竹节纱竹节参数对纱线强力及布面竹节分布的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前竹节纱实际生产中存在着两个主要问题:竹节纱织造断头率高和竹节纱织物表面竹节分布不匀,它们均与竹节参数的设计密切相关,为了解决这两个问题,本文分别利用数学力学模型方法以及图形图像学的方法加以研究。
     首先重点介绍了当前与竹节纱相关的理论研究以及生产实践的现状。对竹节纱进行了分类,着重比较了几种竹节纱加工装置的区别,对于本论文实验中所采用的ZJ-5型竹节纱装置进行了详细介绍。
     论文从竹节纱捻度分布的角度入手,构建了竹节纱捻度分布的数学力学模型,将纱线的扭转加捻过程模拟为普通杆件的扭转过程,得出竹节纱中捻度大小的分布规律。根据纱线的捻回守恒定理,推导出竹节纱中各个纱段捻度分布的计算公式,并结合实际生产中的各种情况分析了公式的适用范围,采用间接法对公式的正确性进行了验证。
     竹节纱强力影响因素的分析建立在捻度分布模型的基础上,通过实验发现,基纱较粗的竹节纱与基纱较细的竹节纱断裂位置的分布有差异,较粗的竹节纱竹节部分易成为强力弱环;较细的竹节纱,基纱部分易成为强力弱环;此外,当竹节长度短于纤维主体长度时,竹节部分的强力会有所增加。在设计开发竹节纱的过程中,要提高竹节纱的强力,要注意两个方面:一要避免较粗竹节纱的竹节部分捻度太低,二要控制较细竹节纱基纱部分的捻度不超过临界捻度。
     接下来论文提出了竹节纱织物表面竹节分布的均匀性的评价方法。借用图形图像学中的面积A_s以及质心P(x_m,y_m)作为评价指标,对竹节纱表面竹节分布的均匀性进行评价。先通过扫描仪随机采集多个竹节纱织物子样图像,利用时域与频域相结合的方法,将子样图像中的竹节部分与底纹部分分离开来,得到了反映竹节分布状况的二值化图像,竹节分布均匀性主要与各子样二值化图像中竹节所占面积A_s的CV值(变异系数)以及竹节分布的质心P与布面几何中心位置O的最大偏移距离D有关,子样图像间竹节数量差异越小,各子样图像间A_s的CV值就越小;子样图像内竹节分布越均匀,D也就越小。对于一般竹节纱织物而言,子样图像间A_s的CV值小于10%,D值小于图像整体大小的10%的情况下,可以认为该竹节纱织物竹节分布均匀。
     为了实现虚拟评价,缩短竹节纱织物产品的开发过程,文章利用模拟方法获得竹节纱织物的竹节分布效果图,结合均匀性评价方法分析了竹节纱织物生产过程中各个参数对于竹节分布均匀性的影响。分析结果显示,竹节纱比例较高时,竹节纱参数的变化对于竹节分布的影响较小,竹节的分布均较为均匀;当竹节纱比例较低时,竹节设计参数的影响较为显著,模糊循环竹节纱中各个纱段组合之间的竹节间隔的差异越小,则织物中竹节分布越趋向于均匀。
Two problems about the manufacture of the slub-yarn are discussed in the paper. The high ratio of broken ends and the uneven slub distribution in the slub-yarn fabric are the two difficult problems during the slub-yarn fabric manufacture, and both of them are closely associated with the slub parameters. The mathematic model and the image analysis method were carried separately to solve the two problems.
     First, the theoretical investigation and the practice of the slub-yarn are concluded in this paper. The slub-yarn is classified in this paper, and the characters in variety of controlling devices are explained and compared deliberately. The slub controlling device ZJ-5, used in the paper for all the experiments, is introduced in detail.
     Second, a model for the twist distribution in the slub-yarn is built as a tool for the analysis of the slub-yarn strength. The twist process is simulated as the common bar retorting process, and then the law of the twist distribution in the slub-yarn is carried out after a series of reasonable hypothesis. The calculating formula for the twist in slub yarn is deduced based on the theory of the conversation of twist. The range of application of the formula is discussed through the analysis to some factors and the validity of the formula is testified based on an indirect method.
     The analysis of the influential factors to the slub-yarn strength is carried on the model mentioned above. The experiment results proved that the slub-yarn with different linear density would have different breaking position. The thicker slub-yarn is easy to break at the slub part, while the thinner slub-yarn breaks at the base yarn part, although the two kinds of slub-yarns have the similar twist distribution. On the other hand, the slub length will increase the strength of the slub parts when it is shorter than the fiber principal length. Two efficient methods are necessary to increase the strength of the slub-yarn during its designg: one is to increase the twist in the slub part for the thicker slub-yarn; the other is to adjust the twsit in base yarn under the critical twist for the thinner slub-yarn.
     Third, the evenness for the slub distribution is discussed. An assessment method for the slub distribution is advanced at first. The indices in the image analysis, the center of mass P(x_m,y_m ) and the area As is taken as the new indices to assess the slub distribution. Some image samples are prepared through the scanner for the assessment, and the time domain method and the frequency domain method are carried separately to extract the slub parts from the fabric shading to acquire the binary images from the sample images. The distribution evenness is related to the CV% (coefficient value) of A_s in the sample binary images and the excursion extent D of the center of mass P to the geometric center O. The even distribution would lead less CV% and less D. The CV value of A_s in different samples can not exceed 10% and the maximum of D can not reach the 10% of the sample size in a slub-yarn fabric with even slub distribution.
     The simulating method is carried to acquire the binary image based on the slub-yarn parameters and the weaving parameters, which helps to shorten the slub-yarn fabric designing process. The influential factors to the slub distribution are tested through the simulation. The test result proved that, the change of the slub-yarn parameters influence the slub distribution little with the high slub-yarn ratio; while to the fabric with littile slub-yarn ratio, the slub parameters is sensitive to the slub distribution, and the smaller difference between the slub lengths in the non-periodic slub-yarn will increase the slub distribution evenness.
引文
1 朱小红.花式纱线发展空间有待拓展[N]。中国纺织报,2006-12-28(2)
    2 F Testore,G Minero.A study of the fundamental parameters of some fancy yarns[J].Journal of Textile Institue,1988,79(4):606-619
    3 李玲珍,徐伯俊.竹节纱织物的品种与风格[J].纺织导报,2006,32(2):63-65
    4 金波,安升立,张弘等.CCZ-Ⅳ型竹节纱装置的应用及工艺设计[J].上海纺织科技,2006,34(2):43-46
    5 汪军,黄秀宝.转杯纺竹节纱竹节参数的理论研究[J].中国纺织大学学报,2006,26(6):35-38,43
    6 Jun Wang,Xiubao Huang.Parameters of rotor spun slub yarn[J].Textile Research Journal,2002,71(1):12-16.
    7 刘桂阳,张增强.竹节纱的生产方法[J].纺织导报,2005,31(9):64-67
    8 薛少林,宋红,肖爱明等.亚麻短纤维摩擦包芯竹节纱的开发[J].上海纺织科技,2005,33(7):54-55
    9 王春红,王瑞,刘雍等.自然波纹织物的开发[J].上海纺织科技,2005,33(3):30-32
    10 周俊,高松.竹节纱牛仔布的生产[J].棉纺织技术,1999,27(3):157-158
    11 张一风.弹力竹节牛仔布的设计与生产[J].上海纺织科技,2007,35(3):26-27
    12 邵晓东.仿麻复合竹节纱的开发[J].合成纤维工业,1997,20(1):60-61
    13 张生有,王月娟,朱玮.松竹呢系列产品的开发与试制[J].棉纺织技术,2001,29(5),34-36
    14 张文藻.粗节花饰纱的形成探讨[J].纺织学报,1986,7(12):725-729
    15 刘常威.纺制竹节纱的简易途径[J].上海纺织科技,2001,29(2):20
    16 王开元.PLC竹节纱发生器的研制与应用[J].棉纺织技术,1997,25(12):744-747
    17 丁宏发.EJ-505型纺制竹节纱装置及试制4040纯棉高密府绸竹节纱布[J].棉纺织技术,1990,18(6):38-40
    18 李秋莽.FA502型细纱机加装ZP-20D型竹节纱装置改造实践[J].上海纺织科技,2005,33(12):63-64
    19 顾宪祥,周秀玲.竹节纱工艺设计及产品开发[J].棉纺织技术,2003,31(4):227-229
    20 谢春萍,周晔君,徐伯俊等.数字式竹节纱生产装置的设计[J].棉纺织技术,2003,31(5):265-268.
    21 苏旭华,张旭卿,孙照杰.ZJ型竹节纱装置在细纱机上的应用[J].纺织机械,2004,(5):31-33
    22 张毅强,杨咏梅,魏保平等.细纱机竹节纱的生产技术探索[J].纺织学报,2001,22(4):230-131
    23 刘茂平.竹节纱装置的改进[J].四川纺织科技,2001,(3):34-35
    24 徐伯俊,谢春萍.竹节纱的生产工艺及控制装置[J].纺织导报,2004,30(2):46-48
    25 张瑞红.环锭纺竹节纱企业标准初探[J].纺织标准与质量,2005,(6):40-41
    26 史淑华,王新强.竹节纱考核指标的探讨[J].棉纺织技术,2005,33(3):37
    27 Katarzyna Ewa Grabowska.Characteristics of slub fancy yarn[J].Fibers and textile in Eastern Europe,2001(1):28-30
    28 张梅,周哲,赵庆福.环锭纺竹节纱的强力测试与研究[J].山东纺织科技,2003,32 (4):1-3
    29 江云昌.竹节纱过捻细节的产生及其预防[J].广西纺织科技,2003,32(3),5-7,25
    30 卞克玉,徐伯俊,王汇丰.竹节纱外观参数自动识别系统的研制[J].毛纺科技,2006,34(6):52-55
    31 张梅.环锭纺竹节纱捻度分析[J].棉纺织技术,2004,32(2):76-79
    32 姚文爱,徐伯俊.竹节织物的分析[J].上海纺织科技,2006.34(11):5-7
    33 郝高云,韩光明,马爱华.减少竹节布规律性疵点的有效措施[J].棉纺织技术,2005,33(10):56-57
    1 张文赓,陈铭右,丁寿基,等.加捻过程基本理论[M].北京:纺织工业出版社,1983
    2 姚穆,周锦芳,黄淑贞,等.纺织材料学[M]:(第二版).北京:中国纺织出版社,2004
    3 于伟东,储才元.纺织物理[M].上海:东华大学出版社,2002
    4 姜怀,邬福麟,梁洁.《纺织材料学》[M]:(第二版).北京:中国纺织出版社,1996
    5 B.C.戈斯威密等著,邵礼宏等译《纱线的工艺结构与应用》[M].北京:纺织工业出版社,1984
    6 贾立锋.基于图像处理的纱线捻度测定[J].纺织学报,2005,26(4):39-40
    7 Chang-chiun Huang,Sun-chong Liu.Woven fabric analysis by image processing Part Ⅱ:computing the twist angle[J].Textile research journal,2001,71(4),362-366.
    8 M J alagha,W Oxenham,C Iype.The use of an image analysis technique for assessing the structural parameters of friction spun yarns[J].Journal of textile institute,1994,85(3):383-388
    9 Barella,A.Law of critical yarn diameter and twist influence on yarn characteristics[J].Textile Research Journal,1950,20(2):249-258.
    10 卞克玉,徐伯俊,王汇丰.竹节纱外观参数自动识别系统的研制[J].毛纺科技,2006,34(6):52-55
    11 E alexander.Optimal twist in staple yarn[J].Textile research journal,1952,22(8):503-508
    12 W B Fraser,L Famell,D M.Stump.The effect of a slub on the stablility of the ring-spinning balloon[J].Journal of Textile Institute,1995,86(4):610-634
    13 李玲珍.竹节纱捻度测试方法与分布规律的研究[D].硕士论文.无锡:江南大学纺织服装学院.2007
    1 于伟东,储才元.纺织物理[M].上海:东华大学出版社,2002
    2 R.vebeck.A statistical method of characterizing spinning quality[J].Textile research Journal,1965,35(1):1-14
    3 Zeidman,Mishu,Sawhney,etc.Influence of fiber length distribution on strength efficiency of fibers in yarn[J].Textile research Journal,2002,72(3):216-220
    4 J F bogdan.Prediction of cotton yarn strength[J].Textile research journal,1967,37(8):536-537
    5 储才元,凌导宏.棉纤维性能和成纱质量间关系的研究[J].纺织学报,1993,14(7):4-8
    6 Pynckels F,Kickens P,Sette S L.Use of neuraI nets for determining the spinnability of fibres[J].Journal of Textile Institute,1995,86(3):425-433
    7 王侃枫,陆凯,黄修宝.基于神经网络的精梳毛纺纱线预测[J].东华大学学报(自然科学版),2005,31(1):66-70
    8 郝海涛,谢春萍.利用AFIS和神经网络预测纱线强力[J].上海纺织科技,2003,31(10):61-62,28
    9 W.Zurek,I.Frydrych,S.Zakrzewski.A method of predicting the strength and breaking strain of cotton yarn[J].Textile research journal,1987,57(8):439-444
    10 Ning Pan.Development of a constitutive theory for short fiber yans:mechanics of staple yarn without slippage effect[J].Textile research journal,1992,62(12):749-765
    11 Ning Pan,Tao Hua,Yiping Qiu.Relationship between fiber and yarn strength[J].Textile research journal,2001,71(11):960-964
    12 张文庚,陈铭右,丁寿基,等.加捻过程基本理论[M].北京:纺织工业出版社,1983
    1 朱虹.数字图像处理基础[M].北京:科学出版社,2005
    2 章毓晋.图像处理和分析基础[M].北京:高等教育出版社,2002
    3 何斌.Visual C++数字图像处理[M]:(第二版).北京:人民邮电出版社,2002
    4 张宏林.Visual C++数字图像模式识别技术及工程实践[M].北京:国防工业出版社,2003
    5 薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报2006,34(1):155-158,134
    6 Yoshio Shimizu.Expert system to inspect fabric defects by pattern recognition[J].IEEE Transactions on Pattern Recognition,1990,46(3):460-46
    7 F S Cohen,Z Fan,S attali.Automated inspection of textile fabrics using textureal models [J].IEEE Transactions on pattern analysis and machine intelligence,1991,13(8):803-808
    8 Y F Zhang,R R bresee.Fabric defect detection and classification using image analysis[J].Textile Reasearch Journal,1995,65(1):1-9
    9 J.G.Campbell,C.Fraley,F.murtagh,et al.Linera flaw detection in woven textiles using moel-based clustering[J].Pattern Recongintion letters,1997,18(9):1539-1548
    10 H.T.Choi,S.H.Jeong,S.R.Kim,J.Y.Jaung,et al.Detecting fabric defects with computer vision and fuzzy rule generation(part Ⅰ)[J].Textile Rearch Journal,2001,71(6):518-526
    11 I-shou Tsai,Ming-Chuan.Autamatic inspection of fabric defects using an artificial neural network technique[J].Textile Rearch Journal,1996,66(7):472-482
    12 Pei-Wen Chen.Classifying textile faults with a back-propagation neural network using power spectra[J].Textile Rearch Journal,1998,68(2):121-126
    13 Bithika Mallik,Asit K Datta.Optical imaging technique for defect detection in fabric[J].Indian Journal of fiber and textile research,1998,23(12):277-280
    14 D M Tsai,C Y Hsieh.Automated surface inspection for directional textures[J].Image and vision computing,1999,18(1):49-62
    15 D M Tsai,Bo Hsiao.Automatic surface inspection using wavelet reconstruction[J].Pattern Recognition,2001,34(6):1285-1305
    16 Henry Y T Ngan,Grantham K H Pang,S P Yung,et al.Wavelet based methods on patterned fabric defect detection[J].Pattern Recogintion,2005,38(3):559-576
    17 Akio S,H Kim,Y I Matsumoto,et al.Woven fabric quality evaluation using iamge analysis[J].Textile Rearch Journal,2000,70(11):950-956
    1姚穆,周锦芳,黄淑珍等.纺织材料学[M]:(第二版).北京:中国纺织出版社,1996
    2顾平.纺织品CAD原理与应用[M].北京:中国纺织出版社,2005
    3谢春萍,徐伯俊,王俊.带有反馈控制的竹节纱生产装置[J].北京纺织,2002,(3):57-60
    4张钧良,邵洁.Visual Basic 6.0程序设计教程[M].南京:东南大学出版社,2004
    5何新勇,刘海文,魏玉娟等.竹节织物的仿样设计[J].上海纺织科技,2004,32(12):29,33
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.