大尺寸金刚石厚膜球冠制备机理与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学气相沉积金刚石膜具有优异的热学、电学、声学、光学、力学等综合性能,在机械、电子、光学及生物工程等领域具有广阔的应用前景。近年来,曲面金刚石膜在国防领域受到极大的重视,但是大尺寸金刚石厚膜球冠的制备研究还处于起步阶段,对其制备机理及生长过程中工艺参数的影响规律还不清楚,因此开展大尺寸金刚石厚膜球冠制备机理及工艺研究具有重要的理论意义和工业应用价值。
     本文主要开展的研究工作如下:
     1.对直流等离子体CVD大尺寸金刚石厚膜生长进行了有限元仿真研究,采用流体动力学FLUENT有限元仿真软件对厚膜球冠生长的空间温度场、压力场、速度场进行仿真数值研究;分析了不同表面形状基体对模拟结果的影响。仿真结果表明:反应室的速度场、压力场分布是不均匀的,无论是凸球面还是凹球面,在基体的中心区速度都较小,随着半径的增加而增大,但在其它相同的工艺条件下,凸面的基体能使等离子体流具有更好的流动特性,因而能较好的进行大尺寸金刚石厚膜球冠的生长。无论是凹面或凸面,基体表面的温度场分布都较均匀,沿着基体表面到等离子体发射区呈均匀的梯度分布,这是保证金刚石膜生长的重要条件。同时发现凹面基体的侧面和基体的生长面的温差比凸面大,在膜的边缘膜内有较大的应力。
     2.对直流等离子体喷射CVD法制备大尺寸金刚石厚膜球冠制备机理开展了深入研究,详细分析了金刚石厚膜球冠生长过程。对金刚石膜的生长动力学,成核机理和生长机理等进行了研究;超原子H及活性基团如CH3、C2H2等是非平衡态下CVD制备金刚石膜的必要条件;基体曲率半径、金刚石膜生长附着行为对金刚石膜生长有重要影响;保持稳定均匀的等离子体弧,是制备高质量的金刚石膜的关键。
     3.对直流等离子体喷射CVD法制备大尺寸金刚石厚膜球冠工艺开展了研究,发现生长工艺对金刚石膜的质量产生重要影响。基体温度、碳源浓度、沉积室压强、基体曲率半径及基体与等离子体的间距等生长工艺参数对制备的大尺寸金刚石厚膜球冠质量密切相关,并研究了其影响规律。通过对这些参数的合理选择及优化,是能够制备出高质量大尺寸金刚石厚膜球冠的。
     4.对制备的大尺寸金刚石厚膜球冠进行了微观结构特征的研究,运用扫描电镜(SEM)、原子力显微镜(AFM)、拉曼光谱(Raman)、X射线衍射(XRD)、X射线光电子能谱(XPS)等现代先进测试技术对大尺寸金刚石厚膜球冠成核密度、表面形貌、表面粗糙度、成分、结构等进行了深入研究,从微观结构上表征了金刚石膜的本质特征。
     5.对大尺寸金刚石厚膜球冠的应力形成机理、应力大小、类型、分布及其对大尺寸金刚石厚膜球冠性能产生的影响进行了系统的分析,发现膜的制备工艺如基体温度,甲烷浓度等是金刚石膜应力的主要影响因素。同时也对膜的断裂机理、显微硬度等力学性能进行了研究,探讨了大尺寸金刚石厚膜球冠制备工艺参数对其性能的影响,寻求制备低应力金刚石膜,提高膜的力学性能的有效途径。
Diamond films synthesized by chemical vapor deposition (CVD) have some outstanding properties such as high thermal conductivity, high band gap, low electrical conductivity, high IR transparency, high hardness, and high chemical inertness, etc. It has been considered as a promising material for many applications in mechanics, electron, optics and biology engineering. In recent years, convex diamond film has been widely more regarded in national defence field. But study on large size spherical diamond thick film just now begins, and preparation mechanism and process of diamond film are rarely reported.Thus it is important to develop experiment and theory investigation on large size spherical diamond thick film. The main work and the results obtained in this dissertation are as follows:
     1. FEM simulation study was carried out on the growth of diamond film by FLUENT. The results showed that the velocity field of spherical molybdenum substrate was not uniform, and it was much lower in center spherical substrate than that of the edge of spherical substrate. Fluctuation of plasma velocity field is harmful to growth of spherical diamond film. The pressure is the biggest in center of spherical substrate and tends to decrease at the ambient. In center small area of spherical substrate, plasma velocity was so low, which results in very high pressure field in center area of spherical substrate. Fluctuant velocity and pressure distribution have negatively influenced on the growth of spherical diamond film. Plasma better flows in convex substrate than the concave substrate, which is help to prepare high quality diamond film. The temperature field of the substrate is uniform, which is one of the major facts to successfully synthesize large size spherical diamond thick film. The results also shows that, although velocity and pressure field simulated are non-uniform, high quality spherical diamond film can be prepared. Meantime, it was found that diamond film has more stress by concave spherical substrate.
     2. Preparation mechanism and the growth course of large size spherical diamond thick film by DC plasma jet CVD were widely studied, meantime, growth dynamics, nucleation and growth mechanism of diamond film were also investigated. It was found that, in non-equilibrium state, the existence of super atom H, activated radical as CH3, C2H2 was necessary factors for preparing large size spherical diamond thick film. It was also showed that substrate curvatures, adhesion power of between diamond film and substrate, and plasma arc behavior have important influences on diamond film quality.
     3. Preparation process of large size spherical diamond thick film was widely investigated and the results showed that it has an important influence on the quality of diamond film. Substrate temperature, CH4 concentration, chamber pressure, substrate curvature and distance between substrate and plasma are closely related with diamond film quality. To optimize these processes parameters, and high quality large size spherical diamond thick film can be prepared.
     4. The techniques based on X ray diffraction (XRD), scanning electron microscopy (SEM), atom force microscopy (AFM), X ray photoelectron spectroscopy (XPS), Raman spectroscopy etc. were used to investigate microstructure, nucleation density, surface roughness, orientation evolution and impurities of spherical diamond film respectively.
     5. Study on the mechanism and distribution of the stress of diamond film was carried out by XRD, and the stress has an important influence on performance of the diamond film. At the same time, the fracture mechanism and microhardness were also analyzed in detail. It is advantaged to synthesize high quality diamond in a low methane concentration and suitable substrate temperature.
引文
[1] C. Wild, R. Kohl, N. Herres, et al. Oriented CVD diamond films: Twin formation, structure, and morphology, Diamond and Related Materials 1994, 3: 373-381
    [2] R. E. Clausing, L. Heatherly, L. L. Horton, et al. Textures and morphologies of chemical vapor deposited diamond, Diamond and Related Materials. 1992, 1: 411-415
    [3] D.S. Li, D.W. Zuo, R.F. Chen, et al. Effect of DC-Plasma Arc Behavior on Growth of Diamond Film. Key Engineering Materials, 2006, 315-316: 385-390
    [4] D.W. Zuo, B. K. Xiang, W. Z. Lu, Diamond thick film prepared by EACVD as cutting-tool material. Progress of Machining Technology, 2002, 23:18-23
    [5]李多生,左敦稳,陈荣发等.大尺寸金刚石膜生长中等离子体弧源的稳定性,南京航空航天大学学报, 2007,39(3): 338-342
    [6] D.S. Li, D.W. Zuo, R.F. Chen etal. Characterization of Diamond Spherical Shell Thick Film by DC Plasma CVD, Key Engineering Materials, 2008, 375-376, 216-220
    [7] Zuo D.W, Li X F, Wang M, et al. Adhesion improvement of CVD diamond film by introducing electro-deposited interlayer. Journal of Materials Processing Technology, 2003, 138(7): 455-457
    [8] W. G. Eversole, Can. Patent No.628567. Filed 1959
    [9] W. G. Eversole, US Patent No.3030187 and 3030188. Filed 1958
    [10] Matsumoto S., Sato Y., Tsutsumi M. and Setaka N., J. Materials Sci., 1982,17: 3106-3112
    [11] Zuo DW, Song SL, Xiang BK, et al. Some key points for EACVD thick diamond film preparation Key Engineering Materials. 2004, 258-259:517-521
    [12] D.S. Li, D.W. Zuo, R.F. Chen etal. Growth of high quality spherical diamond film by DC plasma jet CVD, Synthesis and Reactivity in Inorganic, Metal Organic and Nanometal Chemistry,2008, 38(3),325-328
    [13] G.C. Chen, H. Lan, B. Li, F.W. Dai et al. Growth feature of layered self-standing diamond films by DC arc plasma jet CVD. Journal of Crystal Growth, 2007, 309(1): 86-92
    [14] Yuta Matsushima, Tsutomu Yamazaki, Kazuyuki Maeda et al. Free-standing diamond films prepared by a dc-plasma method above the ethylene glycol solution. Diamond and Related Materials, 2007, 16(1): 570-575
    [15] Y. Iwakaji, M. Kanasugi, O. Maida et al. Characterization of soft-X-ray detectors fabricated with high-quality CVD diamond thin films. Applied Surface Science, 2008, 254(19): 6277-6280
    [16] A.M. Rodrigues. Analysis of the current-transport mechanism across a CVD diamond/silicon interface., Applied Surface Science. 2007, 253(14): 5992-5999
    [17] D.M. Trucchi, C. Scilletta, E. Cappelli et al. Optimization of the performance of CVD diamond electron multipliers, Diamond and Related Materials, 2006, 15(4-8): 827-832
    [18] D.M. Trucchi, E. Cappelli, G. Conte, The influence of grain-boundaries on the electronic performance of CVD diamond films, Diamond and Related Materials, 2005, 14(3-7): 575-579
    [19] M.C. Costello, D.A. Tossell, D.M. Reece, et al. Diamond protective coatings for optical components, Diamond and Related Materials, 1994, 3(8): 1137-1141
    [20] C.A. Rego, P.W. May, E.C. Williamson, et al. CVD diamond growth on germanium for IR window applications, Diamond and Related Materials, 1994, 3(4-6): 939-941
    [21] Riccardo Polini, Fabio Pighetti Mantini, Massimiliano Barletta et al. Hot filament chemical vapour deposition and wear resistance of diamond films on WC-Co substrates coated using PVD-arcdeposition technique, Diamond and Related Materials, 2006, 15(9): 1284-1291
    [22] S. Abreu, F.J. Oliveira, M. Belmonte, et al. Grain size effect on self-mated CVD diamond dry tribosystems, Wear, Volume 259, Issues 1-6, July-August 2005, 259(1-6): 771-778
    [23] M.A. Tomé, A.J.S. Fernandes, F.J. Oliveira, et al. High performance sealing with CVD diamond self-mated rings, Diamond and Related Materials, 2005, 14(3-7): 617-621
    [24] Waqar Ahmed, Htet Sein, Mark Jackson. Chemical vapour deposition of diamond films onto tungsten carbide dental burs, Tribology International, 2004, 37(11-12): 957-964
    [25] Yukihiro Sakamoto, Matsufumi Takaya. Preparation of diamond-coated tools and their cutting performancePreparation of diamond-coated tools and their cutting performance Journal of Materials Processing Technology, 2002, 127(2):151-154
    [26] S. Orlanducci, V. Sessa, E. Tamburri, Si doped and nanocomposite Si–diamond films: Cathodoluminescence and photoluminescence characterizations of Si centers, Surface and Coatings Technology, 2007, 201(22-23): 9389-9394
    [27] Xiangwei Zhu, Dean M. Aslam, CVD diamond thin film technology for MEMS packaging, Diamond and Related Materials, 2006, 15(2-3): 254-258
    [28] Sukesh Roy, Jonathan DuBois, Robert P. Lucht, Hydroxyl radical concentration measurements near the deposition substrate in low-pressure diamond-forming flames, Combustion and Flame, 2004, 138(3): 285-294
    [29] Hui Jin Looi, Lisa Y. S. Pang, Michael D. Whitfield, et al. Engineering low resistance contacts on p-type hydrogenated diamond surfaces, Diamond and Related Materials, 2000, 9(3-6) : 975-981
    [30] W. Deferme, G. Tanasa, J. Amir, The role of (sub)-surface oxygen on the surface electronic structure of hydrogen terminated (100) CVD diamond,Diamond and Related Materials, 2006,15(4-8): 687-691
    [31] J.X. Yang, X.F. Duan, F.X. Lu, et al. The influence of dark feature on optical and thermal property of DC Arc Plasma Jet CVD diamond films, Diamond and Related Materials, 2005,14(10):1583-1587
    [32] Claude A. Klein, Diamond windows and domes: flexural strength and thermal shock, Diamond and Related Materials, 2002, 11(2): 218-227
    [33] T. A. Grotjohn, J. Asmussen, J. Sivagna,Electron density in moderate pressure diamond deposition dischargesDiamond and Related Materials, 2000, 9(3-6): 322-327
    [34] Delphine Six, Michel Fily, Luc Blarel, First aerosol optical thickness measurements at Dome C (East Antarctica), summer season 2003–2004Atmospheric Environment, 2005, 39(28): 5041-5050
    [35] Peter Schaubs, Tim Rawling, Jon Dugdale,Using numerical deformation–fluid-flow simulations to understand and target gold mineralisation around basalt domes in the Stawell Zone, Central Victoria, AustraliaJournal of Geochemical Exploration, 2006, 89(1-3): 351-354
    [36] Alan R. Huffman, W. Uwe Reimold , et al. Experimental constraints on shock-induced microstructures in naturally deformed silicatesTectonophysics, 1996, 256(1-4): 165-217
    [37] H.W.Xin, Z.M.Zhang, X.Ling, et al. Composite diamond films with smooth surface and the structural influence on dielectric properties. Diamond and Related Materials, 2002,(11):228-233
    [38] N.Jiang, S.Kujime, I.Ota, et al . Growth and structural analysis of nano-diamond films deposited on Si substrates pretreated by various methods. Journal of Crystal Growth, 2000,(8):265-271
    [39] Soo-Hyung Seo, Tae-Hoon Lee, Jin-Seok Park. Roughness control of polycrystalline diamond films grown by bias enhanced microwave plasma-assisted CVD. Diamond and Related Materials, 2003, (12) : 1670–1674
    [40] T.Xu, S.R.Yang, J.J.Lu, et al. Characterization of nanocrystalline diamond films implanted withnitrogen ions[J]. Diamond and Related Materials, 2001, (10):1441 -1447
    [41] M. Vila, A.B. Lopes, F.A. Almeida, Extrinsic stress induced defects in CVD diamond, Diamond and Related Materials, 2008,17(2): 190-193
    [42] Tai-Fa Young, Fabrication and thermal analysis of a copper/diamond/copper thermal spreading device, Surface and Coatings Technology, 2007, 202(4-7):1208-1213
    [43] Chengming Li, Hao Li, Decao Niu, Effects of residual stress distribution on the cracking of thick freestanding diamond films produced by DC arc jet plasma chemical vapor deposition operated at gas recycling mode, Surface and Coatings Technology, 2007, 201(15): 6553-6556
    [44] W.S. Huang, D.T. Tran, J. Asmussen, Synthesis of thick, uniform, smooth ultrananocrystalline diamond films by microwave plasma-assisted chemical vapor deposition, Diamond and Related Materials, 2006, 15(2-3): 341-344
    [45] M. Adamschik, R. Müller, P. Gluche, Analysis of piezoresistive properties of CVD-diamond films on silicon, Diamond and Related Materials, 2001, 10(9-10): 1670-1675
    [46] A. Tallaire, J. Achard, F. Silva,Homoepitaxial deposition of high-quality thick diamond films: effect of growth parameters,Diamond and Related Materials, 2005, 14(3-7):249-254
    [47] V.I. Polyakov, A.I. Rukovishnikov, B.M. Garin,Electrically active defects, conductivity, and millimeter wave dielectric loss in CVD diamonds , Diamond and Related Materials, 2005,14(14): 604-607
    [48] K. Iakoubovskii, A. Stesmans, K. Suzuki,Characterization of defects in monocrystalline CVD diamond films by electron spin resonance,Diamond and Related Materials, 2003, 12(3-7):511-515
    [49] A. Heiman, E. Lakin, E. Zolotoyabko,Microstructure and stress in nano-crystalline diamond films deposited by DC glow discharge CVD,Diamond and Related Materials, 2002, 11(3-6):601-607
    [50] M. Marinelli, E. Milani, A. Paoletti,Growth of detector grade CVD diamond films and microscopic interpretation of their efficiency and charge collection distance in the normal and pumped states,Diamond and Related Materials, 2001,10(9-10):1783-1787
    [51] Xuantong Ying, Xinmin Xu, CVD diamond thin film for IR optics and X-ray optics, Thin Solid Films, 2000,368(2): 297-299
    [52] D. J. Twitchen, C. S. J. Pickles, S. E. Coe, Thermal conductivity measurements on CVD diamond, Thermal conductivity measurements on CVD diamond, Diamond and Related Materials, 2001, 10(3-7): 731-735
    [53] Marc D. Fries, Yogesh K. Vohra, Properties of nanocrystalline diamond thin films grown by MPCVD for biomedical implant purposes, Diamond and Related Materials, 2004,13(9): 1740-1743
    [54] A. J. S. Fernandes, M. J. Fonseca, Ultramicrohardness cross-profiling of CVD diamond/steel brazed junctions, Diamond and Related Materials, 1999, 8(2-5): 855-858
    [55] M. G. Donato, G. Faggio, M. Marinelli, A joint macro-/micro- Raman investigation of the diamond lineshape in CVD films: the influence of texturing and stress, Diamond and Related Materials, 2001, 10(8):1535-1543
    [56] B. Lunn, D. A. Wright and L. Y. Zhang. Growth of diamond films on spherical surfaces by hot filament CVD. Diamond and Related Materials, 1998, 7: 129-132
    [57] I. Nakamori, T. Takagi, T. Takeno, et al. Direct simulation of Monte Carlo analysis of nano-floating effect on diamond-coated surface. Diamond and Related Materials, 2005(14):2122-2126
    [58] A.F. Azevedo, R.C. Mendes de Barros, S.H.P. Serrano, et al. SEM and Raman analysis of boron-doped diamond coating on spherical textured substrates. Surface and Coatings Technology, 2006, 200: 5973-5977
    [59] Shr-Ming Huang, Franklin, Chau-Nan Hong. Growth of free-standing diamond films of hemispheric shells. Surface and Coatings Technology, 2006, 200:3151-3155
    [60]吕反修,唐伟忠,刘敬明等.大面积高光学质量金刚石自支撑膜的制备,材料研究学报.2001, 15(1):41-48
    [61]宋胜利,大面积HFCVD金刚石制备的温度控制及其应用技术研究[博士学位论文].南京:南京航空航天大学,2004,9
    [62]张禹,刘国权,秦湘阁.一种改进的CVD金刚石膜生长过程原子尺度三维仿真方法,中国体视学与图像分析,2002,7(4):207-209
    [63]安希忠,刘国权,张禹等.金刚石膜的计算机虚拟制备技术中的分子动力学模拟,功能材料,2002,33(2):162-165
    [64] Y. Miyagawa,H. Nakadate, M. Ikeyama et al. Dynamic MC simulation for a-C:H deposition in methane plasma based on subplantation model. Diamond and Related Materials, 12(2003): 927-93
    [65] Ebru Dement Akten. Computer Simulation of Polyolefins and Monte Carol Simulation of Ris Chains on a High-Coordination Diamond Lattice. [Dissertation].The University of Akron, 2001
    [66]戴达煌,周克菘.金刚石薄膜沉积制备工艺与应用.北京:冶金工业出版社,2001
    [67] D.S. Li, D.W. Zuo, R.F. Chen etal. Effects of Methane Concentration on Diamond Spherical Shell Films Prepared by DC-Plasma CVD, Solid State Ionics 2008, 179, 1263-1267
    [68]牛得草,李成明,刘政等.气体循环条件下等离子体喷射CVD金刚石膜的生长稳定性和品质,北京科技大学学报,2007,29(11):1133-1136
    [69]周祖源,陈广超,戴风伟等.直流电弧等离子喷射CVD中控制生长(111)晶面占优的金刚石膜,人工晶体学报,2006,35(3),378-380
    [70]陈荣发,左敦稳,李多生等.甲烷浓度对等离子喷射金刚石厚膜生长稳定性的影响.金属学报, 2005, 41(10): 1091-1094
    [71]李多生,左敦稳,陈荣发等.直流等离子体CVD金刚石薄膜微观结构分析,稀有金属材料与工程, 2007,36(1),648-651
    [72] Kishore Uppireddi, Brad R. Weiner, Gerardo Morell,Synthesis of nanocrystalline diamond films by DC plasma-assisted argon-rich hot filament chemical vapor deposition, Diamond and Related Materials, 2008, 17(1): 55-59
    [73] J.G. Buijnsters, P. Shankar, J.J. Ter Meulen,Direct deposition of polycrystalline diamond onto steel substrates,Surface and Coatings Technology, Volume 201, 2007, 201(22-23):8955-8960
    [74] Lothar Sch?fer, Markus H?fer, Roland Kr?ger,The versatility of hot-filament activated chemical vapor deposition,Thin Solid Films, 2006, 515(3): 1017-1024
    [75] D. J. Qiu, A. M. Feng, H. Z. Wu,Structural and optical characterizations of nanostructured diamond films grown on Si(0 0 1) substrates,Diamond and Related Materials, 2004, 13(3): 419-424
    [76] B. V. Spitysn, L. L. Bouilov, B. V. Derjaguin,Vapor growth of diamond on diamond and other surfaces. J. Cryst. Growth 1981, 52(1): 219-266
    [77] Wei, J., Kawarada, H., Suzuki, J. and Hiraki, A. Growth of diamond films at low pressure using magneto-microwave plasma CVD. Journal of Crystal Growth, 1990, 99(3): 1201–1205
    [78] Jean-Marc Bonard,Carbon nanostructures by Hot Filament Chemical Vapor Deposition: Growth, properties, applications,Thin Solid Films, 2006, 501(1-2): 8-14
    [79] K. G. Girija, C. A. Betty,Modeling of current transport in hot filament CVD diamond films,Diamond and Related Materials, 2004,13(10): 1812-1815
    [80] G. A. Raiche, J. B. JeKries, Observation and spatial distribution of C3 in a dc arcjet plasma during diamond deposition using laser-induced Cuorescence. SRI International, MP 96-020a,1996
    [81] J. B. JeKries, G. A. Raiche, M. S. Brown, Optical diagnostics of diamond CVD plasmas. In: Laser Techniques for State-Selected and State-to-State ChemistryII , SPIE Proceedings Series, 1994, 24(2):270-277
    [82] Y. Shibuya, M. Takaya,Effects of substrate pretreatments on diamond synthesis for Si3N4 based ceramics,Surface and Coatings Technology, 1998, 106(1): 66-71
    [83] I. García, A. Conde, J.J. de Damborenea, A.J. Vázquez,Electrochemical behaviour of molybdenum coated with flame CVD polycrystalline diamond film , Thin Solid Films, 1997,310(1-2): 217-221
    [84] P. Hollman, A. Alahelisten, M. Olsson, S. Hogmark,Residual stress, Young's modulus and fracture stress of hot flame deposited diamond,Thin Solid Films, 1995, 270(1-2):137-142
    [85] Jerry Zimmer, K.V. Ravi,Aspects of scaling CVD diamond reactors,Diamond and Related Materials, 2006, 15(2-3): 229-233
    [86] T. Takeno, T. Komoriya, I. Nakamori, Tribological properties of partly polished diamond coatings,Diamond and Related Materials, 2005, 14(11-12):2118-2121
    [87] J.X. Yang, X.F. Duan, F.X. Lu,The influence of dark feature on optical and thermal property of DC Arc Plasma Jet CVD diamond films,Diamond and Related Materials, 2005, 14(10): 1583-1587
    [88] Xin Tang, Bin Yuan Zhao, Ke Ao Hu,Using active carbon pellet as substrate for deposition diamond by MPCVD,Materials Letters, 2005, 59(13):1673-1677
    [89] L. L.Connell, J. W. Fleming, H. N. Chu, et al. Spatially resolved atomic hydrogen concentrations and molecular hydrogen temperature profiles in the chemical-vapor deposition of diamond. J. Appl. Phys., 1995, 78(6): 3622-3634
    [90] D.S. Li, D.W. Zuo, R.F. Chen etal. Fundamental study on diamond spherical shell film for polishing of concave spherical surface, Key Engineering Materials, 2008, 375-376: 380-384
    [91]苏铭德,黄素逸.计算流体力学基础.北京:清华大学出版社,1997
    [92]杨世铭,陶文铨.传热学.北京:高等教学出版社,2006
    [93]韩荣耀,CVD金刚石膜钝头体飞行温度与压力的仿真研究,[硕士学位论文],南京,南京航空航天大学,2007,6
    [94]辛晓华,张武,周华.基于Fluent的绕流问题的数值模拟与并行计算.计算机工程与设计, 2005, 26(8): 2153-2154
    [95]杨毅峰,樊建春,张来斌.基于FLUENT的气罐泄漏仿真在油气安全中的应用.江汉大学学报(自然科学版), 2006,12, 34(4):65-68
    [96]韩占忠,王敬,兰小平. FLUENT:流体工程仿真计算机实例与应用.北京:北京理工大学出版社, 2004, 6
    [97]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社, 2004
    [98]顾尔祚.流体力学中的有限差分法基础.上海:上海交通大学出版社,1988
    [99]李人宪.有限元法基础.北京:国防工业出版社, 2002
    [100]李人宪.有限体积法基础.北京:国防工业出版社, 2005
    [101]陆海泉,球面金刚石厚膜制备技术研究[硕士学位论文],南京,南京航空航天大学,2008
    [102] D.S. Li, D.W. Zuo, R.F. Chen etal. Growth of high quality spherical diamond film by DC plasma jet CVD, Synthesis and Reactivity in Inorganic, Metal Organic and Nanometal Chemistry,2008, 38(3),325-328
    [103]美迈克尔.A.力伯曼,阿伦.J.里登伯格等,等离子体放电原理与材料处理.北京:科学出版社, 2007
    [104] Mark J. Kushner, A phenomenological model for surface deposition kinetics during plasma and sputter deposition of amorphous hydrogenated carbon, J. Appl. Phys, 1987, 62: 4763-4772
    [105] F. P. Bundy. The P-T Phase Reaction Diagram for Elemental Carbon, J. Geophys, Res, 1979,85(B12):6930-6936
    [106]王季陶.非平衡定态相图,北京:科学出版社,2000
    [107]杨国伟.低压气相沉积金刚石薄膜系统中衬底表面凹缺陷成核机制研究.高压物理学报,1994,8(3):230-235
    [108] Ronald C. Brown. A theoretical study of diamond growth mechanisms and morphology [D ].America, the University of Minnesota, 1999.8
    [109]胡希伟.等离子态理论基础,北京:北京大学出版社. 2006
    [110]卢磊等译.薄膜材料-应力、缺陷的形成和表面演化.北京:科学出版社, 2007
    [111]许根慧.等离子体技术与应用.北京:化学工业出版社, 2006
    [112]戴达煌,周克崧.金刚石薄膜沉积制备工艺与应用.北京:冶金工业出版社, 2001
    [113]过增元,赵文华.电弧和热等离子体.北京:科学出版社,1986
    [114]马腾,胡希伟,陈银华.等离子体物理原理.合肥:中国科学技术大学出版社, 1988
    [115]增泉.薄膜物理.北京:电子工业出版社, 1991
    [116]王季陶,张卫,刘志杰.金刚石低压气相生长热力学偶合模型.北京:科学出版社,1998
    [117] M. Vila, A.B. Lopes, F.A. Almeida, Extrinsic stress induced defects in CVD diamond, Diamond and Related Materials, 2008, 17(2): 190-193
    [118] Joseph A. Baglio, Barry C. Farnsworth, Studies of stress related issues in microwave CVD diamond on 100 silicon substrates, Thin Solid Films, 1992, 212(1-2): 180-185
    [119] W. Zhu, R. C. McCune, J. E. deVries, Investigation of adhesion of diamond films on Mo, W and carburized W substrates, Diamond and Related Materials, 1995, 4(3):220-233
    [120] D.F. Bahr, D.V. Bucci, L.S. Schadler, Characterization of d.c. jet CVD diamond films on molybdenum, Diamond and Related Materials, 1996, 5(12):1462-1472
    [121] Weng-Jin Wu, Min-Hsiung Hon, The structure and residual stress in Si containing diamond-like carbon coating, Thin Solid Films, 1997, 307(1-2): 1-5
    [122] M. G. Donato, G. Faggio, M. Marinelli, A joint macro-/micro- Raman investigation of the diamond lineshape in CVD films: the influence of texturing and stress, Diamond and Related Materials, 2001, 10(8):1535-1543
    [123] V. Ralchenko, L. Nistor, E. Pleuler, Structure and properties of high-temperature annealed CVDdiamond, Diamond and Related Materials, 2003, 12(11-12): 1964-1970
    [124] R Meilunas, M S Wong, KC Sheng, et al, Early Stages of Plasma Synthesis of Diamond Fillm Grown on Various Substates. Appl Phys Lett, 1989, 54(22): 2204-2206
    [125] B E Williams and J T Glass. Characterization of DiamondThin Films: Diamond Phase Identifieation Surface MorPhology and Defect Structrure. JMate, 19894(2):373-384
    [126] R W Collins, Y Cong, Y T Kim et al. Real-time and Spectroscopic Ellipsometry Charaeterization of Diamond and Diamond-like Carbon.Thin Soild Films, 1989, 181:565-578
    [127] D.S. Li, D.W. Zuo, R.F. Chen etal. Fundamental study on diamond spherical shell film for polishing of concave spherical surface, Key Engineering Materials, 2008, 375-376, 380-384
    [128] K.O. Schweitz,R. B. Schou-Jensen and S. S. Eskildsen.Ultrasonic Pre-treatment for Enhanced Diamond Nueleation. Diam Relat Mater,1996,5:206-210
    [129] D. G. Goodwin. Scalling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry. Journal of Applied Physics, 1993, 74(11): 6888-6894
    [130]张铭,何家文.丝织构对薄膜X射线残余应力分析的影响.机械工程材料, 2001, 25(5): 21-23
    [131]张定铨,何家文.材料中残余应力的X射线衍射分析和作用.西安:西安交通大学出版社, 1999
    [132] H. Wern. Influence of measurement and evaluation parameters on stress distributions investigated by X-rays. Strain, 1991, 23(11): 27-31
    [133] M.H. Grimsditch, E. Anastassakis, M. Cardona, Effect of uniaxial stress on the zone-center optical phonon of diamond, Phys. Rev. B, 1978, 18(2): 901-904
    [134]王万录,高锦英,廖可俊等.直流等离子体化学气相合成的金刚石膜的内应力研究,物理学报,1992,41(11):1906-1912
    [135] B.R.劳恩,T.R.威而肖,陈禺等译.脆性固体断裂力学,北京:地震出版社,1985
    [136] H.A. Hoff, A.Moitish, J.S. Batle. Comparative frac to graphy of chemical vapor and combustion deposited diamond films.J.Matter.Res.,1990,5:2572-2588
    [137] R. Danzer. strength distribution function for brittle materials J.Eur.Ceram,Soc,1992,10:461-466
    [138] C.Harris, lnfrared window and dome materials, SPIE tutorial text, TT 10,1992,
    [139] Chatterjee S,Edwards A G,Feigerie C S.The nature of stress in hot-filament chemmical vapor deposited diamond thin films on WC,.J.Mater. Sci., 1997, 32:3355-3360
    [140] J. Gunnars, A. Alahelisten. Thermal stresses in diamond coatings and theirinfluence on coating wear and failure.Surface and Coatings Technology, 1996,80: 303-312.
    [141] Handbook of industrial diamond and diamond film, edit by M ark.A.Aprelas,et al ., New York: Marcel Dekker, c l998, Xll: 58
    [142] E. J. Coad and J.E. Field. The liquid impact resistance of CVD diamond and other infrared materials. Proceedings of the SPIE Window and Dome Technologies and Materials Symposium, Orlando, Flarida, April 1997, SPIE, 3060: 169-175
    [143] Z .Feng. Solid particle impact of CVD diamond films.Thin solid films, 1992, 212: 35-42
    [144] J. E.Field, Nicholson, C. R. Seward, Z. Feng. Strenghth, fracure and erosion properties of CVD diamond. Phil. Trans. R .Soc.Lond,1993, A342: 261-275
    [145]黄天斌,刘敬明,钟国仿等.大面积无衬底自支撑金刚石厚膜沉积.北京科技大学学报,2000,22(3):234-237
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.