB, M.Madan. Jatropha curcas:a renewable source of energy for meeting future energy needs. Renewable energy,1995,6:159-460.
    120. Karagyozov L, Kalcheva I.D, Chapman V.M. Construction of random small-insert genomic libraries highly enriched for simple sequence repeats. Nucleic Acids Research,1993,21(16): 3911-3912.
    121. Kaushik N, Kumara K, Kumara S, et al. Genetic variability and divergence studies in seed traits and oil content of Jatropha(Jatropha curcas L.) Biomass and Bioenergy.2007, (31):497-502.
    122. Laurentin H, Karlovsky P. AFLP fingerprinting of sesame (Sesamum indicum L.) cultivars: identification, genetic relationship and comparison of AFLP informativeness parameters. Genetic Resources and Crop Evolution.2007,54:1437-1446.
    123. Li Kun, Yang Wen-yun, Li Li, et al. Distribution and development strategy for Jatropha curcas L. in Yunnan Province. Southwest China. Forestry study in China.2007,9(2):120-126.
    124. Luangviriyasaeng V, Pinyopusarerk, K. Genetic variation in a second generation progeny trial of Acacia auriculiformis in Thailand. J. Trop. For Sci,2001,14:131-144.
    125. Lyall J.E, Brown G.M, Furlong R.A. A method for creating chromosome-specific plasmid libraries enriched in clones containing (CA)n microsatellites repeat sequences directly from flow-sorted chromosomes. Nucleic Acids Research,1993,21(19):4641-4642.
    126. Makkar HPS, Aderibigbe AO, Becker K. Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem,1998a,62(2),207-215.
    127. Makkar HPS, Becker K, Schmook B. Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. Plant Food Hum. Nutr,1998b,52(1),31-36.
    128. Makkar HPS, Becker K, Sporer F, Wink M. Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J. Agr. Food Chem.1997,45(8), 3152-3157.
    129. Makkar HPS, Herrera JM, Becker K. Variations in seed number per fruit, deed physical parameters and contents of oil, protein and phorbol ester in toxic and non-toxic genotypes of Jatropha curcas. J. Plant Sciences,2008a,3(3):260-265.
    130. Makkar HPS, Francis G, Becker K. Protein concentrate from Jatropha curcas screwpressed seed cake and toxic and antinutritional factors in protein concentrate. J. Sci. Food Agr,2008b, 88(9),1542-1548.
    131. Maria Ferriol, Belen Pico, Pascual Fernandez de Cordova, et. al. Molecular diversity of a germplasm collection of squash (Cucurbita moschata) determined by SRAP and AFLP markers [J]. Crop Science,2004,44(2):653-664.
    132. Martinez-Herrera J, Siddhuraju P, Francis G, Davila-Ortiz G, Becker K. Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem,2006,96(1),80-89.
    133. Miesfeld R, Krystal M, Arnheim N. A member of a new repeated sequence family, which is conserved throughout eucaryotic evolution, is found between the human delta and beta globin genes. Nucleic Acids Research,1981,9(22):5931-5947.
    134. Nei M. Analysis of gene diversity in subdivided populations [J]. Proceed Natl Academy Sci, USA,1973,70:3321-3323.
    135. Openshaw K. A review of Jatropha curcas:an oil plant unfulfilled promise [J]. Biomass and Bioenergy.2000,19(1):1-15.
    136. Ostrander EA, Jong PM, Rine J. Construction of small-insert genomic DNA libraries highly enriched for microsatellites repeats sequences. Proceedings of the National Academy of Sciences of the USA,1992,89(8):3419-3423.
    137. Pant K.S., Khosla Vijay, Kumar Dinesh et al. Seed oil content variation in Jatropha curcas Linn, in different altitudinal ranges and site conditions in H.P. India. Lyonia,2006,11(2):31-34.
    138. Patolia J. S., J. Chikara, A. R. Prakash. Provenance trials for selection of high yielding Jatropha curcas on wastelands. Expert seminar on Jatropha curcas L. Agronomy and genetics. 2007,26-28 March.
    139. Poncet V, Rondeau M, Tranchant C, et al. SSR mining in coffee tree EST databases:potential use of EST-SSRs as markers for the Coffea genus. Mol Genetics and Genomics,2006,276: 436-449.
    140. Powell W, MaehLray G.C, Provan J. Polymorphism revealed by simple sequence repeats. Trends in Plant Science,1996,1:215-222.
    141. Powell W, Margenta M, Andre C, et.al. The utility of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed,1996,2:225-238.
    142. Prevost A, Wilkinson M. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet,1999,98:107-112.
    143. Rabild A, Kjar E.D, Graudal L. Performance of Acacia nilotica (L.) Willd. Ex Delile seedlots in an international series of provenance trials. In:Proceedings of the International Conference on Multipurpose Trees in the Tropics:Assessment, Growth and Management. Arid Forest Research Institute, Jodphur, India,2005,621-637.
    144. Raji AAJ, Anderson JV, Kolade OA, et.al. Gene-based microsatellites for cassava (Manihot esculenta Crantz):prevalence, polymorphisms, and cross-taxa utility [J]. BMC Plant Biology. 2009, DOI:10.1186/1471-2229-9-118.
    145. Raju AJS, Ezradanam V. Pollination ecology and fruiting behavior in a monoecious species, Jatropha curcas L. (Euphorbiaceae). Curr. Sci. India 2002,83(11),1395-1398.
    146. Ranade SA, Srivastava AP, Rana TS, et al. Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy, 2008,32:533-540.
    147. Rao GR, Korwar GR, Shanker Arun K. Gentic association, variability and diversity in seed characters, growth, reproductive phenology and yield in Jatropha curcas (L.) accessions. Trees Struct. Funct.2008,22:697-709.
    148. Roldan R, Dendauw J, Van B.E, et.al. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.) [J]. Mol Breed,2000,6:125-134.
    149. Rug M, Sporer F, Wink M, et.al. Molluscicidal properties of J. curcas against vector snails of the human parasites Schistosoma mansoni and S. japonicum. In:Biofuels and Industrial Products from-Proceedings from the Symposium "Jatropha 97". Gubitz GM, Mittelbach M, Trabi M (Eds). Managua, Nicaragua,1997,227-232.
    150. Rungis D, Berube Y, Zhang J. et al. Robust simple sequence repeat markers for spruce (Picea spp) from expressed sequence tags [J]. Theoretical and applied genetics,2004,109 (6):1283-1294.
    151. Scott KD, Eggler P., Seaton G. Analysis of SSRs derived from grape SETs [J]. TheorAppl Genet.2000,100:723-726.
    152. Senthil KR, Parthiban KT, Govinda RM. Molecular characterization of Jatropha genetic resources through inter-simple sequence repeat (ISSR) markers [J]. Mol Biol Rep,2009, 36:1951-1956.
    153. Silvertown J, Charlesworth D. The evolution of plant life history:breeding systems. In: Introduction to Plant Population Biology. Silvertown J, Charlesworth D (Eds). Blackwell Publishing, Oxford, UK,2001,271-303.
    154. Shen Jl, Jia XN, Ni HQ et al. AFLP analysis of genetic diversity of Jatropha curcas grown in Hainan, China. Trees-Structure and Function.2010, DOI:10.1007/s00468-010-0413-1.
    155. Sudheer P.DVN., Mastan Shaik G., Rahman Hifzur, et al. Molecular characterization and genetic diversity analysis of Jatropha curcas L. in India using RAPD and AFLP analysis [J]. Mol Biol Rep.2009b, DOI 10.1007/s11033-009-9712-2.
    156. Sudheer P.DVN, Nirali Pandya, Muppala P. Reddy T. Radhakrishnan. Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP [J]. Mol Biol Rep,2008,15 April
    157. Sudheer P.DVN, Pandya Nirali, Reddy Muppala P, et.al Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP [J]. Mol Biol Rep,2009a,36:901-907.
    158. Sudheer P.DVN, Sarkar R, Meenakshi, Boricha G, Reddy MP. A simple protocol for isolation of high quality genomic DNA from Jatropha curcas for genetic diversity and molecular marker studies [J]. Indian JBiotechnol 2009c,8:187-192
    159. Sudheer P.DVN, Sinha R, Kothari P, et.al. Isolation of novel microsatellites from Jatropha curcas L. and their cross species amplification [J]. Mol Ecol Resour.2009,9:431-433.
    160. Sujatha M, Reddy TP, Mahasi M. Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L [J]. Biotechnol. Adv.2008,26(5),424-435.
    161. Sun QB, Li LF, Li Y, Wu GJ, Ge XJ. SSR and AFLP Markers Reveal Low Genetic Diversity in the Biofuel Plant Jatropha curcas in China [J]. Crop Sci.2008,48:1865-1871.
    162. Tangphatsoruang S, Sraphet S, Singh R, et.al. Development of polymorphic markers from expressed sequence tags of Manihot esculenta Crantz [J]. Permanent Genetic Resources,2007, (DOI) 10.1111/j.1471-8286.2007.02047.
    163. Tatikonda L, Wani S.P, Kannan S, et.al. AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L. [J], a biofuel plant. Plant Science.2009,176:505-513.
    164. Tiwari AK, Kumar A, Raheman H. Biodiesel production from Jatropha(Jatropha curcas) with high free fatty acids:an optimized process [J]. Biomass Bioenerg.2007,31(8),569-575.
    165. Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting [J]. Nucleic Acids Research,1995,23(21):4407-4414.
    166. Weber J.C, Larwanou M, Abasse T.A, Kalinganire A. Growth and survival of Prosopis africana provenances tested in Niger and related to rainfall gradients in the West African Sahel [J]. For. Ecol. Manag.2008,256(4):585-592.
    167. Wouter MJA, Lene RN, Raf A. et. al. Towards domestication of Jatropha curcas [J]. Biofuels 2010,1(1):91-107.
    168. Xu SB, Tao YF, Yang ZQ, et.al. A simple and rapid method used for silver staining and gel preservation [J]. Hereditas (Beijing).2002,24:335-336.
    169. Yang Mingfeng, Liu Yujun, Liu Yun, et al. Proteomic Analysis of Oil Mobilization in Seed Germination and Postgermination Development of Jatropha curcas. Journal of Proteome Research,2009,8:1441-1451.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.