浮法玻璃成形中传热与渗锡的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为平板玻璃成形的主要设备,浮法锡槽的温度控制对玻璃质量的提高和生产过程的节能降耗均具有重要意义。通过数值模拟获取锡槽内温度场是进行操作参数预设和在线控制的前提,但现有研究集中于锡槽的局部模型,无法对锡槽整体性能进行分析。同时,针对渗锡这一浮法工艺的固有缺陷,尚无完善、通用的数值模拟技术对渗锡的各种影响因素进行分析。论文针对浮法玻璃成形中的传热和渗锡进行了系统地研究,并实现了全锡槽的数值模拟。
     应用蒙特卡罗方法计算了加热器与玻璃带之间的辐射传递关系。提出了用综合经济损失来权衡温控质量与能耗之间的经济性联系,获得了加热器最佳功率分布,不仅改善了锡槽温度场,而且减少了电能消耗。
     采用PLIC运动界面重构技术,模拟了锡槽入口端玻璃液的运动,发现部分玻璃液向锡槽上游运动,形成滞流,唇砖坡度较小时,滞流玻璃液较少。模拟了锡槽内保护气体及锡液的流场与温度场,发现上半空间保护气体发生回流,玻璃带牵引速度越快,回流越明显;加热(冷却)元件附近保护气体的温度升高(降低)较明显;在玻璃带的牵引作用,锡液在底层及无玻璃带覆盖的表面发生了回流;锡液表面的横向温差较大。定义了用来评价锡液表面整体横向温差大小的等效温差,计算表明用直线电机控制锡液速度场和温度场时存在最佳推力及作用方向,使等效温差最小。在对各子模型模拟分析的基础上,建立了全锡槽数学模型和模拟方法,对实体锡槽进行了模拟,模拟结果与实验结果吻合。
     采用分子动力学方法模拟了锡离子的扩散过程,发现温度对锡离子扩散系数的影响明显,钠离子含量提高时,扩散系数增大,而钙离子比例的提高则使锡离子扩散能力下降。对玻璃样品表面的渗锡特征进行了XRF和XPS分析,获取了渗锡模拟所需的边界条件。建立了二价锡氧化速度的计算模型,结合浮法玻璃的拉制工艺,提出了渗锡过程的同步耦合模拟方法,模拟分析了各种因素对渗锡过程的影响,发现高铁玻璃的渗锡分布存在卫星峰,低铁玻璃由于四价锡积聚效应不明显而无此现象;浮抛时间提高时,卫星峰和渗锡曲线均向深度方向迁移;锡槽入口端宽度提高时,渗锡量上升。
     最后,依托浮法成形中温度场和渗锡模拟的主要技术、结合其他辅助功能,开发了浮法玻璃成形数值模拟软件。
Tin bath is the main equipment for plate glass formation, the temperature controlof float glass tin bath has important significance on both the glass quality and energyconsumption. The detailed temperature field obtaining by numerical simulation is thepremise of the preset and on-line control for the operation parameters. But the existingresearches always focus on the sub-models, the overall performance of the whole tinbath cannot be analyzed. Meanwhile, there is no general complete numerical technologyfor the analysis of various factors on tin penetration which is the inherent defects offloat process. In the present thesis, the heat transfer and tin penetration in the floatprocess are systematically studied, and the simulation of whole tin bath is carried out.
     The radiative transfer coefficient between the heater and the glass ribbon iscalculated by Monte Carlo method. The overall economic loss which can balance thecontrol quality and energy consumption economically is proposed. The optimizedpower distribution is obtained by numerical simulation, with which the temperaturefield is improved while the electricity input is reduced.
     The moving surface of glass melt is tracked and reconstructed at the tin bathentrance using PLIC method. It is found that part of the glass melt moves toward theupstream, and stagnant glass melt which affect the uniformity is formed. When theslope of the lip brick is smaller, less glass melt is stagnated. The velocity andtemperature fields of protective gas and molten tin are simulated. Back flow and vortexare found in the top half atmosphere. The back flow is more obvious under largerdragging velocity of glass ribbon. The temperature of gas near the heating (cooling)components is heated (cooled) significantly. Back flow is also observed in the bottomhalf molten tin and near the edge of tin bath which is not covered by the glass ribbon.There exists a large lateral temperature difference at the surface of molten tin. Effectivetemperature difference is defined to evaluate the overall lateral temperature differenceof molten tin. The optimal linear motor’s output and working direction are found tominimize the effective temperature difference. Based on the simulation and analysis ofthe sub-models, the whole tin bath model and its simulation methods are set up. A realtin bath is simulated and the results match with the experimental ones.
     The stannic ions’ diffusion process is simulated by molecular dynamics. It is foundthat temperature has a great impact on stannic ions’ diffusion coefficient. The diffusioncoefficient increases with the increasing sodium content, while larger calcium rationwill reduce the stannic ion’s diffusion coefficient. The tin penetration characteristics aremeasured by XRF and XPS methods, and they are set as the boundary conditions for tinpenetration simulation. Combining float glass forming process, the coupled tinpenetration simulation method is developed. The influences of different factors on thetin penetration process are analyzed by the coupled simulation method. The resultshows that the satellite peak exists in the high iron glass’ tin penetration profile, whilethere is no such phenomenon in the low iron glass because of unobvious accumulationeffect of stannic ion. When float time increases, both the tin penetration profile and thesatellite peak drift to a greater depth in the glass. The amount of penetrated tin increaseswith increased tin bath entrance width.
     Finally, the float glass numerical simulation software is developed based on themain numerical technologies for the temperature field and tin penetration simulation.Other auxiliary functions are also supplied in the software.
引文
[1]张占营,刘缙,谢军.浮法玻璃生产技术与设备,第二版.北京:化学工业出版社,2010.
    [2] John H Lubbers. Method of drawing glass articles. US,739329[P].1903-9-22.
    [3] George W McLellan, Errol B Shand. Glass engineering handbook,3rd edition. New York:McGraw-Hill,1984.
    [4] Samuel R Scholes. Modern glass practice. Chicago: Industrial Publications Inc,1952.
    [5] E Fourcault. Apparatus for the manufacture of pate glass by stretching. US,717378[P].1902-12-30.
    [6] I W Colburn. Method and apparatus for drawing sheet glass. US,860528[P].1907-7-16.
    [7]西北轻工业学院.玻璃工艺学.北京:中国轻工业出版社,2006.
    [8] William E Heal. Manufacture of window and plate glass. US,710357[P].1902-9-30.
    [9] Halbert K Hitchcock. Process and apparatus for making sheet glass. US,1564240[P].1925-12-8.
    [10]陈正树.浮法玻璃.武汉:武汉理工大学出版社,2006.
    [11] LAB Pilkington. The float glass process. Proceedings of Royal Society of London Series A,1969,314:1-25.
    [12] Perry, Robert C. Float glass process–a new method or an extension of previous ones?Glass Industry,1984,95(2):17-19.
    [13] Aloysius W Farabaugh. Manufacture of flat glass having controlled width and nip width.US,3998616[P].1976-12-21.
    [14]洛阳玻璃厂.自力更生,艰苦奋斗,坚定不移地走自己发展浮法的道路.中国科技信息,1990,4:11-12.
    [15]徐美君.中国浮法玻璃的光辉足迹—风雨五十五载博弈市场沧桑半个世纪几多辉煌.建材发展导向,2008,8:20-25.
    [16]林木.浮法玻璃动态点滴.中国建材,1985,8:19-20.
    [17]蒋琥勤.“洛阳浮法”跻身世界三大浮法技术之列.中国建材,1998,7:45.
    [18]王永恒,郑遂林.八十年代世界浮法玻璃工业发展的特点.建材工业信息,1991,15:10-11.
    [19]桑方.上海建一中外合资的浮法玻璃厂.玻璃,1983,2:49-50.
    [20]黄福娟.匹兹堡彭瓦锡亚有限公司和中国南方玻璃有限公司合资兴建浮法玻璃厂.建材工业信息,1986,4:8-9.
    [21]解小平.走进科技竞争时代的中国玻璃行业.中国建材,2005,2:63-65.
    [22]徐美君.我国玻璃行业发展新态势.玻璃,2010,229(10):8-12.
    [23]刘志海.我国平板玻璃的行业特点分析.中国建材,2009,320(8):63-65.
    [24]李亮佐.中国平板玻璃发展的现状和未来[硕士学位论文].上海:复旦大学管理学院,2004.
    [25]彭寿.中国平板玻璃工业的国际化思考.建材世界,2009,30(2):1-4.
    [26]姚燕.建材工业节能减排技术指南.北京:化学工业出版社,2010.
    [27]雷前治.改革开放推动了我国玻璃工业快速发展,中国建筑材料工业年鉴.北京:中国建筑材料工业年鉴社,2009.
    [28]陆万顺,管世锋.我国浮法玻璃行业产品质量状况分析.玻璃,2009,197(12):14-18.
    [29]李楠.循环经济与浮法玻璃工艺的发展.玻璃,2005,179(2):12-13.
    [30]徐美君.太阳能玻璃开发应用与市场.玻璃与搪瓷,2006,34(6):57-60.
    [31]殷海荣,李启甲.玻璃的成形与精密加工.北京:化学工业出版社,2010.
    [32]张锐,陈德良,杨道媛.玻璃制造基础.北京:化学工业出版社,2009.
    [33]陈国平,毕洁.玻璃工业热工设备.北京:化学工业出版社,2009:123-213.
    [34]田英良,孙诗兵.新编玻璃工艺学.北京:中国轻工业出版社,2009.
    [35]刘晓勇.玻璃生产工艺技术.北京:化学工业出版社,2008.
    [36] Krause D, Loch H. Mathematical simulation in glass technology. Berlin: Springer-Verlag,2002:1-10.
    [37]陈泽敬,胡桅林.模拟技术及其在玻璃熔窑设计中的应用.玻璃,2001,28(1):2-3.
    [38] Peschke J. Calculation of Convection Flows in Glass Melting Tank Furnace. Glastechn Ber,1965,38(7):276-281.
    [39]周海波,张飞鹏.玻璃窑池中流动和传热的二维数学模型.玻璃,1992,19(4):1-9.
    [40]赵国昌.玻璃池窑的数值模拟.玻璃与搪瓷,1993,21(3):15-20.
    [41]齐朝辉,陈越南.鼓泡后玻璃熔窑内流动和传热的二维数值模拟.玻璃与搪瓷,1993,21(2):9-14.
    [42]王剑,周志豪.窑池内玻璃液流动的二维数学模型.玻璃与搪瓷,1987,15(1):1-7.
    [43]赵国昌.熔窑玻璃液流数值模拟的新发展.玻璃与搪瓷,1996,24(6):27-32.
    [44]宋力昕.浮法玻璃熔窑三维数学模拟[硕士学位论文].华东理工大学,1993.
    [45]祈建伟.玻璃熔制过程的三维数值模拟[博士学位论文].清华大学,1996.
    [46]姜宏.玻璃窑炉运行状态的计算机模拟及其在浮法玻璃熔窑中的应用[博士学位论文].武汉理工大学,2000.
    [47]沈锦林.玻璃池窑内配合料及玻璃液流的三维数值模拟.浙江大学学报,1999,33(4):398-403.
    [48]杨志强.玻璃池窑液流和鼓泡过程研究及在E玻璃单元窑中的应用[博士学位论文].清华大学工程力学系,1997.
    [49]岳爱文.玻璃熔窑内传热与流动及砂粒熔化的计算机模拟[硕士学位论文].武汉理工大学,2008.
    [50] Cormeau A, Cormeau I, Roose J. Numerical simulation of glass-blowing. Numericalanalysis of forming processed. New York: John Willey&Sons Ltd.1984.
    [51] Cesar J M A. Numerical modeling of glass forming processes. Engineering Computations,1986,3(4):266-275.
    [52] Humpherys C E. Mathematical modeling of glass flow during a pressing operation[PhDThesis]. Sheffield: University of Sheffield,1991.
    [53] Rekhson S, Lu Z H, Day C, et al. Computer modeling of the forming process. GlassIndustry,1993,74(5):15-16.
    [54] Lochegnies D, Martin C, Carpentier E. Finite element contributions to glass manufacturingcontrol and optimization. Part2. Blowing, pressing and centrifuging of hollow items. GlassTechnology,1996,37(5):169-174.
    [55]王鹏程,李德群,周华民.玻璃成型工艺数值模拟技术的发展.玻璃与搪瓷.2003,31(6):44-46.
    [56] Sadegh N, Vachtsevanos G J, Barth E J, et al. Moldelling the glass forming process. GlassTechnology,1997,38(6):216-218.
    [57] Rekhson S M, Rekhson M, Ducrous J P, et al. Heat transfer effects in glass processing.Ceramic Engineering and Science Proceedings,1995,16(2):19-37.
    [58] Rienstrra S W, Chandra T D. Analytical approximations to the viscous glass-flow problemin the mould-plunger pressing process, including an investigation of boundary conditions.Journal of Engineering Mathematics,2001,39(1-4):241-259.
    [59]胡昌盛,于淑会.运用三维有限元对啤酒瓶进行轻量化研究.玻璃与搪瓷,1999,27(4):15-19.
    [60]方刚,曾攀.有限元方法在玻璃成形工艺研究的应用.玻璃与搪瓷,2002,30(1):11-15.
    [61] Olaf O C, Dries H, Gerard H, et al. TV panel forming process simulation. GlassInternational,2002,25(3):8-10.
    [62] Camp O O, Hegen D, Haagh G, et al. TV panel production: simulation of the formingprocess. Ceramic Engineering and Science Proceedings,2003,24(1):1-19.
    [63] Rockfield Software Ltd. Glass Design Modelling Software, GD Suite3.7, SpecificationOverview. Swansea: Rockfield,2003.
    [64]耿铁,李得群,周华民,等.玻璃成形数值模拟技术研究概述.机械设计与制造,2006,4:170-171.
    [65]孙强.玻璃压制成形工艺的数值模拟方法[博士学位论文].武汉:华中科技大学,2010.
    [66] Narayanaswamy O S. A one-dimensional model of stretching float glass. Journal of theAmerican Ceramic Society,1977,60(1-2):1-5.
    [67] Narayanaswamy. Computer simulation of the float glass stretching. Journal of the AmericanCeramic Society,1981,64(11):666-670.
    [68]唐卫龙,周志豪.拉制浮法玻璃的一维模型.玻璃,1990,5:35-40.
    [69] Iga M, Mase H. Numerical simulation of float glass forming process. Proceeding of1stConference and Exhibition on Computer Appllication to Material Science and Engineering,1991,577.
    [70]泽野,李腾云.浮法成型过程的计算机模拟.中国玻璃,1992,2:44-47.
    [71]唐卫龙,周志豪.计算机模拟浮法玻璃的控制工艺.上海建材学院学报,1993,6(3):224-229.
    [72] Milutinovic N A, Jancic R, Aleksic R. Mathematical modelling and simulation of drawingthin glass sheet from a rectangular perform. Glass Technology.1998,39(5):166-72.
    [73]毛清华.浮法玻璃拉边过程的数值模拟及实验研究[硕士学位论文].秦皇岛:燕山大学机械工程学院,2003.
    [74]邵宏根,毛清华,庞世红,等.浮法玻璃成型过程的数值模拟.硅酸盐学报.2004,32(8):1025-1028.
    [75]邵宏根,庞世红,苑同锁,等.浮法玻璃成型过程中玻璃板厚方向温度场的数值模拟,硅酸盐通报.2004,4:22-24.
    [76]邵宏根.浮法玻璃成型的数值模拟与实验研究[博士学位论文].秦皇岛:燕山大学机械工程学院,2004.
    [77] Fernandez O J M, Arguelles D K M, Santolaria M C. Multiphase modelling of pouringglass over the spout lip of an industrial float in the flat glass forming process. InternationalJournal for Numerical Methods in fluids,2008,58:1147-1177.
    [78]聂应松.浮法玻璃成形过程的计算机仿真模型研究[硕士学位论文].武汉:武汉理工大学计算机科学及技术学院,2010.
    [79] Hyre M. Numerical simulation of glass forming and conditioning. Journal of the AmericanCeramic Society,2002,85(5):1047-1056.
    [80] Hyre M R., Rubin Y. Modelling of gob and container forming. Int J Forming Proc,2004,7(4):443-457.
    [81] Li G, Jinn J T, Wu W T, et al. Recent development and applications of three-dimensionfinite element modeling in bulk forming process. J Mater Processing Technol,2001,113(1):40-45.
    [82] Lin H J, Chang W K. Design of a sheet forming apparatus for overflow fusion process bynumerical simulation. Journal of Non-Crystalline Solids.2007,353:2817-2825.
    [83]唐坚刚,周志豪.浮法工艺锡槽内流场与温度的数值模拟研究.上海建材学院学报,1990,2(4):297-306.
    [84] Prieto M, Díaz J, Egusquiza E. Analysis of the fluid-dynamic and thermal behaviour of a tinbath. Int J Therm Sci,2002,41:348–359.
    [85]张丽英,童树庭,周天辉.锡槽入口的槽底设置对锡液流速和温度分布的影响.材料科学与工程学报.2005,23(3):426-428.
    [86]张丽英,童树庭,周天辉.计算机模拟技术在锡槽研究中的应用进展.玻璃与搪瓷,2004,32(6):47-55.
    [87]庞世宏,路佩吉,张国武,等.浮法锡槽内保护气体的三维数值模拟.玻璃,2002,4:10-13.
    [88]李惟毅,张新画,李日韦,等.玻璃锡槽中保护性气体温度场和流场分析.天津大学学报.2005,38(6):495-498.
    [89] Ban N, Kamihori T. Numerical Simulation of Gas Flow and Volatiles Behavior in the FloatProcess. Reports Res Lab Asahi Glass Co, Ltd,2005,55:13-19.
    [90] Kamihori T, Iga M, Kakihara S, et al. An intergrated mathematical model of float glass.Journal of Non-Crystalline Solids,1994,177:363-371.
    [91] Kamihori T. Computer simulation of float process. New Glass,2007,22:36-42.
    [92]纪福顺.浮法玻璃锡缺陷的预防和控制.玻璃,2008,197(2):26-31.
    [93]杜娟.浮法玻璃下表面渗锡的研究[硕士学位论文].秦皇岛:燕山大学,2003.
    [94] Kondrashov V I, Frolova N A, Bezlyudnaya V S. The effect of additives and impurities intin on its oxidation and incorporation into the bottom surface of float glass. Glass andCeramics,2001,58:81-84.
    [95] Sieger S J. Chemical characteristics of float glass surface. Journal of Non-Crystalline Solids,1975,19:213-220.
    [96] Misara A, Pecoraro G A, Paulson T E, et al. Glass-tin interactions during the float glasssforming process. Ceramic Trans,1998,82:205-217.
    [97] Howes VR.”Tin side” and the “Air side” of commercially produced thermally toughenedand un-toughened float glass. Journal of the American Ceramic Society,1978,57(11):1049-1060.
    [98] Krohn M H, Hellmann J R, Mahieu B, et al. Effect of tin-oxide on the physical properties ofsoda-lime-silica glass. Journal of Non-Crystalline Solids,2005,351:455-465.
    [99] Colombin L, Jelli L, Riga J, et al. Penetration depth of tin in float glass. Journal ofNon-Crystalline Solids,1977,24:253-258.
    [100] Colombin L, Charlier H, Jelli A, et al. Penetration of tin in the bottom surface of float glass:A synthesis. Journal of Non-Crystalline Solids,1980,38&39:551-556.
    [101] Baitinger W E, French P W, Swart E L. Characterization of tin in the bottom surface offloat glass by ellipsometry and XPS. Journal of Non-Crystalline Solids,1980,38&39:749-754.
    [102] Swift H R. How surface chemistry affects float glass properties. Glass Industry,1984,65(5):27-30.
    [103] Luo J, Xu C. XPS examination of tin oxide on float glass surface. Journal ofNon-Crystalline Solids,1990,119:37-40.
    [104] Johnson J A, Johnson C E, Williams K F E, et al. M ssbauer spectra of tin in float glass.Hyperfine Interactions,1995,95:41-51.
    [105] Veritable M, Bianchini F G, Guadagino A, et al. Chemical characterization of the bottomside of green float glass. Glastech Ber,1995,68:251-258.
    [106] Williams K F E. Tin and iron in float glass surface. Proceeding of XVIII InternationalCongress on Glass, San Francisco,1998, B7.
    [107] Paulson T E. Thermodynamic and kinetic investigation of high temperature interactionsbetween glass and tin[PhD thesis]. Pennsylvania: The Pennsylvania State University,1998.
    [108] Wang T J, Zhang H Y, Zhang G W, et al. Computer modeling of satellite peak in tin profileof float glass. Journal of Non-Crystalline Solids,2000,27:126-136.
    [109] Edge C K. Tin diffusion into float glass: The effect of operating parameters. Proceeding ofXVIII International Congress on Glass, San Francisco,1998, B5.
    [110] Siegel R, Howell J R. Thermal radiation heat transfer4thEdition. New York: Taylor&Francis,2002:1-31.
    [111] Abbassi A, Khoshmanesh K. Numerical simulation and experimental analysis of anindustrial glass melting furnace. Applied Thermal Engineering,2008,28:450-459.
    [112] Lentes F T, Siedow N. Three-dimensional radiative heat transfer in glass cooling processes.Glastechn Ber Glass Sic Technol,1999,72:188-196.
    [113] Siedow N, Grosan Teodor. Application of a new method for radiative heat transfer to flatglass tempering. Journal of the American Ceramic Society,2005,88(8):2181-2187.
    [114] Rawson H. Radiative heat transfer in glass manufacture-one and two dimensional problem.Glastechn Ber,1993,66:77-84.
    [115] Farag I H, Beliveau M J. Heat transfer during glass forming. Chemical EngineeringCommunications,1987,55:21-32.
    [116] Thommes G. A linear iterative scheme for the fast solution of the radiative heat transferequations for glass. Journal of Computational Physics,2004,193:544-562.
    [117]谈和平,夏新林,刘林华,阮立明.红外辐射特性与传输的数值计算-计算热辐射学.哈尔滨:哈尔滨工业大学出版社,2006.
    [118] Brewster M Q. Thermal radiative transfer and properties. New York: John Wiley&SonsInc,1992:28-68.
    [119]余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社,2000
    [120] Ozisik M N. Radiative transfer and interaction with conduction and convection. New York:John Wiley and Sons Inc,1973.
    [121] Rossland S. Note on the absorption of radiation within a star. Royal Astronomical Society,1924,84:73-78.
    [122] Poltz H. Die W rmeleitf higkeit von flüssigkeiten II/Der strahlungsanteil der effectivew rmeleitf higkeit. International Journal of Heat and Mass Transfer,1965,8:515-527.
    [123] Lallemand M, Martinet J. Processus irreversibles dans les transferts radiatifs. Ann Phys Fr,1979,4:371-388.
    [124] J H Chumlley. TV panel glass forming and annealing process model. Proceedings of the6thInternational Conference Advances in Fusion and Processing of Glass. Ulm,2000:350.
    [125] F Bernard, R Gy and L Daudeville. Finite element computation of residual stresses nearholes in tempered glass plates. Glass Technology,2002,43:290-296.
    [126]谈和平,刘林华,易红亮,等.计算热辐射学的进展.科学通报,2009,54(18):2627-2637.
    [127] Love T J, Grosh R J. Radiative heat transfer in absorbing, emitting and scattering media. Jof Heat transfer-Transactions of the ASME,1965,87:161-166.
    [128] Fiveland W A. Discrete ordinates solutions of the radiative transport equation forrectangular enclosures. ASME Journal of Heat Transfer,1984,106:699-706.
    [129] Fiveland W A. Discrete ordinates methods for radiative heat transfer in isotropically andanisotropically scattering media. ASME Journal of Heat Transfer,1987,109:809-812.
    [130] Lemonnier D, Le Dez V. Discrete ordinates solution of radiative transfer across a slab withvariable refractive index. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,73(2-5):195-204.
    [131] Truelove J S. Discrete-ordinate solutions of the radiation transport equation. ASME Journalof Heat Transfer,1987,109(4):1048-1051.
    [132] Truelove J S. Three-dimensional radiation in absorbing-emitting-scatting media using thediscrete-ordinates approximation. Journal of Quantitative Spectroscopy and RadiativeTransfer,1988,39(1):27-31.
    [133] Lathrop K D and B G Carlson. Disctete-ordinates angular quadrature of the neutrontransport equation. Technical Information Series Report LA-4737, Los Alamos ScientificLaboratory,1971.
    [134] Raithby G D, Chui E H. A Finite-volume method for predicting a radiant heat transfer inenclosures with participating media. J. of Heat Transfer-Transactions of the ASME,1990,112:415-423.
    [135] Chui E H, Raithby G D. Implicit solution scheme to improve convergence rate in radiativetransfer problems. Numerical Heat Transfer, Part B-Fundamentals,1992,22(3):251-272.
    [136]程强.求解辐射传递方程的DRESOR法及其应用[博士学位论文].武汉:华中科技大学,2007.
    [137]刘林华,赵军明,谈和平.辐射传递方程数值模拟的有限元和谱元法.北京:科学出版社,2008.
    [138] Shan N G. New method of computation of radiant heat transfer in combustion chambers.London: Imperial College, University of London,1979.
    [139] Lockwood F C, Shan N G. A new radiation solution method for incorporation in generalcombustion prediction procedures. Proceeding of the18thInt Pittsburgh: Symposium onCombustion. Pittsburgh,1981:19-81.
    [140] Xia X L, Tan H P, Yu Q Z, Li L, Bao Y L. Three dimensional transient coupledradiative-conductive heat transfer in cylinders filled with semi-transparent media withcomplicated surface characteristics. Journal of Thermal Science,1995,4(4):241-249.
    [141] Hottel H C, Cohen E S. Radiant heat exchanges in a gas-filled enclosure: Allowance fornonuniformity of gas temperature. AIChE Journal,1958,4:3-14.
    [142]卞波绘.辐射换热的分析与计算.北京:清华大学出版社,1988.
    [143] Hottel H C and Sarofim A F. Radiative Transfer. New York: McGraw-Hill,1967.
    [144]王岩,尹海丽,窦在详.蒙特卡罗方法应用研究.青岛理工大学学报.2006,27(2):111-113.
    [145] Niederreiter H, Shiue P J. Monte Carlo and Quasi-Monte Carlo Methods in ScientificComputing. New York: Springer-Verlag,1995.
    [146] Larcher G, Niederreiter H, Hellekalek P, Zinterhof. P Monte Carlo and Quasi-Monte CarloMethods. New York: Springer-Verlag,1998.
    [147] Gentle J E. Random number generation and Monte Carlo methods. New York:Springer-Verlag,1998.
    [148] Fleck J A. The calculation of nonlinear radiation transport by a Monte Carlo method:statistical physics. Methods in Computational Physics,1961,1:43-65.
    [149] Howell J R, Perlmutter M. Monte Carlo solution of thermal transfer through radiant mediabetween gray walls. J. of Heat Transfer-Transactions of the ASME,1964,86(1):116-122.
    [150] Maurente A, Vielmo H A, Franca F H R. A Monte Carlo implementation to solve radiationheat transfer in non-uniform media with spectrally dependent properties. Journal ofQuantitative Spectroscopy,2007,108:295-307.
    [151]谈和平,崔国民,阮立明,等.地物目标红外热像理论建模中的蒙特卡罗方法与并行计算.红外与毫米波学报,1998,17(6):417-423.
    [152]朱文秀.三维圆柱形半透明介质的辐射与导热复合计算.哈尔滨:哈尔滨工业大学能源科学与工程学院,1993.
    [153] Hartnett J P, Irvine T F. Advance in Heat Transfer. Calif: Academic Press,1995.
    [154] Ruan L M, Tan H P, Yan Y Y. A Monte Carlo method applied to the medium withnon-gray absorbing-emitting anisotropic scattering particles and gray approximation.Numerical Heat Transfer, Part A Applications,2002,42(3):253-268.
    [155] Michael F M. Radiative heat transfer. Second edition. Oxford: Academic Press,2003.
    [156]童树庭,朱雷波,郭卫,等.低辐射率玻璃表面热辐射的数值模拟.建筑材料学报,2002,5(1):60-65
    [157]谈和平,余其铮,拉勒芒.复杂边界条件下半透明介质内辐射与导热非稳态复合换热的数值方法.哈尔滨工业大学学报,1990,2:33-45.
    [158] Howell J R. The Monte Carlo method in radiative heat transfer: Journal of HeatTransfer-Transactions of the ASME,1998,120:547-560.
    [159] Gonzalez J A, Pino R. A random number generator based on unpredictable chaoticfunctions. Cpmputer physics Communications,1999,120:109-114.
    [160] Hellekalek P. Gooe random number generators are (not so) easy to find. Mathematics andComputers in Simulation,1998,46:485-505.
    [161]吉庆丰.蒙特卡罗方法及其在水力学中的应用.南京:东南大学出版社,2004.
    [162]李卫平,张孝泽,许淑艳.微机上实用蒙特卡罗抽样库.计算物理,2002,19(3):253-258.
    [163]雷桂媛.关于蒙特卡罗及拟蒙特卡罗方法的若干研究[博士学位论文].杭州:浙江大学,2003.
    [164] Lehmer D H. Proc.2nd Sympos on Large-scale Digital Calculating. Cambridge: MachineryHarvard University Press,1951:141-146.
    [165] Orchard S E. Reflection and transmission of light by thick atmospheres of pure scatteringwith a phase foundation. The astrophysical Journal,1967,149:665-674.
    [166] Tan H P, Yi H L, Wang P Y, et al. Ray tracing method for transient coupled heat transfer inan anisotropic scattering layer. International Journal of Heat and Mass Transfer,2004,47(19-20):4045-4059.
    [167] Holman J P. Heat transfer9thedition. London: McGraw Hill,2002:367-474.
    [168]李梦儒.硅碳棒在玻璃容器行业中的应用.玻璃与搪瓷,2005,33(1):22-24.
    [169]史册,刘新军.浅谈浮法玻璃生产线锡槽电加热系统.玻璃,2009,215:13-18.
    [170]于培霞,刘俊.大型浮法玻璃生产装置及其施工.北京:中国轻工业出版社,2010:46-86.
    [171] Faber A J. Optical properties and redox state of silicate glass melts. C R Chimie,2002,5:705-712.
    [172] Wawrenczuk A, Kuhnert J, Siedow N. FPM computations of glass cooling with radiation.Comput Methods Appl Mech Engrg,2007,196:4656-4671.
    [173] Holman J P. Heat transfer9thedition. London: McGraw Hill,2002:367-474.
    [174]杨京安,彭寿.浮法玻璃生产操作指南.北京:化学工业出版社,2007:295-304.
    [175]马义中,程少华,李言俊.改进的多变量质量损失函数及其实证分析.系统工程,2002,20(4):54-58.
    [176] Witley D. A genetic algorithm tutorial. Statistics and Computing,1994,4:65-85.
    [177]姚新,陈国良,徐惠敏,等.进化算法研究进展.计算机学报,1995,18(9):694-705.
    [178]席裕庚,柴天佑,恽为民.遗传算法综述.控制理论与应用,1996,13(6):697-708.
    [179]张勤,崔国民,张磊磊,等.隔代强制进化遗传算法在换热网络优化中应用.热能动力工程,2006,21(6):608-611.
    [180] Rienstra S W and Chandra T D. Analytical approximations to the viscous glass-flowproblem in the mould-plunger pressing. Journal of Engineering Mathematics,2001,39:241-259.
    [181] Busuladzic I. Two-dimensional heat transfer and thermal stress analysis in the float glassprocess[]. Master of Science, University of Akron, Applied Mathematics,2007.
    [182] Busuladzic I. Measurement and prediction of the dynamic temperature distributions insoda-lime glass plates. Journal of the American Ceramic Society,1990,73(7):2047-2053.
    [183]林亢.玻璃带在冷却过程中的平面应力问题浅释.玻璃,2004,176:4-10.
    [184]张兆顺,崔桂香.流体力学.北京:清华大学出版社,2006.
    [185] Patankar S V. Numerical heat transfer and fluid flow. Washington: Hemisphere Pub,1980.
    [186]陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001.
    [187]李万平.计算流体力学.武汉:华中科技大学出版社,2004:1-9.
    [188] Grandjean A, Malki M, Simonnet C, et al. Correlation between electrical conductivity,viscosity, and structure in borosilicate glass-forming melts. Physical Review B,2007,75:1-7.
    [189] Fujino S, Hwang C, Morinaga K. Density, surface tension, and viscosity of PbO-B2O3-SiO2glass melts. Journal of the American Ceramic Society,2004,87:10-16.
    [190] Wang J. Glass viscosity and structural relaxation by parallel plate rheometry using athermo-mechanical analyser. Materials Letters,1997,31(1-2):99-103.
    [191] Sanditov D S, Stolyar S V, Badmaev S S, Sanditov B D. On the Temperature Dependenceof the viscosity of Multicomponent glasses in the glass Transition Range. Glass Physics andChemistry,2002,28(6):352-360.
    [192] Shelby J E. Introduction to glass science and technology. Cambridge: Wiley,2005.
    [193] Lakalos T, Johansson L G, Simmingsk ld B. The effect of some glass components on theviscosity of glass. Glastecknisk Tidskrift,1972,27(2):25-28.
    [194]张金民.硅酸盐玻璃中的离子堆积.中国科学B辑,1989,6:645-651.
    [195] Clare A G, Wing D, Jones L E, et al. Density and surface tension of borate containingsilicate glass melts. Glass Technol,2003,44(2):59-62.
    [196] Sharp D E and Ginther L B. Effect of composition and temperature on the specific heat ofglass. Journal of the American Ceramic Society,1954,34:260-271.
    [197] Primenko V I and Gudovich. Prediction of the high-temperature specific heat of silicateglasses. Soviet Journal of glass Physics and Chemistry,1981,34:260-271.
    [198]孙春静.金属熔体的黏滞特性及相关物性的研究[博士学位论文].济南:山东大学,2007:59-76.
    [199] Johansen S T. Multiphase flow modeling of metallurgical flows. Experimental Thermal andFluid Science,2002,26:739-745.
    [200] Li G, Jinn J T, Wu W W, Oh S I. Recent developments and applications ofthree-dimensional finite elements modeling in bulk forming processes. Journal of MaterialProcessing Technology,2001,113(1-3):40-45.
    [201] Theodorakakos A, Bergeles G. Simulation of sharp gas-liquid interface using VOF methodand adaptive grid local refinement around the interface. International Journal for NumericalMethods in Fluid,2004,45:421-439.
    [202]刘儒勋,王志峰.数值模拟方法和运动界面追踪.合肥:中国科学技术大学出版社,2001.
    [203]王如云,陈萍萍,班长英.矩形网格上VOF运动界面重构的流体体积分数保持法.计算物理,2008,25(04):431-436.
    [204]赵大勇,李维仲. VOF方法中几种界面重构技术的比较.热科学与技术,2003,2(04):318-323.
    [205] Hirt C W, Nichols B D. Volume of fluid method for the dynamics of free boundary. Journalof Computional Physics,1981,93:201-225.
    [206] Lu M C. numerical modeling of multi-phase surface flow[PhD thesis]. Austin: TheUniversity of Texas,2000.
    [207] Liu C, Liu X P, and Jiang C B. Numerical simulation of wave field near submerged bars byPLIC-VOF model. China Ocean Engineering,2005,19(3):509-518.
    [208] Meier M, Yadigaroglu G, Smith B L. A novel technique for including surface tension inPLIC-VOF methods. European Journal of Mechanics B/Fluids,2002,21:61-73.
    [209] Lópeza J. Hernándezb. J. Gómezb P and Faura F. An improved PLIC-VOF method fortracking thin fluid structures in incompressible two-phase flows. Journal of ComputationalPhysics,2005,208(1):51-74.
    [210]胡影影,朱克勤,席葆树.三维VOF方法—PLIC3D算法研究.力学季刊,2003,24(2):238-243.
    [211] Marianne M F, Sharen J C, Edward D D, et al. A balanced-force algorithm for continuousand sharp interfacial surface tension models within a volume tracking framework. Journalof Computational Physics,2006,213:141-173.
    [212] Martinez J M, Chesneau X, Zeghmati B. A new curvature technique calculation for surfacetension contribution in PLIC-VOF method. Computational Mechanics,2006,37(2):182-193.
    [213] Torrey M D, Cloutman L D, Mjolsness R C. NASA-VOF2D: A Computer Program forIncompressible Flows with Free Surface, Los Alamos National Laboratory,1985.
    [214] Park J E. VOLVOF: An Update of the CFD Code, SOLA-VOF. Oak Ridge NationalLaboratory,1999.
    [215] Nichols B D, Hirt C W, Hotchkiss R S. SOLA-VOF: A solution algorithm for transientfluid flow with multiple free boundaries. Technology Report LA-8355, Los AlamosNational Laboratory,1980.
    [216]王晓红.锡槽入口端结构浅析.玻璃,2009,211:20-23.
    [217]王文泽.浮法锡槽技术发展状况.建材世界,2009,30(4):59-61.
    [218]洛阳浮法玻璃股份有限公司.浮法玻璃生产线的直线电机锡液搅拌装置[P].中国:2547729Y,2003-4-30.
    [219]周天辉.应用直线电机提高浮法工艺水品.建筑玻璃与工业玻璃.1996,3:21-23.
    [220]赵金红,卢忠伟.2mm浮法玻璃生产中的一些体会.玻璃,2010,224(5):28-30.
    [221]林立,周美茹.提高浮法薄玻璃表面质量的措施.硅酸盐通报,2006,1:118-122.
    [222]周天辉,陈双七.浮法锡槽技术的进展.玻璃,2003,170(5):13-17.
    [223]魏志华,常排排.浮法玻璃锡槽内速度场的研究.武汉理工大学学报,2008,30(11):87-89.
    [224]陈发伟,张永革.直线电机在浮法玻璃生产中的应用.玻璃,2008,35(11):19-22.
    [225] Vreugdenhil C B. Numerical methods for shallow-water flow. Dordrecht: Kluwer AcademicPublishers,1994:1-41.
    [226] Ambrosi D. Approximation of shallow water equations by Roe’s Riemann solver.IInternational Journal for Numerical Methods in Fluids,1995,20(2):157-168.
    [227] Dullin H R, Gottwald G A, Holm D D. On asymptotically equivalent shallow water waveequations. Physica D: Nonlinear Phenomena,2004,190(1-2):1-14.
    [228]杨世铭,陶文铨.传热学,第三版.北京:高等教育出版社,1998:130-202.
    [229] Bejan A, Kraus A D. Heat transfer handbook. New York: John Wiley&Sons,2003:439-524.
    [230]林军.熔窑及锡槽内冷却水包的强度分析.辽宁建材,2005,2:23-27.
    [231] Suscavage M J, Pantano C G. Tin penetration into a Soda-Lime-Silica glass. Glastech Ber,1983,56(1):498-503.
    [232] Wang T J. Penetraion of tin in the surface of float glass. Glass Technology,1997,38:101-106.
    [233]齐济,仉春华,王承遇.与锡槽有关的玻璃缺陷的形成和防止.2002,玻璃,161(2):22-24.
    [234] Pantano C G, Bojan V, Verita M, et al. Tin profiles in the bottom surface of float glass:Manufacturing and heat treatment effect. Fundamentals of Glass Science and Technology,Venice,1993:285-290.
    [235]谢建群,李百勤,李艳云.锡槽中的化学反应及其对浮法玻璃质量的影响.玻璃,2005,180(3):42-44.
    [236] Hayashi Y, Matsumoto K, Kudo M. Mechanisms and chemical effects of surface tinenrichment on float glass. European Journal of Glass Technology,2001,42(4-5):130-133.
    [237]周艳艳,邓风萍,于风霞,等.玻璃带在锡槽内的离子交换反应的探讨.长春理工大学学报,2004,27(2):95-97.
    [238]陈芳,刘红梅,王德宪.浮法玻璃表面的理化特征.玻璃,2009,209(2):4-6.
    [239] Howell J A, Hellmann J R, Muhlstein C L. Nano mechanical properties of commercial floatglass. Journal of Non-Crystalline Solids,2008,354:1891–1899.
    [240]陈芳,王德宪.浮法表面渗锡与渗锡量测定.玻璃,2008,2:37-41.
    [241] Principi G, Maddalena A, Gupta A, et al. Oxidation state of surface tin in an industriallyproduced float glass. Nucl Instr and Meth in Phys Res B,1993,76(4):215-217.
    [242]李丽霞,贾茹.硅酸盐物理化学.天津:天津大学出版社,2010:3-64.
    [243] Cook G B, Cooper R F. Redox dynamics in the high-temperature float processing of glasses. I.Reaction between undoped and iron-doped borosilicate glassmelts and a gold-tin alloy.Journal of Non-Crystalline Solids,1999,249(2-3):210-227.
    [244] Williams K F E, Johnson C E, Greengrass J, et al. Tin oxidation state, depth profiles of Sn2+and Sn4+and oxygen diffusivity in float glass by M ssbauer spectroscopy. Journal ofNon-Crystalline Solids,1997,211:164-172.
    [245] Payre R, Nath P. Stannous-stannic equilibrium in molten binary alkali silicate and ternarysilicate glasses. Journal of the American Ceramic Society,1982,65(11):549-554.
    [246] Williams K F E, Johnson C E, Nikolov O, et al. Characterization of tin at the surface of floatglass. Journal of Non-Crystalline Solids,1998,242:183-188.
    [247] Hayashi Y, Matsumoto K, Kudo Masahiro. The diffusion mechanism of tin into glassgoverned by redox reactions during the float process. Journal of Non-Crystalline Solids,2001,282:188-196.
    [248] Frischat G H. Tin ions in float glass cause anomalies. Comptes Rendus Chimie,2002,5:759-763.
    [249] Bent J F, Hannon A C, Holland D, et al. The structure of tin silicate glasses. Journal ofNon-Crystalline Solids,1998,232-234:300-308.
    [250] Takeda S, Akiyama R, Hosono H. Precipitation of nanometer-sized SnO2crystals and Sndepth profile in heat-treated float glass. Journal of Non-Crystalline Solids,2002,311:273-280.
    [251] Liang Z H, Cooper A R. Effect of atomosphere and temperature on the equilibrium betweenmolten tin and soda-lime glass. Journal of the American Ceramic Society.1985,64(8):195-196.
    [252] Edge C K. Aspects of tin diffusion into float glass. The2ndInternational Meeting of PacificRim Ceramic Societies, Caims,1996:140.
    [253]陆平,程金树,刘清,等.降温速率对浮法硼硅酸盐玻璃下表面渗锡的影响.硅酸盐学报.2008,36(4):548-551.
    [254] Frischat G H, Muller-Fildebrandt C, Moseler D, Heide G. On the origin of the tin hump inseveral float glasses. Journal of Non-Crystalline Solids,2001,283(1-3):246-249.
    [255] Townsend P D, Can N, Chandler P J, et al. Comparisons of tin depth profile analyses in floatglass. Journal of Non-Crystalline Solids,1998,223(1-2):73-85.
    [256]张跃,谷景华,尚家香,等.计算材料学基础.北京:北京航空航天大学出版社,2007:83-118.
    [257] Rapaport D C. The art of molecular dynamics simulation, second edition. Cambridge:Cambridge University Press,2004:1-10.
    [258]陈正隆,徐为人,汤立达.分子模拟的理论与实践.北京:化学工业出版社,2007:1-32.
    [259] Rahman A, Fowler R H, Narten A H. Molecular dynamics simulation of BeF2Melt and Glass.Journal of Chemical Physics,1972,57:3010-3018.
    [260] Habasaki J. Molecular-dynamics study of glass formation in the Li2SiO3system. MolecularPhysics,1990,70(3):513-528.
    [261]朱才镇,张培新,许启明等.分子动力学模拟不同组分下CaO-Al2O3-SiO2系玻璃微观结构的转变.物理学报,2006,55(9):4795-480
    [262] Yuan X L, Cormack A N. Local structure of MD-modeled vitreous silica and sodium silicateglasses. Journal of Non-Crystalline Solids,2001,283:69-87.
    [263] Banhatti R D, Heuer A. Structure and dynamics of lithium silicate melts: molecular dynamicssimulation. Physical Chemistry Chemical Physics,2001,3:5104-5108.
    [264]刘世民,杜娟,田永君,等.浮法玻璃工艺中Sn元素扩散行为的分子动力学模拟.全国第五届浮法玻璃及深加工玻璃技术研讨会论文集,2003:109-112.
    [265]文玉华,朱如曾,朱富信,等.分子动力学模拟的主要技术.力学进展,2003,33(1):65-73.
    [266]丁元法,张跃,张凡伟,等.石英玻璃高温分子动力学模拟中的势函数.物理化学学报,2008,24(5):788-792.
    [267] Lewis G V, Catlow C R A. Potential models for ionic oxides. Journal of Physics C: SolidState Physics.1985,18:1149-1161
    [268] Kang E T, Lee S J, Hannon A C. Molecular dynamics simulations of calcium aluminateglasses. Journal of Non-Crystalline Solids.2006,352:725-736.
    [269] Cormack A N, Du J C. Molecular dynamics simulations of soda-lime-silicate glasses. Journalof Non-Crystalline Solids.2001,293:283-289.
    [270] Abbas A, Delaye J M, Ghaleb D, et al. Molecular dynamics study of the structure anddynamic behavior at the surface of a silicate glass. Journal of Non-Crystalline Solids,2003,315:187-196.
    [271] Stillinger F H, Weber T A. Computer simulation of local order in condensed phases of silicon.Physical Review B,1965,31:5262-5271.
    [272] Kang E T, Lee S J, Hannon A C. Molecular dynamics simulations of calcium aluminateglasses. Journal of Non-Crystalline Solids,2006,352:725-736.
    [273]朱才镇.微晶玻璃的分子动力学研究[硕士学位论文].深圳:深圳大学,2007.
    [274] Cook G B. Redox dynamics in multicomponent, iron-bearing silicate melts and glasses:Application to the float-glass processing of high-temperature silicate glassmelts[PhD thesis].Madison: University of Wisconsin,1998.46-67.
    [275] Morita H, Tanaka K, Kajiyama T, et al. Study of the glass transition temperature of polymersurface by coarse-grained molecular dynamics simulation. Macromolecules,2006,39:6233-6237
    [276] Armstong P, Knieke C, Mackovic M, et al. Microstructural evolution during deformation oftin dioxide nanoparticles in a comminution process. Acta Matherialia,2009,57:3060-3071.
    [277]刘娟芳,曾丹苓,蔡智勇,等.扩散系数的分子动力学模拟.工程热物理学报,2006,27(3):373-375.
    [278]靳正国,郭瑞松,师春生,等.材料科学基础,修订版.天津:天津大学出版社,2008:96-115.
    [279] Du J, Cormack A N. The medium range structure of sodium silicate glasses: a moleculardynamics simulation. Journal of Non-Crystalline Solids,2004,349:66-79.
    [280] Liang Z H, Cooper A R. Effect of atmosphere and temperature on the equilibrium betweenmolten tin and soda-lime glass. Journal of the American Ceramic Society.1985,64(8):195-196.
    [281] Paulson T E. Thermodynamic analysis of the tin penetration profile in high-iron float glass.Proceeding of XVIII International Congress on Glass, San Francisco,1998, B5.
    [282] Rüssel C. Self Diffusion of polyvalent ions in a soda-lime-silica glass melt. Journal ofNon-Crystalline Solids.1991,134:169-175.
    [283] Clau en O, Christian Rüssel. Diffusivities of polyvalent elements in glass melts. Solid StateIonics.1998,105:289-296.
    [284] G nna G V D, Rüssel C. A square-wave voltammetric study on the diffusivities ofpolyvalent elements in CaO/BaO/Al2O3/SiO2glass melts. Journal of Non-Crystalline Solids,2002,306:263-270.
    [285]戴志良.成形过程中锡对浮法玻璃的渗透.全国第五届浮法玻璃及深加工玻璃技术研讨会论文集,2003:51-59.
    [286]徐伏秋,杨刚宾.硅酸盐工业分析.北京:化学工业出版社,2009:198-213.
    [287]金明坤. X射线荧光分析在测定浮法玻璃表面渗锡量中的应用.玻璃,2000,25(6):11-16.
    [288]嵇训烨.浮法玻璃钢化虹彩的研究.玻璃,2000,4:90-94.
    [289] Williams K F E. Effect of Tin on some Physical Properties of the bottom surface of floatglass and the origin of bloom.glass technology,1993,7:103-107.
    [290]刘世民,秦国强,许哲峰,等.浮法玻璃下表面渗锡的X射线光电子谱.硅酸盐学报.2005,33(12):1535-1538.
    [291] Castle J E. A wizard source of expertise in XPS. Surf Interface Anal,2002,33(3):196-202
    [292] Guo T. More power to X-rays: New developments in X‐ray spectroscopy. Laser PhotonicsRev,2009,3(6):591-622.
    [293] Lau C L, Wertheim G K. Oxidation of tin: An ESCA study. Journal of Vacuum Science&Technology A-Vacuum Surface and Films,1978,15(2):622-624.
    [294] Wu Q H, Song J, Kang J Y, et al. Nano-particle thin films of tin oxides. Materials Letters,2007,61(17):3679-3684.
    [295] Lee A F, Lambert R M. Oxidation of Sn overlayers and the structure and stability of Sn oxidefilms on Pd(111). Matter Physical Review B,1998,58(7):4156-4165.
    [296] Themlin J M, Chtaib M, Henrard L, et al. Characterization of tin oxides byX-ray-photoemission spectroscopy. Matter Physical Review B,1992,46(4):2460-2466.
    [297] Ashbury D A, Hoflund G. A surface study of the oxidation of polycrystalline tin. Journal ofVacuum Science&Technology,1987,5(4):1132-1135.
    [298] Wagner C D, Riggs W M, Davis L E. Handbook of X-ray photoelectron spectroscopy.Waltham: Perkin-Elmer Corporation,1979:118-119.
    [299] Szuber J, Czempik G, Larciprete R. XPS study of the L-CVD deposited SnO thin filmsexposed to oxygen and hydrogen. Thin Solid Films,2001,391:198-203.
    [300] Batzill M, Diebold U. The surface and materials science of tin oxide. Progress in SurfaceScience,2005,79(2-4):47-154.
    [301] Jimenez V M, Mejias J A, Espinos J P, et al. Interface effects for metal oxide thin filmsdeposited on another metal oxide II. SnO2deposited on SiO2. Surface Science,1996,366(3):545-555
    [302] Jimenez V M, Espinos J P, Gonzalez-Elipe A R. Interface effects for metal oxide thin filmsdeposited on another metal oxide III. SnO and SnO2deposited on MgO(100) and the use ofchemical state plots. Surface Science,1996,366(3):556-563.
    [303] Briggs D, Seah M P. Practical Surface Analysis. New York: Wiley,1983:648-654.
    [304] Kwoka M, Ottaviano L, Passacantando M. Comparative photoemission study of the electronicproperties of L-CVD SnO2thin films, Applied Surface Science,2006,252(21):7734-7738.
    [305] Padova P D, Fanfoni M, Larciprete R, et al. A synchrotron radiation photoemission study ofthe oxidation of tin. Surface Science,1994,313(3):379-391.
    [306] Lancok J, Santoni A, Penza M, et al. Tin oxide thin films prepared by laser-assistedmetal-organic CVD: Structural and gas sensing properties. Surface and Coatings Technology,2005,200(1-4):1057-1060.
    [307] Kim D Y, Choi C M, Hahn Y B. Influence of aqueous hexamethylenetetramine on themorphology of self-assembled SnO2nanocrystals. Materials Research Bulletin,2011,46(4):609-614.
    [308]秦国强.浮法玻璃表面渗锡的XPS与UV-PL研究[硕士学位论文].秦皇岛:燕山大学,2006:24-45.
    [309]周萍,周乃君,蒋爱华,等.传递过程运力及数值仿真.长沙:中南大学出版社,2006:233-243.
    [310]陆平,程金树,刘清.浮法硼硅酸盐玻璃下表面渗锡的研究.玻璃与搪瓷,2007,35(5):10-15.
    [311] Johnston W D. Oxidation reaction equilibria in molten Na2O-2SiO2glass. Journal of theAmerican Ceramic Society,1965,48(4):184-190.
    [312] Buhler P, Wei mann R. Thermodynammics of interactions between polyvalent oxides inglass melts and oxygen. Glass Physics and Chemistry,1994,20(2):157-163.
    [313] Schaeffer H A, Frey T, Loh I, Bauke F G K. Oxidation state of equilibrated andnon-equilibrate glass melts. Journal of Non-Crystalline Solids,1982,49:179-188.
    [314] Feldmann M, Weimann R. Initial stages of float glass corrosion. Journal of Non-CrystallineSolids,1997,218(20):205-209.
    [315]邵宏根,张国武,庞世宏,等.浮法玻璃渗锡过程的数值模拟.硅酸盐学报,2002,30(5):656-659.
    [316] Williams K F E, Thomas M F, Johnson C E, et al. Oxidation states of tin and iron in clearand tinted float glass by M ssbauer spectroscopy. Fundamentals of Glass Science andTechnology, Sweden,1997:127-134.
    [317] Verita M, Geotti-Bianchini F, Hreglich S. EPMA, PBS and SIMS analyses of tin profiles incommercial float glasses. Boletin de La Sociedad Espanola de Ceramica Y Vidrio,1992,415:415-420.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.