高墩大跨径连续刚构桥弹塑性地震反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高墩大跨径连续刚构桥已成为西部地区公路线路穿越崇山峻岭和高原沟壑时首选桥型。由于高墩大跨径连续刚构桥的跨径及各墩高差较大,其结构特性相对一般的低墩桥梁更加复杂,由此导致其地震反应特点与一般桥梁也有所不同,尤其是高墩与低墩的地震反应特性有很大的差异、大震作用下桥梁结构非线性特性、桩—土相互作用、多点激励以及行波效应等问题,导致结构地震反应更加复杂,因此有必要研究高、低墩地震反应和非线性地震反应特点。由于现行的《公路工程抗震设计规范》仅适用于桥墩高度不超过30m的桥梁,而且高墩大跨径桥梁的震害资料严重匮乏,抗震设计经验还不丰富。所以研究高墩大跨径连续刚构桥,即研究其高低墩以及非线性等的地震反应特点,对于此类桥梁结构的合理的抗震设计和未来的抗震鉴定加固都有重要的意义。
     针对上述问题,本文以一座高墩大跨径连续刚构桥为例,分别建立了墩底固结模型、桩—土相互作用模型以及大质量模型,采用大型通用有限元程序ANSYS进行了线弹性与弹塑性地震反应分析,论文中主要考虑以下几点:
     1)考虑了竖向地震动的影响;
     2)利用改进Penzien模型建立桩—土相互作用弹簧、土层间剪切弹簧;
     3)采用大质量模型进行多点激励与行波效应的分析;
     4)根据《公路工程抗震设计规范》(JTJ004-89)计算塑性铰长度;
     5)采用Hognested模型建立混凝土非线性应力—应变关系;
     6)采用Mander模型建立塑性铰区约束混凝土的应力—应变关系。
     通过以上各模型间地震反应的对比分析,得出以下主要结论:
     1)竖向地震动对桥墩的轴力、主梁的顺桥向内力响应有一定影响;
     2)横桥向地震作用下结构反应相比顺桥向地震作用下复杂;
     3)顺桥向激励矮墩内力响应大,横桥向激励高墩内力响应大;
     4)结构顺桥向的可承载力相对薄弱,而顺桥向地震作用下低墩遭受大的内力,故低墩遭受破坏的概率要大于高墩;
     5)横系梁对桥墩轴力和顺桥向弯矩有影响,在横系梁处值出现突变;
     6)考虑桩—土相互作用,桥梁结构基频减小;
     7)考虑桩—土相互作用,高墩墩底截面的各项内力响应都减小,墩顶截面位移响应增大;主梁横桥向响应分量增大,轴力当横桥向激励时减小,顺桥向激励时则增大;
     8)考虑桩—土相互作用,采用无约束混凝土非线性应力—应变关系,在墩底及墩顶截面表现出了复杂的变化规律,无规律可循;桥墩横桥向位移峰值增大,高墩增幅大于矮墩;
     9)考虑桩—土相互作用,桥墩塑性铰区采用约束混凝土应力—应变关系,顺桥向激励时,各桥墩墩底及墩顶轴力、顺桥向响应值都有一定程度的增大,墩顶位移增大;横桥向激励时,各桥墩的内力响应分量及位移变化微小;表明,考虑箍筋约束作用后,顺桥向激励时,提高了桥墩的延性,而横桥向激励时,不能提高桥墩的延性;
     10)多点激励时,顺桥向的各项内力以及位移响应的峰值都有很大程度的增加,主梁的各项内力响应峰值增大很多;
     11)行波效应对高矮墩的影响不同;
     12)考虑行波效应,采用混凝土的非线性应力—应变关系,桥墩的轴力及顺桥向内力、位移响应增大,矮墩增大的比率大于高墩;主梁的轴力及顺桥向弯矩增大,在支承处的顺桥向剪力增大;
     13)考虑行波效应,桥墩塑性铰区采用约束混凝土的非线性应力—应变关系后,桥墩的轴力及顺桥向内力、位移响应增大,矮墩增大的比率大于高墩;主梁的轴力及顺桥向弯矩增大,在支承处的顺桥向剪力增大。
High pier and long span continuous rigid frame bridges have became to be the first choice for crossing mountain valley and gully. Influenced by the long span and big height difference of piers, their structure characteristics are more complex than the low pier bridges, and seismic response are also different from the usual bridges. Especially when the big difference of high pier and low pier's seismic response characteristics, nonlinear characteristics of bridge structures under large earthquake, interaction between pile and soil, multi-support excitations and travelling effect being consideration, the seismic response of the structures become more complex. So, it is necessary to do some research on high pier and low pier's seismic response characteristics and nonlinear seismic response characteristics. The current Specifications of Earthquake Resistant Design for Highway Engineering is only suitable for the bridges whose piers are lower than 30 meters, further more, the lack of earthquake damage material and the experience of seismic design about long span and high pier bridges, all of them make the research on high pier and low pier's seismic response characteristics and nonlinear seismic response characteristics being important to reasonable seismic design and seismic evaluation and reinforce.
     Aiming at these problems, in this paper, take a high pier and long span continuous rigid frame bridge as example. Bottom fixed piers model, interaction between pile and soil model and massive quality model are built separately by general FEA program ANSYS. In order to do analysis on linear elasticity and elastic plastic of seismic response characteristics, following are the points taken into considerasion.
     1) Taking the influence of vertical component of earthquake into consideration;
     2) Modified Penzien model was used to build the springs which are used for simulating the interaction between pile and soil and interlaminar shear between earth layers;
     3) Massive quality model was used to do analysis on multi-support excitations and travelling effect;
     4) Calculating the length of the plastic hinge according to Specifications of Earthquake Resistant Design for Highway Engineering;
     5 ) Hognested model was used to establish nonlinear stress strain relation of concrete; 6) Mander model was used to establish nonlinear stress strain relation of concreate in the region of plastic hinge.
     By contrast the seismic response of different model, this study get to the conclusion thereinafter:
     1) Vertical component of earthquake have some influence on the axial force in pier and the inner force in main girder along the longitudinal direction;
     2) The response of structure along the cross direction is more complex than the longitudinal direction;
     3) Excitations along the longitudinal direction do more influences on low piers, and excitations along the cross direction do more influences on high piers;
     4) The low piers' inner force caused by the longitudinal direction earthquake are higher, at the mean time, the longitudinal direction bearing capacity are lower, so, low piers have a higher broken probability than the high piers;
     5) Diaphragms have some influences on the piers' axis force and bent moment along longitudinal direction in girder, they both abrupt changed at where the diaphragms existing;
     6) Base frequency of bridge structure decreases for taking interaction between pile and soil into consideration;
     7) Taking interaction between pile and soil into consideration, the inner force of the piers' bottom sections all decrease and at the mean time the displacement of the piers' top sections increase; the displacement along cross direction of the main girder increase; the axis force decrease under the excitations along the cross direction and increase under the excitations along the longitudinal direction;
     8) Taking interaction between pile and soil into consideration and establishing stress strain relation of nonresistant concreate in the region of piers' plastic hinge, no disciplinarian can be established for the stress strain relation complexity of the piers' bottom sections and top sections; the displacement along cross direction increase,and the increase range of high piers is higher than low piers;
     9) Taking interaction between pile and soil into consideration and establishing stress strain relation of resistant concreate in the region of piers' plastic hinge,the axis force in the whole pile, the response along longitudinal direction and the displance of the piers' top all increase under the excitations along the longitudinal direction;all of the them decrease under the excitations along the cross direction. The response difference demonstrates that taking stirrups confinement into consideration, ductility along longitunal direction increase and ductility along cross direction have any increasement;
     10) The peak value of inner force and displacement along longitunal direction all increase greatly; the peak value of the main girder's inner force also increase greatly;
     11) Travelling effect has different influence on high piers and low piers;
     12) Taking travelling effect into consideration and establishing nonlinear stress strain relation of concreate, the low piers' axis force, inner force along longitunal direction and displacement increase higher than the high piers; the axis force and the bent monment along longitunal direction in the main girder increase too; the shear in the bearing along longitunal direction increase;
     13) Taking travelling effect into consideration and establishing stress strain relation of resistant concreate in the region of piers' plastic hinge, the low piers' axis force, inner force along longitunal direction and displacement increase higher than the high piers; the axis force and the bent monment along longitunal direction in the main girder increase too; the shear in the bearing along longitunal direction increase.
引文
[1]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [2]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [3]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [4]范立础,李建中,王君杰.高架桥梁抗震设计[M].北京:人民交通出版社,2001.
    [5]M.J.N.普瑞斯特雷,F.塞勃勒,G.M.卡尔维.桥梁抗震设计与加固[M].北京:人民交通出版社,1997.
    [6]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006.
    [7]范立础.桥梁工程(上册)[M].北京:人民交通出版社,2001.
    [8]马保林.高墩大跨连续刚构桥[M].北京:人民交通出版社,2001.
    [9]刘健新,李加武.西部地区桥梁的风工程.茅以升科技教育基金会桥梁委员会2005年学术会议论文集[C],2005:105-117.
    [10]公路工程抗震设计规范(JTJ004-89)[M].北京:人民交通出版社,1989.
    [11]马坤全.大跨度高墩连续梁桥空间地震反应分析【J].上海铁道学院学报1995,16(2).
    [12]魏琴,寿楠春,周建春,王用中,史福明.三门峡黄河公路大桥抗震分析[J].桥梁建设,1994,3.
    [13]郑史雄,奚绍中,杨建忠.大跨度刚构桥的地震反应分析[J].西南交通大学学报,1997,32(6):586-592.
    [14]李忠献,史志利.行波激励下大跨度连续刚构桥的地震反应分析[J].地震工程与工程振动,2003,23(2):68-76.
    [15]屈爱平,高淑英.梁-墩-桩基的动力特性研究[J].西南交通大学学报,2001,36(6).
    [16]周国良.高墩及大跨桥梁地震反应特性研究[D].北京:中国地震局地球物理研究所,2004.
    [17]社团法人,日本道路协会.道路桥示方书·同解说V耐震设计编[M].东京:平成14年.
    [18]王勖成,邵敏.有限单元法基本原理和数值计算方法[M].北京:清华大学出版社,1997.
    [19]王焕定,吴德伦.有限单元法及计算程序[M].北京:中国建筑工业出版社,1997.
    [20]Nakamura Y,Kiureghian A D and Lin D.Multiple-support Response Spectrum Analysis of the Golden Gate Bridge[R],Report No.UCB/EERC-93/05,Earthquake Engineering Research Centre,University of California at Berkley,1993.
    [21]李正农,楼梦麟.大跨度桥梁结构地震动输入问题的研究现状[J].同济大学学报,1999,27(5): 592-597.
    [22]张亚辉,赵岩,张春宇.大跨度桥梁抗震分析的空间效应[J].中国铁道科学,2002,23(6):90-94.
    [23]龚晓南,叶黔元,徐日庆.工程材料本构方程[M].北京:中国建筑工业出版社,1995.
    [24]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997.
    [25]程文襄,康谷贻,颜德妲,江见鲸.混凝土结构[M].北京:中国建筑工业出版社,2002.
    [26]李国强,李杰,苏小卒.建筑结构抗震设计[M].北京:中国建筑工业出版社,2002.
    [27]J.B.Mander,M.J.N.Priestley,and R.Park.Theoretical Stress-Strain Model for Confined Concrete[J].J.Structural Eng.,ASCE,1988,114(8):1804-1826.
    [28]J.Hoshikuma,K.Kawashima,and K.Nagaya,et al.Stress-Strain Model for Confined Concrete in Bridge Piers[J];J.Structural Eng..ASCE,1997,123(5):624-633.
    [29]#12
    [30]#12
    [31]#12
    [32]#12
    [33]#12
    [34]#12
    [35]#12
    [36]#12
    [37]#12
    [38]#12
    [39]#12
    [40]#12
    [41]刘庆华,范立础.钢筋混凝土桥墩的延性分析[J].同济大学学报,1998,26(3):245-249.
    [42]刘庆华,钢筋混凝土桥墩抗震设计中滞回模型和损伤模型的实验与理论研究[D].北京:北方交通大学土木建筑系,1994.
    [43]卓卫东,范立础.延性桥墩塑性铰区最低约束箍筋用量[J].土木工程学报,2002,35(5):47-51.
    [44]焦驰宇.城市曲线高架桥的计算模型与动力反应分析[D].西安:西安建筑科技大学,2005.
    [45]胡勃.桥梁抗震概率性设计方法的研究[D].上海:同济大学桥梁工程系,2001.
    [46]沈聚敏,周锡元,高小旺,刘晶波.抗震工程学[M].北京:中国建筑工业出版社,2000.
    [47]林皋.土-结构动力相互作用[J].世界地震工程,1991(1):4-21.
    [48]熊建国.土-结构动力相互作用问题的新进展(Ⅰ)[J].世界地震,1992(3):22-29.
    [49]熊建国.土-结构动力相互作用问题的新进展(Ⅱ)[J].世界地震,1992(4):17-25.
    [50]梁青槐.土-结构动力相互作用数值分析方法的评述[J].北方交通大学学报,1997,21(6):690-694.
    [51]窦立军,杨柏坡,刘光和.土-结构动力相互作用几个实际应用问题[J].世界地震工程,1999,15(4):62-68.
    [52]蒯行成,任毕乔.求解地基-结构系统运动方程的基本频率法[J].湖南大学学报,1998,25(6):81-85.
    [53]栾茂田,林皋.地基动力阻抗的双自由度集总参数模型[J].大连理工大学学报,1996,36(4):477-481.
    [54]J.P.Wolf,吴世明.土-结构动力相互作用[M].北京:地震出版社,1989.
    [55]M.Nuary Aydmoglu.Consistent Formulation of Direct and Substructure Methods in nonlinear Soil-Structure Interaction.Soil Dynamics and Earthquake Engineering,12(1993):403-410.
    [56]宋二祥.无限地基数值模拟的传输边界[J].工程力学增刊,1997:613-619.
    [57]廖振鹏.进场波动的数值模拟[J].力学进展,1997,27(2):193-216.
    [58]张楚汉.结构-地基动力相互作用,结构与介质相互作用理论及其应用[M].南京:河海大学出 版社.
    [59]朱合华,陈清军,杨林德.边界元法及其在岩土工程中的应用[M].上海:同济大学出版社,1997.
    [60]J.P.Wolf,Georges R.Darbre.Dynamic Stiffness of Unbounded Medium based on Damping-Solvent Extraction.EESD.1984,1293:385-401.
    [61]杜修力,熊建国.波动问题的级数解边界元法[J].地震工程与工程振动,1988,8(1).
    [62]J.P.Wolf,Georges R.Darbre.Non-linear soil-structure-interaction analysis based on the boundary-element method in time domain with application to embedded foundation.Earthquake engineering & structure dynamics,1986,14:83-101.
    [63]陈清军,徐植信.层状土介质中群桩及其上部结构体系对任意入射地震波的响应[J].地震工程与工程振动,1994,14(1):36-44.
    [64]赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基[J].清华大学学报,1986(3).
    [65]陈健云,林皋.三维结线动力无穷元及其特性研究[J].岩土力学,1998,19(3):14-19.
    [66]刘兴业.土、结构相互作用问题的边界元、有限元耦合法[J].振动工程学报,1994(3):45-58.
    [67]Z.X.Lei,Y.K.Cheung,L.G.Tham.Vertical Response of Single Piles:Transient Analysis Time-domain BEM.Soil Dynamics and Earthquake Engineering,1993(12):37-49.
    [68]陈新锋,金峰,张楚汉,王光纶.一种分析层状介质-结构相互作用的多元耦合模型[J].清华大学学报,1997,37(11):83-86.
    [69]李辉.土-结构动力相互作用[D].重庆:重庆建筑大学,1999.
    [70]陈跃庆,吕西林,李培振,陈波,胡质理.分层土-基础-高层框架结构相互作用体系振动台模型试验研究[J].地震工程与工程振动,2001,21(3):104-112.
    [71]吕西林,陈跃庆.高层建筑结构-地基动力相互作用效果的振动台试验对比研究[J].地震工程与工程振动,2002,22(2):42-48.
    [72]吕西林,陈跃庆,陈波,黄炜,赵凌.结构-地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):20-29.
    [73]吕西林,张之颖,曹文清.土-结构相互作用体系合成模态阻尼比的振动台模型试验研究[J].力学季刊,2003,124(1):75-80.
    [74]徐志英,唐善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报,1993,115(4):1-7.
    [75]陈国兴,王志华,宰金珉.土与结构动力相互作用体系振动台模型试验研究[J].世界地震工程, 2002,18(4):47-54.
    [76]楼梦麟,王文剑,马恒春,朱彤.土-桩-结构相互作用体系的振动台模型试验[J].同济大学学报,2001,29(7):763-768.
    [77]凌贤长,王东升.液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展[J].地震工程与工程振动,2002,22(4):53-59.
    [78]陈波,吕西林,李培振,陈跃庆.用ANSYS模拟结构-地基动力相互作用振动台试验的建模方法[J].地震工程与工程振动,2002,22(1):126-131.
    [79]陈跃庆,吕西林,侯建国,李大庆.有建筑物存在的软土地基液化模拟地震振动台试验研究[J].武汉大学学报(工学版),2003,36(1):59-85.
    [80]韦晓.桩-土-桥梁结构相互作用振动台试验与理论分析[D].上海:同济大学博士论文,1999.
    [81]陈兴国,谢君斐,张克绪.桩和群桩的静刚度及动力阻抗(下)[J].世界地震工程,1995(4):35-42.
    [82]杨澄宇.桩-土-结构动力相互作用理论模型研究与参数分析[D].上海:同济大学硕士论文,2003.
    [83]王有为,王开顺.地震作用下群桩水平刚度的计算方法及程序设计[J].土木工程学报,1984,17(1):39-48.
    [84]王有为,王开顺.建筑物-桩-土相互作用地震反应分析研究[J].建筑结构学报,1985(5).
    [85]陈清军,苏耀华.动力群桩效应的若干分析方法[J].世界地震工程,1996(1):43-47.
    [86]George Gazetas,Ke Fan,Amir Kaynia.Dynamic Response of Pile Groups with Differer Configurations.Soil Dynamics and Earthquake Engineering,1993(12):239-257.
    [87]Ettouney M.M.,Brennan J.A.and Forte M.F.Dynamic Behavior of Pile Groups.J.Geotech.Engng.Div.,ASCE.1983,109(3).
    [88]刘宗贤.单桩基础在层土中的扭转振动分析[J].世界地震工程,1993(1):37-42.
    [89]刘宗贤,贺玉亭.桩基础在阻尼与分层弹性地基场地土波动影响下的横向地震反应分析[J].地震工程与工程振动,1994,14(3):47-59.
    [90]蒯行成,沈蒲生,陈军.一种用于桩基础动力相互作用分析的桩单元复刚度矩阵[J].土木工程学报,1998,31(5):48-55.
    [91]王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社,1997.
    [92]陆锐.群桩桥梁结构抗震简化计算方法的比较分析[D].上海:同济大学桥梁工程系,2001.
    [93]凌治平,易经武.基础工程[M].北京:人民交通出版社,1997.
    [94]张晨南.推倒分析方法在高架桥梁系统抗震分析中的应用[D].上海:同济大学桥梁工程系,2003.
    [95]王凤霞,何政,欧进萍.桩-土-结构动力相互作用的线弹性地震反应分析[J].世界地震工程,2003,19(2):58-66.
    [96]黄义,何芳社.弹性地基上的梁、板、壳[M].北京:科学出版社,2005.
    [97]孙利民,张晨南,潘龙,范立础.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报,2002,30(4):409-415.
    [98]Penzien J,Scheffey C F,Parmelee R A.Seismic analysis of bridges on long piles[J].ASCE,1964,90(EM3):223-254.
    [99]孙利民,刘东,潘龙,王君杰.桩-土相互作用集中质量模型的土弹簧刚度计算方法[C].第十四届全国桥梁学术会议论文集,2000,691-698.
    [100]肖晓春,林皋,迟世春.桩-土-结构动力相互作用的分析模型与方法[J].世界地震工程,2002,18(4):123-130.
    [101]肖晓春,迟世春,林皋.水平地震下土-桩-结构相互作用简化分析方法[J].哈尔滨工业大学学报,2003,35(5):561-564.
    [102]肖晓春,迟世春,林皋,约翰.艾法罗.地震荷载下桩土相互作用简化计算方法及参数分析[J].大连理工大学学报,2002,42(6):719-723.
    [103]Kiureghian A D,Neuenhofer A.Response spectrum method for multi-support seismic excitations[J].EESD,1992,21:713.
    [104]Kiureghian A D,Neuenhofer A.A coherency model for spatially varying ground motions[J].EESD,1996,25:99-111.
    [105]Bonganoff J L,GoldbergJ E,Schiff A J.The effect ofground transmission time on the response of longstructures.Bull Seism Soc Am,1965,55:627-640.
    [106]European Committee for Standardization.Eurocode 8:Structures in seismic regions-designpart 2:Bridges.Brussels:European Committee for Standardizatio,1995.
    [107]屈铁军,王前信.多点输入地震反应分析研究的进展[J].世界地震工程,1993,9(1):30-36.
    [108]项海帆.斜张桥在行波作用下的地震反应[J].同济大学学报,1983,(2):1-9.
    [109]袁万城.大跨桥梁空间非线性地震反应分析[D].上海:同济大学桥梁工程系,1990.
    [110]陈幼平,周宏业.斜拉桥地震破坏的计算研究[J].地震工程与工程振动,1995,15(3):127-134.
    [111]Nazmy A S,Abdel-Ghffor A M.Effect of ground motion spatial variability on the response of cable -stayed bridges[J].EESD,1992,21:1-20.
    [112]刘吉柱.大跨度拱桥地震反应的行波效应分析[D].上海:同济大学桥梁工程系,1987.
    [113]陈玮.大跨桥梁多点激励随机地震响应分析及程序实现[D].上海:同济大学桥梁工程系,1998.
    [114]王前信,李云林.拱式结构对地震多支点输入的反应[J].地震工程与工程振动,1984,4(2):49-81.
    [115]陈厚群,侯顺载,王均.拱坝自由场地震输入和反应[J].地震工程和工程振动,1990,10(2):53-64.
    [116]屈铁军.地面运动的空间变化特性研究及地下管线地震反应分析[D].哈尔滨:国家地震局工程力学研究所,1995.
    [117]冯启民,胡聿贤.空间相关地面运动的数学模型[J].地震工程与工程振动,1981,1(3):1-8.
    [118]Atkinson G M,Silva W.Stochastic modeling of California ground motion[J].Bull Seism Soc AM,2000,90:255-274.
    [119]Harichandran R S,Vanmarcke E H.Stochastic variation of earthquake ground motion in space and time[J].J Eng Mech,1986,112:154-174.
    [120]Abrahamson N A,Schneider J F,Stepp J C.Empirical spatial coherency functions for application to soil-structure interaction analysis[J].Earthquake Spectra,1991,7:1-28.
    [121]Loh C H,Ych Y T.Spatial variation and stochastic modeling of seismic differential ground movement[J].EESD,1988,16:583-596.
    [122]Santa-Cruz S,Heredia-Zavoni E,Harichandran R S.Low-frequency behavior of coherency for strong ground motions in Mexico city and Japan[M/CD].Auckland:Elsevier Science Ltd,12~(th) WCEE,2000.
    [123]Hindy A,Novak M.Pipeline response to random ground motion[J].J Eng Mech,1980,106:339-360.
    [124]Luco J E,Wong H L.Response of a rigid foundation to a spatially random ground motion[J].EESD,1986,14:891-908.
    [125]Zerva A.Response of multi-span beams to spatially incoherent seismic ground motions[J].EESD,1990,19:819-832.
    [126]Perotti F.Structural response to non-stationary multiple-support random excitation[J].EESD,1990,19:513-527.
    [127]Petrov A A.Seismic response of extended systems to multiple support excitations[M/CD].Acapulo:Elsevier Science Ltd,11~(th) WCEE,1996.
    [128]姜节胜,顾松年.多支座大跨度结构随机地震响应分析[J].西北工业大学学报,1999,17(1): 38-42.
    [129]Hao H.Response of multiply supported rigid plate to spatially correlated seismic excitation[J].EESD,1991,20:821-838.
    [130]Hao H.Arch response to correlated multiple excitations[J].EESD,1993,22:389-404.
    [131]Hao H.Effects of spatial variations of ground motion on large multiple- supported structures[R].Berkeley:Earthquake Engng Research Center,University of California at Berkeley,1989.
    [132]Harichandran R S,Wang W.Response of simple beam to spatiality varying earthquake excitation[J].J Eng Mech,1988,114:1526-1541.
    [133]Harichandran R S,Wang W.Response of multi-span beams to spatially incoherent seismic ground motions[J].EESD,1990,19:819-832.
    [134]Harichandran R S,Hawwari A,Sweidan B N.Response of long-span bridges to spatially varying ground motion[J].J Struct Eng,1996,122(5):476-484.
    [135]Soyluk K,Dumanoglu A A.Comparison of asynchronous and stochastic dynamic responses of a cable-stayed bridges[J].Eng Struct,2000,22:435-445.
    [136]楼梦麟,林皋.地震动空间相关性对水坝地震反应影响[J].水力发电学报,1984,(2):39-46.
    [137]林家浩.随机地震响应功率谱快速算法[J].地震工程和工程振动,1990,10(4):38-46.
    [138]Berrah M,Kausel E.Response spectrum analysis of structures subjected to spatially varying motions[J].EESD,1992,21:461-470.
    [139]Berrah M,Kausel E.A model combination rule for spatially varying seismic motions[J].EESD,1993,22:791-800.
    [140]Yamamura N,Tanaka H.Response analysis of flexible MDF systems for multiple-support seismic excitation[J].EESD,1990,19:345-357.
    [141]Trifunac M D,Todorovska M I.Response spectra for differential motion of columns[J].EESD,1997,26:251-268.
    [142]Todorovska M I,Trifunac M D.Response spectra for differential motion of columns[M/CD].Auckland:Elsevier Science Ltd,12~(th) WCEE,2000.
    [143]王淑波.大型桥梁抗震反应谱分析理论与应用研究[D].上海:同济大学桥梁工程系,1997.
    [144]Heredia-Zavoni E,Vanmarke E H.Seismic random-vibration analysis of multisupport-structural systems[J].J Eng Mech,1994,120(5):1107-1128.
    [145]Loh C H,Ku B D.An efficient analysis of structural response for multiple-support seismic excitations[J].Eng Struct,1995,17(12):15-26.
    [146]苗家武.大型桥梁抗震多点激励反应谱方法应用研究与程序实验[D].上海:同济大学桥梁工程系,1999.
    [147]Burdisso R A,Singh M P.Multiply supported secondary systems part Ⅰ:Response spectrum analysis[J].EESD,1987,15:35-72.
    [148]Burdisso R A,Singh M P.Multiply supported secondary systems part Ⅱ:Seismic inputs[J].EESD,1987,15:73-90.
    [149]Kahan M,Gibert Rene-Jean,Bard Pierre-Yves.Influence of seismic waves spatial variability on bridges:A sensitivity analysis[J].EESD,1996,25:795-814.
    [150]王君杰,王前信,江近仁.大跨度拱桥在空间变化地震动下的响应[J].振动工程学报,1995,8(2):119-126.
    [151]Nakamura Y,Kiureghian A D,David L.Multiple-support response spectrum analysis of the golden gate bridge[R].Berkeley:Earthquake Engng Research Center,University of California at Berkeley,1993.
    [152]Dong K K,Wieland M.Applicaton of response spectrum method to a bridges subjected to multiple support excitation[M/CD].Tokyo:9~(th)WCEE,1988.
    [153]Allam S M,Datta T K.Seismic behavior of cable-stayed bridges under multi-component random groundmotion[J].Eng Struct,1999,21(1):62-74.
    [154]Allam S M,Datta T K.Seismic Analysis of cable-stayed bridges under multi -component random ground motion by response spectrum method[J].Eng Struct,2000,22:1367-1377.
    [155]P.Leger,I.M.Ide and P.Paultre.Multiple-support Seismic Analysis of Large Structures[J].Computers&Structures,1990,36:1152-1158.
    [156]丰硕.大跨度桥梁地震反应及及空间变化特性分析[D].浙江:浙江大学,2005.
    [157]R.W.Clough and J.Penzien.Dynamics of structures[M].New York:McGraw-Hill Inc,1993.
    [158]陆秉权,王立清,艾尚茂.Ansys动力分析中大质量法的应用[J].电站系统工程,2002,18(5).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.