好氧反硝化菌用于高温生物滴滤系统脱除NOx的性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸雨是大气污染物(如硫化物和氮化物)与空气中水和氧之间的化学反应。目前我国酸雨正呈急剧蔓延之势,是继欧洲、北美之后世界第三大重酸雨区。而大气中的氮氧化物(NOx)是酸雨的主要成因之一,我国NOx最大的来源是火力发电厂。生物滴滤法脱除NOx是近年来备受广泛关注的高效低耗气体处理技术。很多燃烧废气首先通过湿洗来减少二氧化硫和灰尘的排放。这种湿洗过程的操作温度一般为50~60℃,所以处理燃烧废气过程中的微生物体系最好能耐受50℃左右的温度。另外,处理燃烧烟气中一般含有3%-8%的氧气,明显降低了生物反硝化脱除NOx效率,制约其工业化应用。因此,驯化筛选能在高温好氧条件下进行高效反硝化的菌株,应用于生物滴滤塔脱除火电厂排放的烟气具有很大的工程应用价值。
     本论文采用稀释涂平板分离纯化,通过逐步升温方式,从火电厂生物滴滤系统填料的生物膜上筛选分离出在50℃条件能进行高效好氧反硝化的菌种TAD1。该菌株革兰氏染色呈阴性,短杆状,大小为0.78μm×1.27μm。经16S rDNA序列同源性分析,结合生理生化分析,菌种TAD1与螯台球菌属(Chelatococcus)最为相似,命名为Chelatococcus daeguensis TAD1,该菌株是一株新型好氧反硝化菌,现在还未有对此菌株的好氧反硝化性能报导。本论文在50℃下对该菌进行了好氧反硝化性能测定,氮气是反硝化过程的主要终产物。当碳源为丁二酸钠时C. daeguensis TAD1的反硝化效果非常好。然而,TAD1却几乎不利用葡萄糖,24h内几乎没有反硝化效果。最佳pH值为9,24h硝酸盐的去除率达到96.1%,更高的碳源量没有抑制TAD1细胞生长和反硝化能力。TAD1的氧耐受度为5.1mg/L。通过不同氮源测定得知菌株TAD1的亚硝酸盐还原酶只有在硝酸盐还原酶也具有活性的同时才具有较高活性。氨态氮的存在可以提高菌株TAD1的整体脱氮效果,但是提高的幅度不是很大。最后通过改变碳源浓度确定了莫诺方程中菌株TAD1的最大比生长率和半饱和系数。与目前已报道的几种常温好氧反硝化菌相比,菌种TAD1具有更好的反硝化性能。
     将已筛选出的菌种TAD1接种于高温生物滴滤塔系统,考察该系统对NOx的去除效率。结果表明,当处理NO浓度为133.9-669.6mg/m~3,氧气浓度在8%范围内的模拟烟气时,生物滴滤塔能有效地去除80%以上的NOx。当NO浓度为535.7mg/m~3,氧气浓度在2-20%范围内,生物滴滤塔能有效去除80–93.7%的NO。50℃下生物滴滤塔对NO的生物去除高于25℃,表明TAD1在高温条件下有很好的反硝化性能。通过碳源量的实验得知在本研究中的氮源与碳源的浓度比在理论上是远远过量的,可以很好的保证NO的去除过程。在EBRT相对较短(少于1.5min)的时候,传质成为NO去除过程中的限速步骤。随着EBRT的增加,NO去除效率迅速增加,生物反应成为NO去除过程中的限速步骤。当EBRT继续增大时,微生物反硝化能力达到最大,气相中化学氧化作用随EBRT增大却逐渐增强。生物滴滤塔pH值控制在7.5-8.0左右去除NO效果最佳。生物滴滤塔闲置2、4和8天分别再启动后TAD1在4-16小时后恢复NO去除能力。闲置期越久,所需的恢复时间越久。这些结果表明了该技术对高温下高效长期稳定地脱除火电厂烟气中的NOx有很好的指导意义。
     为了说明生物滴滤塔内好氧反硝化去除NO的过程,建立了模型。以NO在气液界面浓度分布为基础,模型预测了生物滴滤塔内NO的传质反应过程。此外,通过模型分析了运行参数,如进口NO浓度和空床停留时间,对NO脱除效率的影响。
Acid rain is the chemical reaction between atmospheric pollutants (such as sulfides andnitrides) and water and oxygen in the air. Amount of acid rain in China have undergone analmost exponential increase over the past decade and become the world's third largest acidrain area after Europe and North America.Anthropogenic emissions of nitrogen oxides (NOx),which are mainly produced during the burning of fossil fuels, have negative effects onecosystems and contribute to the formation of acid rain. In China NOx are mainly emittedfrom coal-fred power plants. The biological removal of NOx from contaminated gas streamsby biofilters is efficient low-cost NOx abatement technologies with no second-pollution. Gasexiting the scrubbers typically exhibit temperatures between50and60℃. The bioreactorpacking materials must contain suitable concentrations of denitrifying bacteria within thistemperature range. Additionally, While the flue gas discharged from coal-fired power plantsis estimated to contain typically3%-8%(v/v) O2, which had negative effect on traditionaldenitrifying process. In order to eliminate these drawbacks in biofilters, the technology ofnovel aerobic denitrifying bacterial, which were cultured and inoculated in biotrickling filterto ascertain oxygen effects on NOx removal under thermophilic condition, is meaningful.
     In the present study, an aerobic denitrifier was isolated from the biofilm of an fieldbiotrickling filter and its aerobic denitrification activity was evaluated under variousconditions in batch reactor experiments at50℃. This bacterium was Gram negative, shortrod, with the size of0.78μm×1.27μm. Based on biochemical studies and16S rRNAsequencing analysis, the isolate was identified as Chelatococcus daeguensis strain TAD1. Atpresent, no C. daeguensis strain has been reported to be an aerobic denitrifier. The C.daeguensis TAD1was examined to determine the effects of different carbon sources, C/Nratios and dissolved oxygen concentration on aerobic denitrification activity at50℃. C.daeguensis TAD1efficiently removed nitrate using disodium succinate as the sole carbonsource. Nitrate was hardly reduced when glucose was used at50℃. The optimal C/N ratiowas9, giving a denitrification efficiency of96.1%and higher carbon concentrations did notinhibit cell growth and denitrification activity. C. daeguensis TAD1tolerated oxygen levelsabout5.1mg/L. By change of different nitrogen sources activity of nitrite reductase was determined that its high activity was only high in the appearance of nitrate reductase activity.The presence of ammonia nitrogen could improve the overall nitrogen removal efficiency ofstrain TAD1, but the level of increase is not large. The maximum specific growth rate μmaxand the saturation constant Ks in the Monod equation were further determined by changingcarbon concentration. The denitrification efficiency of C. daeguensis TAD1was higher thanthat of mesophilic bacterium.
     The development of a thermophilic biotrickling flter (BTF) system to inoculate a newlyisolated strain of Chelatococcus daeguensis TAD1for the effective treatment of nitric oxide(NO) is described. A bench-scale BTF was run under high concentrations of NO and8%O2in thermophilic aerobic environment. The inlet NO concentration fluctuated betweenapproximately133.9and669.6mg/m~3and kept on a steady NOx removal rate above80%inan oxygen stream of8%at50℃. The BTF system was able to consistently remove80–93.7%NO when the inlet NO was535.7mg/m~3in an oxygen stream of2–20%. The biologicalremoval efficiency of NO at50°C is higher than that at25°C, suggesting that the aerobicdenitrifer TAD1display well denitrification performance under thermophilic condition. Inthe first phase, relatively shorter EBRT (less than1.5min), the removal was a masstransfer-limited process. However, at a phase with longer EBRT bacteria, the reaction becamethe limiting step of the removal process. When EBRT continue to increase, capacity ofmicrobial denitrification reached largest, and chemical oxidation in the gas phase increaseswith EBRT has gradually increased. The optimal pH value of biotrickling filterwas wascontrolled at about7.5-8.0. Starvation for2,4and8days resulted in the re-acclimation timesof Chelatococcus daeguensis TAD1ranging between4and16hours. A longer recovery timethan that for weekend shutdown will be required when a longer starvation occurs. The resultspresented here demonstrate the feasibility of biotrickling flter for the thermophilic removal ofNOx from gas streams.
     To illustrate the process of NO aerobic denitrifying removal by biotrickling filter, adynamic model has been developed. Based on the mass component profile of NO at thegas–liquid interface, the model was used to depict the mass transfer reaction process of NO inbiotrickling filter, focusing on the concentration distribution of NO in the gas, liquid phases.Additionally, effects of operating parameters such as inlet NO concentration and empty-bed residence time on NO removal efficiency were evaluated through a sensitivity analysis of themodel.
引文
[1]毛艳丽,任伟松,鲁志鹏, et al.大气中氮化物的污染现状及危害[J].煤炭技术,2007,26(005):5-7
    [2]刘孜,易斌,高晓晶, et al.我国火电行业氮氧化物排放现状及减排建议[J].环境保护,2008,402(16):7-10
    [3]岳涛,庄德安,杨明珍, et al.我国燃煤火电厂烟气脱硫脱硝技术发展现状[J].能源研究与信息,2008,24(003):125-129
    [4]李芳,毕明树.燃煤过程中NOx的生成机理及控制技术[J].工业锅炉,2005,6:32-35
    [5] Adler S.F. Biofiltration-a Primer[J]. Chemical engineering progress,2001,97(4):33-41
    [6]何志桥,王家德,陈建孟.生物法处理NO_x废气的研究进展[J].环境污染治理技术与设备,2002,3(9):59-62
    [7] Davidova Y., E. Schroeder, D. Chang. Biofiltration of nitric oxide[C]. Toronto, Ontario,Canada:In Proceedings of the90th Annual Meeting and Exhibition of A&WMA,1997
    [8] Nascimento D., N. Hudepohl, E. Schroeder, et al. Bio-oxidation of nitric oxide in anitrifying, aerobic filter[C]. Salt Lake City, Utah:the Air&Waste Management Association93rd Annual Meeting and Exhibition of A&WMA,2000
    [9]蒋文举,毕列锋.生物法废气脱硝研究[J].环境科学,1999,20(003):34-37
    [10] Robertson L.A., E.W.J. VAN Niel, R.A.M. Torremans, et al. Simultaneous Nitrificationand Denitrification in Aerobic Chemostat Cultures of Thiosphaera pantotropha[J]. Appl.Environ. Microbiol.,1988,54(11):2812-2818
    [11] Pochana K., J. Keller. Study of factors affecting simultaneous nitrification anddenitrification (SND)[J]. Water Science and Technology,1999,39(6):61-68
    [12] Robertson L.A., R. Cornelisse, P. Vos, et al. Aerobic denitrification in variousheterotrophic nitrifiers[J]. Anton. Leeuw.,1989,56(4):289-299
    [13] Zumft W.G. Cell biology and molecular basis of denitrification[J]. Microbiol. Mol. Biol.R,1997,61(4):533
    [14] Bell L.C., D.J. Richardson, S.J. Ferguson. Periplasmic and membrane-bound respiratorynitrate reductases in Thiosphaera pantotropha:: The periplasmic enzyme catalyzes the firststep in aerobic denitrification[J]. FEBS lett,1990,265(1-2):85-87
    [15]殷峻.生物滤塔处理恶臭气体及微生物学机理[D].浙江大学,2004
    [16] Schroeder E.D. Trends in application of gas-phase bioreactors[J]. Reviews inEnvironmental Science and Biotechnology,2002,1(1):65-74
    [17] Devinny J.S., J. Ramesh. A phenomenological review of biofilter models[J]. ChemicalEngineering Journal,2005,113(2-3):187-196
    [18] Jiang R., S. Huang, J. Yang. Biological removal of NOx from simulated flue gas inaerobic biofilter[J]. Glob. NEST J,2008,10:241-248
    [19] Barnes J.M., W.A. Apel, K.B. Barrett. Removal of nitrogen oxides from gas streamsusing biofiltration[J]. Journal of hazardous materials,1995,41(2-3):315-326
    [20] Lee B., W. Apel. Evaluation of NOx Removal Using Compost Based Biofilters OperatedUnder Denitrifying Conditions,1998
    [21] Thomas K.L., D. Lloyd, L. Boddy. Effects of oxygen, pH and nitrate concentration ondenitrification by Pseudomonas species[J]. FEMS microbiology letters,1994,118(1-2):181-186
    [22] Lee B.D., W.A. Apel, W.A. Smith. Oxygen effects on thermophilic microbialpopulations in biofilters treating nitric oxide containing off‐gas streams[J]. Environmentalprogress,2001,20(3):157-166
    [23] Lloyd D., L. Boddy, K.J.P. Davies. Persistence of bacterial denitrification capacity underaerobic conditions: the rule rather than the exception[J]. FEMS microbiology letters,1987,45(3):185-190
    [24] Bonin P., M. Gilewicz. A direct demonstration of “co-respiration” of oxygen andnitrogen oxides by Pseudomonas nautica: some spectral and kinetic properties of therespiratory components.[J]. FEMS microbiology letters,1991,80(2-3):183-188
    [25] du Plessis C.A., K.A. Kinney, E.D. Schroeder, et al. Denitrification and nitric oxidereduction in an aerobic toluene‐treating biofilter[J]. Biotechnology and bioengineering,1998,58(4):408-415
    [26] Jiang R., S.B. Huang, A.T. Chow, et al. Nitric oxide removal from flue gas with abiotrickling filter using Pseudomonas putida[J]. J. Haz. Mater.,2009,164(2-3):432-441
    [27] Woertz J., K. Kinney, P. Szaniszlo. A fungal vapor-phase bioreactor for the removal ofnitric oxide from waste gas streams[J]. Journal of the Air&Waste Management Association,2001,51(6):895-902
    [28] Freitag A., E. Bock. Energy conservation in Nitrobacter[J]. FEMS microbiology letters,1990,66(1-3):157-162
    [29] Chou M.S., J.H. Lin. Biotrickling filtration of nitric oxide[J]. J. Air Waste Manage.,2000,50(4):502-508
    [30]王士盛.土壤空气净化系统[J].环境保护,2001,3
    [31] Jiang R., S. Huang, J. Yang, et al. Field applications of a bio-trickling filter for theremoval of nitrogen oxides from flue gas[J]. Biotechnology letters,2009,31(7):967-973
    [32] Bell L., S.J. Ferguson. Nitric and nitrous oxide reductases are active under aerobicconditions in cells of Thiosphaera pantotropha[J]. Biochemical journal,1991,273(Pt2):423
    [33] Ferguson S.J. Denitrification and its control[J]. Anton. Leeuw,1994,66(1):89-110
    [34] Chen F., Q. Xia, L.K. Ju. Aerobic denitrification of Pseudomonas aeruginosa monitoredby online NAD (P) H fluorescence[J]. Applied and Environmental Microbiology,2003,69(11):6715-6722
    [35] Takaya N., M.A.B. Catalan-Sakairi, Y. Sakaguchi, et al. Aerobic denitrifying bacteriathat produce low levels of nitrous oxide[J]. Appl. Environ. Microbiol.,2003,69(6):3152
    [36] Su J.J., B.Y. Liu, C.Y. Liu. Comparison of aerobic denitrification under high oxygenatmosphere by Thiosphaera pantotropha ATCC35512and Pseudomonas stutzeri SU2newlyisolated from the activated sludge of a piggery wastewater treatment system[J]. J. Appl.Microbiol.,2001,90(3):457-462
    [37] Pai S.L., N.M. Chong, C.H. Chen. Potential application of aerobic denitrifying bacteriaasbioagents in wastewater treatment[J]. Bioreso. Technol.,1999,68:179-185
    [38] Patureau D., E. Zumstein, J. Delgenes, et al. Aerobic denitrifiers isolated from diversenatural and managed ecosystems[J]. Microbial ecology,2000,39(2):145-152
    [39] Kim Y.J., M. Yoshizawa, S. Takenaka, et al. Isolation and culture conditions of aKlebsiella pneumoniae strain that can utilize ammonium and nitrate ions simultaneously withcontrolled iron and molybdate ion concentrations[J]. Bioscience, biotechnology, andbiochemistry,2002,66(5):996-1001
    [40] Patureau D., N. Bernet, J. Delgenes, et al. Effect of dissolved oxygen andcarbon–nitrogen loads on denitrification by an aerobic consortium[J]. Applied microbiologyand biotechnology,2000,54(4):535-542
    [41] Lukow T., H. Diekmann. Aerobic denitrification by a newly isolated heterotrophicbacterium strain TL1[J]. Biotechnology letters,1997,19(11):1157-1159
    [42] Kesser P., I. Kiss, Z. Bihari, et al. Biological denitrification in a continuous-flow pilotbioreactor containing immobilized Pseudomonas butanovora cells[J]. Bioresource technology,2003,87(1):75-80
    [43]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社.2004
    [44]李平,张山,刘德立.细菌好氧反硝化研究进展[J].微生物学杂志,2005,25(001):60-64
    [45] Van Niel E. Nitrification by heterotrophic denitrifiers and its relationship to autotrophicnitrification[D]. Delft: Delft University of Technology,1991
    [46] Moir J.W.B., D.J. Richardson, S.J. Ferguson. The expression of redox proteins ofdenitrification inThiosphaera pantotropha grown with oxygen, nitrate, and nitrous oxide aselectron acceptors[J]. Archives of microbiology,1995,164(1):43-49
    [47] Richardson D.J., S.J. Ferguson. The influence of carbon substrate on the activity of theperiplasmic nitrate reductase in aerobically grown Thiosphaera pantotropha[J]. Archives ofmicrobiology,1992,157(6):535-537
    [48] Fül p V., J.W.B. Moir, S.J. Ferguson, et al. The anatomy of a bifunctional enzyme:Structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochromecd1[J]. Cell,1995,81(3):369-377
    [49] Korner H., W.G. Zumft. Expression of denitrification enzymes in response to thedissolved oxygen level and respiratory substrate in continuous culture of Pseudomonasstutzeri[J]. Applied and Environmental Microbiology,1989,55(7):1670
    [50] Shapleigh J., W. Payne. Differentiation of c, d1cytochrome and copper nitrite reductaseproduction in denitrifiers[J]. FEMS microbiology letters,1985,26(3):275-279
    [51] Mishima M., K. Iwata, K. Nara, et al. Cultivation characteristics of denitrification bythermophilic Geobacillus sp. strain TDN01[J]. The Journal of General and AppliedMicrobiology,2009,55(2):81-86
    [52] Ramírez-Arcos S., L.A. Fernández-Herrero, J. Berenguer. A thermophilic nitratereductase is responsible for the strain specific anaerobic growth of Thermus thermophilusHB8[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,1998,1396(2):215-227
    [53] Van der Maas P., P. Van den Bosch, B. Klapwijk, et al. NOx removal from flue gas byan integrated physicochemical absorption and biological denitrification process[J].Biotechnology and bioengineering,2005,90(4):433-441
    [54] Flanagan W.P., W.A. Apel, J.M. Barnes, et al. Development of gas phase bioreactors forthe removal of nitrogen oxides from synthetic flue gas streams[J]. Fuel,2002,81(15):1953-1961
    [55] Lee B.D., W.A. Apel, W.A. Smith. Oxygen effects on thermophilic microbialpopulations in biofilters treating nitric oxide containing off-gas streams[J]. Environ. Prog.,2001,20(3):157-166
    [56]项慕飞.好氧反硝化菌的分离筛选和鉴别研究[D].北京:北京工商大学,2006
    [57]张苗.螯台球菌Chelatococcus daeguensis的筛选及其在中温条件下的好氧反砂硝化性能研究[D].华南理工大学,2011
    [58]姜远良.化学分类法在细菌和真菌系统分类学中的应用和发展[J].辽宁师范大学学报:自然科学版,1995,18(002):152-155
    [59]银燕,王爱娣.用高效液相色谱法进行G+C的测定[J].中国微生态学杂志,2002,14(2):112-113
    [60] Gonzalez J., C. Saiz‐Jimenez. A fluorimetric method for the estimation of G+C mol%content in microorganisms by thermal denaturation temperature[J]. Environmentalmicrobiology,2002,4(11):770-773
    [61]乐毅全,顾国维.16S rRNA基因技术在环境科学领域中的应用[J].四川环境,2003,22(6):1-4
    [62]张光亚,陈美慈.一株异养硝化细菌的分离及系统发育分析[J].微生物学报,2003,43(2):156-161
    [63]朱晓宇,王世梅,梁剑茹, et al.两株高效好氧反硝化细菌的分离鉴定及其脱氮效率[J].环境科学学报,2009,(1):111-117
    [64] Wang P., X. Li, M. Xiang, et al. Characterization of efficient aerobic denitrifiers isolatedfrom two different sequencing batch reactors by16S-rRNA analysis[J]. J. Biosci. Bioeng.,2007,103(6):563-567
    [65]马风哪,程伟琴.国内火电厂氮氧化物排放现状及控制技术探讨[J].广州化工,2011,39(15):57-59
    [66] Robertson L.A., J.G. Kuenen. Thiosphaera pantotropha gen. nov. sp. nov., a facultativelyanaerobic, facultatively autotrophic sulphur bacterium[J]. Journal of general microbiology,1983,129(9):2847
    [67] Frette L., B. Gejlsbjerg, P. Westermann. Aerobic denitrifiers isolated from an alternatingactivated sludge system[J]. FEMS Microbiology Ecology,1997,24(4):363-370
    [68]吕锡武,李丛娜,稻森悠平.溶解氧及活性污泥浓度对同步硝化反硝化的影响[J].城市环境与城市生态,2001,14(001):33-35
    [69] Meiberg J., P. Bruinenberg, W. Harder. Effect of Dissolved Oxygen Tension on theMetabolism of Methylated Amines in Hyphomicrobium X in the Absence and Presence ofNitrate: Evidence for'Aerobic'Denitrification[J]. Journal of general microbiology,1980,120(2):453
    [70] Gupta S., M. Kshirsagar. Quantitative estimation of Thiosphaera pantotropha fromaerobic mixed culture[J]. Water Research,2000,34(15):3765-3768
    [71]孔庆鑫,李君文,王新为, et al.一种新的好氧反硝化菌筛选方法的建立及新菌株的发现[J].应用与环境生物学报,2005,(02):222-225
    [72]王峰,傅以钢,夏四清, et al. PCR-DGGE技术在城市污水化学生物絮凝处理中的特点[J].环境科学,2004,25(006):74-79
    [73]许海,杨林章,茅华, et al.铜绿微囊藻,斜生栅藻生长的磷营养动力学特征[J].生态环境,2006,15(5):921-924
    [74] Delhoménie M.C., M. Heitz. Biofiltration of air: a review[J]. Critical reviews inbiotechnology,2005,25(1-2):53-72
    [75] Chen J.M., J.F. Ma. Abiotic and biological mechanisms of nitric oxide removal fromwaste air in biotrickling filters[J]. J. Air Waste Manage.,2006,56(1):32-36
    [76] Zhang S.-H., L.-L. Cai, X.-H. Mi, et al. NOx removal from simulated flue gas bychemical absorption biological reduction integrated approach in a biofilter[J]. Environ. Sci.Technol.,2008,42(10):3814-3820
    [77] Robertson L.A., J.G. Kuenen. Heterotrophic nitrification in Thiosphaera pantotropha:oxygen uptake and enzyme studies[J]. Journal of general microbiology,1988,134(4):857
    [78] Wilson L., E. Bouwer. Biodegradation of aromatic compounds under mixedoxygen/denitrifying conditions: a review[J]. Journal of industrial microbiology&biotechnology,1997,18(2):116-130
    [79] Joo H.S., M. Hirai, M. Shoda. Characteristics of ammonium removal by heterotrophicnitrification-aerobic denitrification by Alcaligenes faecalis No.4[J]. J. Biosci. Bioeng.,2005,100(2):184-191
    [80] Kuera I., V. Dadák. The effect of uncoupler on the distribution of the electron flowbetween the terminal acceptors oxygen and nitrite in the cells of Paracoccus denitrificans[J].Biochem. Bioph. Res. Co,1983,117(1):252-258
    [81] Schulp J., A. Stouthamer. The influence of oxygen, glucose and nitrate upon theformation of nitrate reductase and the respiratory system in Bacillus licheniformis[J]. J. Gen.Microbiol,1970,64(2):195
    [82] Huang H.K., S.K. Tseng. Nitrate reduction by Citrobacter diversus under aerobicenvironment[J]. Appl. Microbiol. Biotechnol.,2001,55(1):90-94
    [83] Bang D.Y., Y. Watanabe, T. Noike. An experimental study on aerobic denitrificationwith polyvinyl alcohol as a carbon source in biofilms[J]. Water Science and Technology,1995,32(8):235-242
    [84] Neef A., A. Zaglauer, H. Meier, et al. Population analysis in a denitrifying sand filter:conventional and in situ identification of Paracoccus spp. in methanol-fed biofilms[J].Applied and Environmental Microbiology,1996,62(12):4329
    [85] Kima M., S.Y. Jeongb, S.J. Yoona, et al. Aerobic denitrification of Pseudomonas putidaAD-21at different C/N ratios[J]. J. Biosci. Bioeng.,2008,106(5):498-502
    [86] Firth J., C. Edwards. Analysis of denitrification by Pseudomonas stutzeri undernutrient‐limited conditions using membrane inlet mass spectrometry[J]. J. Appl. Microbiol,2000,88(5):853-859
    [87] Paul E., S. Plisson-Saune, M. Mauret, et al. Process state evaluation of alternatingoxic-anoxic activated sludge using ORP, pH and DO[J]. Water Science and Technology,1998,38(3):299-306
    [88] Fuerhacker M., H. Bauer, R. Ellinger, et al. Approach for a novel control strategy forsimultaneous nitrification/denitrification in activated sludge reactors[J]. Water Research,2000,34(9):2499-2506
    [89] Weissenbacher N., C. Loderer, K. Lenz, et al. NOx monitoring of a simultaneousnitrifying-denitrifying (SND) activated sludge plant at different oxidation reductionpotentials[J]. Water Research,2007,41(2):397-405
    [90] WB. D. Research on medium-long term control programme and technological economyanalysis for thermal power plants NOx control of china[J]. Dissertation.Nanjing university ofinformation science&technology,2008,
    [91] KOHAN S.M., T.W. RETTIG, T.S. TORBOV, et al. Bringing down the cost of SO2andNOx removal[J]. Power,2008,152(10)
    [92]陈杭君,赵华,丁经纬.火电厂烟气脱硝技术介绍[J].热力发电,2005,34(2):15-18
    [93] Christen P., F. Domenech, G. Michelena, et al. Biofiltration of volatile ethanol usingsugar cane bagasse inoculated with Candida utilis[J]. Journal of hazardous materials,2002,89(2-3):253-265
    [94] Khammar N., L. Malhautier, V. Degrange, et al. Evaluation of dispersion methods forenumeration of microorganisms from peat and activated carbon biofilters treating volatileorganic compounds[J]. Chemosphere,2004,54(3):243-254
    [95] Acu a M.E., F. Pérez, R. Auria, et al. Microbiological and kinetic aspects of a biofilterfor the removal of toluene from waste gases[J]. Biotechnology and bioengineering,1999,63(2):175-184
    [96] Morgan-Sagastume J., A. Noyola. Hydrogen sulfide removal by compost biofiltration:Effect of mixing the filter media on operational factors[J]. Bioresource technology,2006,97(13):1546-1553
    [97] Van Groenestijn J., J. Liu. Removal of alpha-pinene from gases using biofilterscontaining fungi[J]. Atmospheric Environment,2002,36(35):5501-5508
    [98] Dincer A.R., F. Kargi. Kinetics of sequential nitrification and denitrification processes[J].Enzyme and microbial technology,2000,27(1-2):37-42
    [99] Jun C., J. Yifeng, S. Haolei, et al. Effect of key parameters on nitric oxide removal byanaerobic rptationg drum biofilter[J]. Environ. Technol.,2008,29(11):1241-1247
    [100] Yang W.-F., H.-J. Hsing, Y.-C. Yang, et al. The effects of selected parameters on thenitric oxide removal by biofilter[J]. J. Haz. Mater.,2007,148(3):653-659
    [101] Ozeki S., I. Baba, N. Takaya, et al. A novel C1-Using denitrifier Alcaligenes sp. STC1and Its genes for copper-containing nitrite reductase and azurin[J]. Biosci. Biotechnol.Biochem.,2001,65(5):1206-1210
    [102]魏复盛,国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法:中国环境科学出版社.2002
    [103]田鑫,廖强,朱恂, et al.陶瓷球填料生物膜滴滤塔挂膜启动工艺及对甲苯废气的净化性能实验研究[J].环境科学学报,2004,24(5):834-840
    [104] Picioreanu C., M.C.M. Van Loosdrecht, J.J. Heijnen. Mathematical modeling of biofilmstructure with a hybrid differential-discrete cellular automaton approach[J]. Biotechnologyand bioengineering,1998,58(1):101-116
    [105] Alonso C., M.T. Suidan, B.R. Kim, et al. Dynamic mathematical model for thebiodegradation of VOCs in a biofilter: biomass accumulation study[J]. Environ. Sci. Technol.,1998,32(20):3118-3123
    [106] Salladini A., M. Prisciandaro, D. Barba. Ultrafiltration of biologically treatedwastewater by using backflushing[J]. Desalination,2007,207(1-3):24-34
    [107] Takenaka S., Q. Zhou, A. Kuntiya, et al. Isolation and characterization ofthermotolerant bacterium utilizing ammonium and nitrate ions under aerobic conditions[J].Biotechnology letters,2007,29(3):385-390
    [108] Awad H.H., D.M. Stanbury. Autoxidation of NO in aqueous solution[J]. Int. J. Chem.Kinet.,1993,25(5):375-381
    [109] De la Rúa A., J. González-López, M.A.G. Nieto. Influence of temperature oninoculation and startup of a groundwater-denitrifying submerged filter[J]. EnvironmentalEngineering Science,2008,25(2):265-274
    [110] Otani Y., K. Hasegawa, K. Hanaki. Comparison of aerobic denitrifying activity amongthree cultural species with various carbon sources[J]. Water science and technology: a journalof the International Association on Water Pollution Research,2004,50(8):15
    [111] Yang P., H. Chen, S. Kim. Integrating entrapped mixed microbial cell (EMMC) processfor biological removal of carbon and nitrogen from dilute swine wastewater[J]. Bioresourcetechnology,2003,86(3):245-252
    [112]叶蔚君,魏在山,郑期展.生物滴滤塔处理低浓度氮氧化物[J].化工进展,2008,27(8):1265-1268
    [113] Bergaust L., J. Shapleigh,. Frosteg rd, et al. Transcription and activities of NOxreductases in Agrobacterium tumefaciens: the influence of nitrate, nitrite and oxygenavailability[J]. Environmental microbiology,2008,10(11):3070-3081
    [114] Kampschreur M., N. Tan, C. Picioreanu, et al. Role of nitrogen oxides in themetabolism of ammonia-oxidizing bacteria[J]. Biochemical Society Transactions,2006,34(1):179-181
    [115] Christen P., F. Domenech, G. Michelena, et al. Biofiltration of volatile ethanol usingsugar cane bagasse inoculated with Candida utilis[J]. Journal of hazardous materials,2002,89(2):253-265
    [116] Webster T.S., H.H.J. Cox, M.A. Deshusses. Resolving operational and perform anceproblems encountered in the use of a pilot/full-scale biotrickling filter reactor[J]. Environ.Prog.,1999,18(3):163
    [117] Hekmat D., A. Linn, M. Stephan, et al. Biodegradation dynamics of aromaticcompounds from waste air in a trickle-bed reactor[J]. Applied microbiology andbiotechnology,1997,48(1):129-134
    [118] Lackey L., J. Gamble, M. Holt. Feasibility testing of biofiltration technology forremediating air contaminated by a boat manufacturing facility[J]. Journal of the Air&WasteManagement Association,1998,48(6):527-536
    [119] Togna A.P., S. Frisch. Field-pilot study of styrene biodegradation using biofiltration,1993
    [120] Martin F.J., R.C. Loehr. Effect of periods of non-use on biofilter performance[J].Journal of the Air&Waste Management Association,1996,46(6):539-546
    [121] Standefer S., C. Van Lith. Biofilters minimize VOC emissions[J]. EnvironmentalProtection,1993,4(3)
    [122] Wani A.H., R.M.R. Branion, A.K. Lau. Effects of periods of starvation and fluctuatinghydrogen sulfide concentration on biofilter dynamics and performance[J]. Journal ofhazardous materials,1998,60(3):287-303
    [123] Metris A., A.M. Gerrard, R.H. Cumming, et al. Modelling shock loadings andstarvation in the biofiltration of toluene and xylene[J]. Journal of Chemical Technology andBiotechnology,2001,76(6):565-572
    [124] Cox H.H.J., M.A. Deshusses. Effect of starvation on the performance andre-acclimation of biotrickling filters for air pollution control[J]. Environmental science&technology,2002,36(14):3069-3073
    [125] Mathur A.K., J. Sundaramurthy, C. Balomajumder. Kinetics of the removal ofmono-chlorobenzene vapour from waste gases using a trickle bed air biofilter[J]. J. Haz.Mater.,2006,137(3):1560-1568
    [126] Jenkins R., S. Heald. Stability of toluene oxidation by Pseudomonas putida undernutrient deprivation[J]. Applied microbiology and biotechnology,1996,46(4):388-392
    [127] Li G., Z. He, T. An, et al. Comparative study of the elimination of toluene vapours intwin biotrickling filters using two microorganisms Bacillus cereus S1and S2[J]. Journal ofChemical Technology and Biotechnology,2008,83(7):1019-1026
    [128] Cox H.H.J., M.A. Deshusses. Effect of starvation on the performance andre-acclimation of biotrickling filters for air pollution control[J]. Environ. Sci. Technol.,2002,36(14):3069-3073
    [129] Catton K., L. Hershman, D. Chang, et al. Aerobic removal of NO on carbon foampackings,2002
    [130] Chen J., Y. Jiang, J. Chen, et al. Dynamic model for nitric oxide removal by a rotatingdrum biofilter[J]. Journal of hazardous materials,2009,168(2-3):1047-1052
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.