杂交稻苗期杂种优势的比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂种优势是一种普遍存在的生物学现象,指两个遗传性不同的亲本杂交产生的杂交种在生长势、生活力、抗逆性以及产量、品质等方面优于其双亲的现象。杂种优势的利用获得了巨大的经济和社会效益。但对杂种优势机理的探索远远落后于对它的实践应用。
     近年来对杂种优势分子基础的研究成为一个热点,在mRNA转录水平发现了许多杂种基因表达偏离亲本平均水平的非加性表达(nonadditive expression)现象,但在蛋白质水平的研究却很少。本研究采用荧光差异凝胶电泳,双向电泳和MALDI-TOF-MS技术,对强优势杂交水稻——汕优63及其亲本的胚、苗期第3叶以及根系的蛋白质组进行比较研究,探寻它们在蛋白质组水平上的基因表达特征,研究结果如下:
     (1)对强优势杂交水稻——汕优63及其亲本的成熟胚蛋白质组进行分析。从不育系珍汕97A、保持系珍汕97B、恢复系明恢63及杂种一代汕优63的胚中分别分离到965.7±19.2,964.7±16.7,961±18.7,982.7±19个蛋白质点。发现同核异质的珍汕97A与珍汕97B的胚蛋白质组电泳图谱基本相同,珍汕97A有19个稳定可重复的蛋白质点不同于恢复系明恢63,明恢63有17个稳定可重复的蛋白质点不同于珍汕97A,这些亲本间的差异蛋白质都在F_1汕优63中表达,表现为共显性或显性效应,未发现杂种特异表达的蛋白质,这些蛋白质主要呈加性表达,少数为非加性表达。
     经MALDI-TOF-MS/MS鉴定了其中20个差异蛋白,9个获得有显著性意义的鉴定结果。其中2种与代谢相关,分别为推定的磷酸甘油酸变位酶和二氢硫辛酸脱氢酶;1种可能与防御相关的几丁质酶;另有1种蛋白质含晚期胚胎丰富蛋白序列,其余为推定的球蛋白。
     (2)对汕优63组合3叶1心期地上部分性状进行了观察分析,发现汕优63在苗期的株高、叶长和叶宽表现为不同程度的中亲优势,分别为13.14%、14.79%和5.95%,均未超亲。但叶面积表现为显著的超高亲优势,达15.72%。分析认为叶面积的超亲优势与叶长和叶宽两个子性状间的乘数效应有关。
     对汕优63及其双亲苗期第3叶蛋白质组进行DIGE定量比较分析,分离到1667个以上的蛋白质点。发现有23个蛋白质点在三个品系间存在显著差异(p<0.01)。其中16个双亲间的差异表达蛋白质在汕优63的丰度接近于双亲均值,占全部69.6%;2个蛋白质点的丰度对双亲均值偏离超过20%,其余5个蛋白质点偏离幅度在10-20%之间,表现为不同程度的非加性表达效应。
     经MALDI-TOF-MS分析,有22个差异蛋白得到成功鉴定,包括9对存在差异的等位基因。其中2种与呼吸代谢相关,分别为推定的磷酸甘油酸变位酶以及二氢硫辛酸脱氢酶;1种蛋白质与基因表达调控有关,为RPS5包含蛋白;1种铁氧还蛋白-NADP还原酶是光合作用的重要酶类;1种推定的β-羟基类固醇脱氢酶/异构酶,可能与类固醇代谢有关;另3种蛋白质可能与保护防御相关,分别是肽-甲硫氨酸亚砜还原酶、推定的肽-甲硫氨酸亚砜还原酶和GSH依赖脱氢抗坏血酸还原酶。其中铁氧还蛋白-NADP还原酶的正向非加性表达,可能与F1光饱和点较高等优良光合性状有关。
     (3)对汕优63及其亲本3叶1心期根系蛋白质组进行比较分析,通过双向电泳和考马斯亮蓝染色,发现23个可重复的差异蛋白质点。双亲间所有的差异点均在F_1汕优63中出现,有4个蛋白质表现为明显的非加性表达效应,未发现杂种特异表达的蛋白质,差异点19在杂种中的表达受到明显抑制。
     对23个蛋白质点进行MALDI-TOF-MS/MS鉴定,均得到有显著性的结果.有7种蛋白质与物质能量代谢相关,分别为推定的磷酸甘油酸变位酶,烯醇化酶,甲基丙二酸半醛脱氢酶以及脱氢抗坏血酸还原酶,胞浆苹果酸脱氢酶以及一种推定的β-1,3-葡聚糖酶;有2种酶与信号转导有关,分别是腺苷甲硫氨酸合成酶和N-氨甲酰腐胺酰胺酶;腺苷甲硫氨酸合成酶及槲皮素3-o-甲基转移酶1与次生物质代谢相关。还发现可能与蛋白质相互作用有关的kelch重复片段包含蛋白,推测其可能与上位性效应有关。
     (4)探讨了杂种优势理论无法充分解释育种实践上的杂种优势的现象及原因。认为局部优势并不一定导致整体的杂种优势,已有的理论可以解释局部优势,但无法解释做为整体的杂种优势。对局部优势与整体优势的关系做初步分析,提出局部性状优势主要通过乘数关系组织为整体杂种优势的观点,认为乘数关系和乘数效应是杂种优势形成的重要基础。对这一观点做初步的展开论述,并得出一些与杂交水稻高产育种工作相关的推论。
     本研究首次利用蛋白质组学的方法对杂交水稻不同器官的蛋白质组进行比较分析,得到杂交水稻在蛋白质组水平上的基因表达特点和有关数据,鉴定了一些有价值的蛋白质,并发现一些双亲间的新等位基因,包括一些功能尚未完全明确的水稻基因。此外还分析了局部优势与整体优势的关系,提出局部性状优势主要通过乘数关系组织为整体杂种优势,乘数关系和乘数效应是杂种优势形成的重要基础的观点。这些工作为了解强优势杂交水稻杂种优势在蛋白质组水平上的基因表达基础积累了一些必要资料,是前人在转录水平上的研究的必要互补,为更好地阐明杂种优势的机制提供依据。
Heterosis is a fundamental biological phenomenon,refers to the superiorperformance of hybrid in terms of increased yield,quality,growth vigor,speed ofdevelopment and resistance to climatic rigours relative to both parent lines.Theapplication of heterosis to agriculture has produced enormous social and economicbenefit,but the mechanism underlying heterosis remains elusive.Recently,manyresearches focus on the molecular basis of heterosis,several studies analyzed heterosisassociated gene expression pattern at the mRNA translation level,and nonadditive geneexpression was found in hybrids of different plants.But few studies were carried out at theprotein lever.To study gene expression pattern of hybrid rice at protein level,theproteome of embryo,leaf and root from an elite hybrid rice Shanyou63 and its parents wasanalyzed with 2-DE or DIGE,MALDI-TOF-MS and MALDI-TOF-MS/MS.
     Embryo proteins in mature seeds of elite hybrid rice shanyou 63 and its 3-lines(sterile line,maintainer line and restorer line) were separated with 2-DE.The number ofdetected protein spots was 965.7±19.2 (SD,n=3),964.7±16.7,961±18.7 and 982.7±19(n=6),from Zhenshan97A (sterile line,female parent),Zhenshan97B (maintainer line),Minghui63 (restorer line,male parent) and Shanyou63 respectively.No repeatabledifference was detected between Zhenshan97A and its isogene line Zhenshan97B.However,there were many differentially expressed proteins between Zhenshan97A andMinghui63,showing 19 reaptably differential protein spots detected only in Zhenshan97A,and 17 ones only in Minghui63.All of these differential proteins were expressed in hybrid.Furthermore,there were 21 protein spots with different abundance in parents.It isremarkable that the abundance of all those differentially expressed proteins in the hybridwere different from that of corresponding proteins expressed in its parents,and main ofthem were close to the mid-parent values,although some of them deviated relativelymid-parent predictions,exhibiting somewhat nonadditive expression.20 differentiallyexpressed proteins were analyzed through MALDI-TOF-MS/MS and database searching.Of the 9 identified proteins,dihydrolipoyl dehydrogenase and putative phosphoglyceratemutase involved in respiration metabolism,chitinase correlated to disease and defend, and others were putative globulin and putative LEA domain-containing protein.
     Morphological traits of aerial part in Shanyou63 and its parents was surveyed,different midparent heterosis(MPH) was found in plant height,leaf length and leaf wide atseedling stage,only leaf area showed a significant best parent heterosis(BPH) of 15.72 %.It suggested that multiplicative effect is a important factor in the formation of BPH of leafarea.
     Differentially expressed leaf proteins among the three lines were examined usingDIGE.Of the>1677 protein spots reproducibly detected on each gel,23 protein spotswere found different accumulation among the three lines (ANOVA-1 analyzed,p<0.01).Inthe hybrid,16 proteins were accumulated in a additive fashion in the hybrid compared tothe average of their parental lines,while the standard volume of 2 proteins showed anonadditive expression>20%,while the other 5 protein spots showed a nonadditive withina range of 10-20%.
     22 of the differentially expressed proteins were identified by MALDI-TOF-MS anddatabase searching,included 2 respiration metabolism proteins,dihydrolipoyldehydrogenase and putative phosphoglycerate mutase;a ferredoxin--NADP reductaserevolving in photosynthetic electron transport chain;a Putative 3-beta hydroxysteroiddehydrogenase/isomerase may be an enzyme in steroid metabolism;a RPS5 containingprotein may revolve in gene expression and regulation;and 3 anti-oxidatant enzymes:GSH-dependent dehydroascorbate reductase 1,peptide methionine sulfoxide reductaseand a putative peptide methionine sulfoxide reductase.
     Differentially expressed root proteins among the three lines were examined with 2-DEand CBB staining。23 protein spots were found different accumulation among the threelines (Student's t-test,p<0.05),4 of them showed a nonadditive expression>20%,noprotein was found specially expressed in hybrid,but spot 19 showed a obvious decreasein F1.
     Using MALDI-TOF-MS/MS and database searching,all of the differentially expressedroot proteins were identified.8 of them was manifested involving in matter and energymetabolism,while 2 were related to signal transduction,and a kelch repeat containingprotein might involve in protein-protein interaction,possible related to epistasis.
     The puzzle of why dominance or over-dominance hypothesis cannot explain theheterosis mechanism properly was discussed.It is considered that global heterosis,suchas heterosis of yield,dose not necessarily be the result of local heterosis which could beexplained fully by these hypothesis.It is proposed that,among the local traits,there is amultiplicative relationship by which the heterosis of local traits was organized to formglobal heterosis.It is hold that multiplicative relationship and multiplicative effect wereimportant basis of global heterosis,and then some conclusion concerning breedingpractice were deduced.
引文
1. 白书农,刘文芳,肖翊华.杂交稻汕优36幼苗根系呼吸代谢特点的研究[J].武汉植物学研究,1990,8(2):165-170.
    2. 鲍文奎.机会与风险——40年育种研究的思考[J].植物杂志,1990(4):4-5.
    3. 陈立云,肖应辉,唐文帮,雷东阳.超级杂交稻育种三步法设想与实践[J].中国水稻科学,2007,2l(1):90-94.
    4. 程宁辉,高燕萍,杨金水,钱曼,葛扣麟.水稻杂种一代与亲本幼苗基因表达差异的分析[J].植物学报,1997,39:379-382.
    5. 程宁辉,杨金水,高燕萍,徐明良,钱曼,葛扣麟.玉米杂种一代与亲本幼苗基因表达差异的初步研究[J].科学通报,1996,41(5):451-454.
    6. 郭尧君.SDS电泳技术的实验考虑及最新进展[J].生物化学与生物物理进展,1999,18(1):32-37.
    7. 何俊.虚拟水稻——形态结构和生理生态并行模拟研究[D].2006,16-18.
    8. 黄耀祥.水稻生态育种科学体系的构建和新进展——两源并举“超优势稻”的选育[J].世界科技研究与发展,2003,(4):1-8.
    9. 雷海英,孙毅,阎敏,段永红.玉米抽穗期亲本及其杂交种间基因差异表达与杂种优势的关系[J].华北农学报,2007,22(2):29-33.
    10.李任华,徐才国,何予卿,袁隆平,王象坤.水稻亲本遗传分化程度与籼粳杂种优势的关系[J].作物学报.1998,24(5):569-575.
    11.林文雄,粱义元,王廷彩.杂交水稻干物质生产与产量形成的优势效应[J].福建建农业大学学报,1996,25(3):260-265.
    12.卢庆善,孙毅,华泽田.农作物杂种优势[M].北京:中国农业科技出版社,2000.
    13.吕川根,宗寿余,姚克敏,夏士健,胡凝,邹江石.水稻叶片形态因子的遗传力分析[J].江苏农业学报,2006,22(2):95-99.
    14.孟凡荣,倪中福,吴利民,谢晓东,王章奎,孙其信.不同优势小麦正反杂交种子与亲本自交种子发育前期基因表达差异[J].作物学报,2005,31(1):119-123
    15.潘家驹.杂种优势[M].北京:中国农业出版社,1992.82-88.
    16.孙传清,王象坤,吉村淳,岩田伸夫.普通野生稻和亚洲栽培稻遗传多样性的研究[J].遗传学报,2000,27(3):227~234.
    17.孙其信,倪中福,陈希勇,刘志勇,黄铁城.冬小麦部分基因杂合性与杂种优势表达[J].中国农业大学 学报,1997,2(1):64,116.
    18.万清林,俎桂琴,孙国荣,肖翊华,刘文芳.杂交水稻幼芽呼吸和抗氰呼吸强度的研究.武汉植物学研究[J].1992,10(2):154-159.
    19.王得元,殷秋妙,李颖,郑锦荣,黄爱兴.作物杂种优势的分子生物学研究进展[J].西北农业大学学报,1999,27(1):94-99.
    20.吴京华,廖伏明,罗闰良.中国水稻杂种优势利用的成就、进展与前景[J].世界农业,1999,(8).21.
    21.吴若炎.杂种优势:双向基因重组方式下再选择的价值体现[J].农业现代化研究,1999,20(2):111-113.
    22.谢华安.中国种植面积最大的水稻良种“汕优63”培育的理论与实践[J].福建农科院学报,1997,12(1):1-6.
    23.谢华安.中国种植面积最大的水稻良种“汕优63”Ⅱ.主要农艺学和生物学特征特性[J].福建农科院学报,1997a,12(1):1-6.
    24.谢华安.中国种植面积最大的水稻良种“汕优63”Ⅲ光合特性与光能利用率[J].福建农科院学报,1997b,12(2):1-5.
    25.邢俊杰,成志伟,杨剑,李亦群,梁铃,殷绪明,张朝良,杨塞,谢宝贵,曹孟良.利用基因芯片技术分析水稻杂种优势的分子机理[J].杂交水稻,2005,20(4):59-61.
    26.晏月明,王绪信.籼粳稻杂交的剑叶形态的遗传研究[J].遗传,1990,12(1):1-4.
    27.易冬莲,陈卫江;甘蓝型油菜杂种优势利用研究与应用[J];湖南农业科学;2002年S1期;25-26.
    28.游修龄,从河姆渡遗址出土稻谷试论我国栽培稻的起源、分化与传播[J].作物学报,1979,5(3):1-1.
    29.余四斌,李建雄,徐才国,谈移芳,高友军,李香花,张启发.上位性效应是水稻杂种优势的重要遗传基础[J],中国科学(C辑),1998,28(4):333-342.
    30.袁隆平.选育水稻亚种间杂交组合的策略[J].杂交水稻,1996,11(2):1-3.
    31.袁隆平.杂交水稻学[M].2002,北京:中国农业出版社.
    32.张启发.水稻杂种优势的遗传基础研究[J].遗传,1998,20(增刊):1-2.
    33.张银红,倪中福,姚颖垠,赵军,孙其信.利用大麦寡核苷酸芯片分析小麦种间杂交种与亲本之间根系基因表达谱展[J].自然科学进展,2006,16:300-308.
    34.Adams D O,Yang S F.Ethylene biosynthesis:Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene[J].Proc Natl Acad Sci U S A,1979,76(1):170-174.
    35.Adams D O,Yang S F.Methionine metabolism in apple tissue[J].Plant Physiology,1977, 60:892-896.
    36. Adams J C, Kelso R, Cooley L. The kelch repeat superfamily: propellers of cell function [J]. Trends Cell Biol, 2000, 10:17-24.
    37. Agrawal G K, Rakwal R, Yonekura M, Kubo A, Saji H. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedling [J]. Proteomics,2002, 2(8):947-959.
    38. Ali M, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress [J]. J Prote Res, 2006, 5: 396-403.
    39. Allison K K. Approaches to elucide the basis of desiccation tolerance in seeds [J]. Seed Science Research, 1997, 7:75-95.
    40. Andrade M A, Gonzalez-Guzman M, Serrano R, Rodriguez P L. A combination of the F-box motif and kelch repeats defines a large Arabidopsis family of F-box proteins [J]. Plant Mol Biol, 2001. 46(5):603-614.
    41. Apelbaum A, Burgoon A C, Anderson J D, Lieberman M, Ben-Arie R, Mattoo A K. Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts [J]. Plant Physiology, 1981,68:453-456.
    42. Ashby E. Studies on the inheritance of physiological characters. I. A physiological investigation of the nature of hybrid vigour in maize [J]. Annals of Bot. 1930, 44:457-447.
    43. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuokal M. Cytokinin oxidase regulates rice grain production [J]. Science, 2005,309(29):741-745
    44. Badger M R. Photosynthetic Oxygen Exchange [J]. Ann Rev Plant Physio, 1985, 36:27-53.
    45. Bao J Y, Lee S, Chen C, Zhang X Q, Zhang Y, Liu S Q, Clark T, Wang J, Cao M L, Yang H M, Wang S M, Yu J. Serial Analysis of Gene Expression Study of a Hybrid Rice Strain (LYP9) and Its Parental Cultivars [J]. Plant Physiology, 2005, 138:1216-1231.
    46. Birchler, J A. In search of the molecular basis of heterosis [J]. Plant Cell 2003, 15:2236-2239.
    47. Blackman S A, Wettlaufer S H, Obendort R L, Leopold A C. Maturation proteins associated with desiccation tolerance in soybean [J]. Plant Physiology, 1991, 96:868-874.
    48. Bowsher C G, Boulton E L, Rose J, Nayagam S, Ernes M J. Reductant for glutamate synthase is generated by the oxidative pentose phosphate pathway [J]. Plant J, 1992, 2, 893-898.
    49. Bowsher C G, Hucklesby D P, Emes M J. Nitrite reduction and carbohydrate metabolism in plastids purified from roots of Pisum sativum. L [J]. Planta, 1989,177, 359-366.
    50. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye ligand binding [J]. Anal Biochem, 1976, 72:248-254.
    51. Brot N, Weissbach H. Biochemistry of methionine sulfoxide: residues in protein [J]. Biofactors, 1991, 3(2): 9 96.
    52. Bruce A B. The Mendelian theory of heredity and augmentation of vigor [J]. Scienee. 1910, 32:627-628.
    53. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri G M, Carnemolla B, Orecchia P, Zardi L, Righetti P G. Blue silver: A very sensitive colloidal CoomassieG-250 staining for proteome analysis [J]. Electrophoresis, 2004, 25:1327 - 1333.
    54. Casati P, Zhang X, Burlingame A L, Walbot V. Analysis of leaf proteome after UV-B irradiation in maize lines differing in sensitivity [J]. Mol Cell Proteomics, 2005, 4:1673-1685.
    55. Chiang P K, Gordon R K, Tal J Zeng G C, Doctor B P, Pardhasaradhi K, McCann P P. S-Adenosylmethionine and methylation [J]. FASEB, 1996, 10: 471-480.
    56. Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T. Proteomics Identification of Differentially Expressed Proteins Associated with Pollen Germination and Tube Growth Reveals Characteristics of Germinated Oryza sativa Pollen [J]. Mol Cell Prot, 2007,6:207-230.
    57. Damerval C, de Vienne D, Zivy M, Thiellement H. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins [J]. Electrophoresis, 1986, 7:52-54.
    58. Damerval C, Hebert Y, Vienne D.ls the polymorphism of protein amounts related to phenotypic variability? [J]. Theor Appl Genet, 1987, 74:194-202.
    59. Dickersong, E. Experimental approaches in utilizing breed resources [J]. Anim. Breed. Abstr, 1969, 37:191-202.
    60. Drew M C, He C J, Morgan P W. Programmed cell deth and aerenchyma formation in root [J]. Trens in Plant Science, 2000,5(3): 123-127.
    61. East E M. Heterosis [J]. Genetics, 1936, 21:375-397.
    62. Fazekas G S, Webster R G, Datyner A. Two new staining procedures for quantitative estimation of proteins on electrophoretic strips [J]. Biochim Biophys Acta, 1963, 71, 377-385.
    63. Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse C M. Electrospray ionization for mass spectrometry of large biomoleculars [J]. Science, 1989, 246:64-71.
    64. Fukuda M, Islam N, Woo S H, Yamagishi A, Takaoka M, Hirano H. Assessing matrix assisted laser desorption/ ionization-time of flight-mass spectrometry as a means of rapid embryo protein identification in rice [J]. Electrophoresis, 2003, 24:1319-1329.
    65. Galston A W, Sawhney R K. Polyamines in plant physiology [J]. Plant Physiology, 1990, 94:406-410.
    66. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics [J]. Proteomics, 2004, (12): 3665-36854.
    67. Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance and mRNA expression on a genomic scale [J]. Genome Biol, 2003, 4:117.1-117.8.
    68. Guo M, Rupe M A, Yang X, Crasta O, Zinselmeier C, Smith O S, Bowen B. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis [J]. Theor. AppI Genet,2006, 113:831-845.
    69. Guo M, Rupe M A, Zinselmeier C. Allelic Variation of Gene Expression in Maize Hybrids [J]. Plant Cell, 2004,16:1707-1716.
    70. Guo, M. Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm [J]. Plant J. 2003, 36, 30-44.
    71. Gygi S P, Rist B, Gerber S A, Turecek F, Gelb M H, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags [J]. Nat Biotechnol, 1999, 17:994-999.
    72. Heazlewood J L, Howell, K A, Whelan J, Millar A H. Towards the analysis of the rice mitochondrial proteome [J]. Plant Physiology. 2003,132: 230-242
    73. Hatzimanikatis V, Choe L H, Lee K H. Proteomics: theoretical and experimental considerations [J]. Biotechnol Prog 1999, 15:312-318.
    74. Hendrich B D, Willard H F. Epigenetic regulation of gene expression: the effect of altered chromatin structure from yeast to mammals. Human Molecular Genetics [J], 1995, 4:1765-1777.
    75. Hirano H. Screening of rice genes from the cDNA catalog using the data obtained by protein sequencing [J]. J Prot Chem, 1997,16:533-536.
    76. Hochholdinger F, Hoecker N. Towards the molecular basis of heterosis [J]. Trends Plant Sci. 2007, 12 (9): 427-32.
    77. Holtorf H, Guitton M C, Reski R. Plant functional genomics [J]. Naturwissenschaften, 2002, 89:235.
    78. Horton P, Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture [J]. J Exp Bot, 2000, 51: 475-485.
    79. Imin N, Kerim T, Rolfe B G, Weinman J J. Effect of early cold stress on the maturation of rice Anthers [J]. Proteomics, 2004, 4:1873-1882.
    80. Imin N, Kerim T, Weinman J J, Rolfe B G. Characterisation of rice anther protein expressed at the young microspore stage [J]. Proteomics, 2001,1:1149-1161.
    81. Immer F R. Relation between yielding ability and homozygosis in barley crosses [J]. J Am SOC Agron, 1941,33:200-206.
    82. Jocelyn KC R, Sajid B, James J G. Molly M J, Saravanan R S. Tackling the plant proteome: practiceal approaches, hurdles and experimental tools [J]. Plant J, 2004, 39:715-733.
    83. Jones J W. Hybrid vigor in rice [J]. J Amer Soc Agr, 1926, 423-428.
    84. Jones R A, El-Beltagy A S. Epinasty promoted by salinity or ethylene is indicator of salt-sensitivity in tomatoes [J]. Plant Cell Environ, 1989,12(8):813-817.
    85. Jones, D F. Dominance of linked factors as a means of accounting for heterosis [J]. Genetics, 1917, 2:466-475.
    86. Justin S H F W, Armstrong W. Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice [J]. New Phytologist, 1991, 118(1 ):49-62.
    87. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons [J]. Anal Chem, 1988, 60:1299-2301.
    88. Karp N A, Kreil D P, Lilley K S.Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel eiectrophoresis [J]. Proteomics,2004,4:1421-1432.
    89. Keeble F, Pellow C. The mode of inheritance of stature and time of flowering in peas (Pisum sativum) [J].J Genet, 1910, 1:47-56.
    90. Khan M M, Jan A, Karibe H, Komatsu S. Identification of phosphoproteins regulated by gibberellin in rice leaf sheath [J].PIant Mol Biol 2005. 58:27-40.
    91. Klose J. Protein mapping by combined isoelectric focusing and eiectrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals [J]. Humangenetik, 1975, 26(3):231-243.
    92. Koller A, Washburn M P, Markus L B. Proteomic survey of metabolic pathways in rice [J]. Proc Natl Acad Sci U S A, 2002, 99(18): 11969-11974.
    93. Komatsu S, Kajiwara T, Hirano H. A rice protein library: a data-file of rice proteins separated by two-dimensional electrophoresis [J]. Theor Appl Genet, 1993, 86:935-942.
    94. Komatsu S, Muhammad A, Rakwal R. Separation and characterization of proteins from green and etiolated shoot of rice (Oryza sativa L): towards a rice proteome [J]. Electrophoresis, 1999a, 20:630-636.
    95. Komatsu S, Rakwal R, Li Z. Separation and characterization of proteins in rice suspension cultured cells [J]. Plant Cell Tissue Organ Cult, 1999b, 55:183-192.
    96. Komatsu S, Tanaka N. Rice proteome analysis: A step toward functional analysis of the rice genome [J]. Proteomics, 2005, 5(4): 938-49.
    97. Leonardi A, Dameral C, Hebert Y, Gallais A, de Vienne D.Association of PAP among maize lines with performance of their hybrids [J]. Theor Appl Genet, 1991,82:552-560.
    98. Li B, Wu R. Genetic cause of heterosis in juvenile aspen: A quantitative comparison across intra- and inter-specific hybrids [J]. Theor Appl Genet, 1996, 93:380-391.
    99. Lichtinghagen R, Musholt P B, Lein M, Romer A, Rudolph B, Kristiansen G, Hauptmann S, Schnorr D, Loening S A, Jung K. Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue [J]. Eur Urol,2002, 42:398-406.
    100.MacKay V L, Li X, Flory M R, Turcott E, Law G L, Serikawa K A, Xu X L, Lee H, Goodlett D R, Aebersold R, Zhao L P, Morris D R. Gene expression in yeast responding to mating pheromone:Analysis by high-resolution translation state analysis and quantitative proteomics [J]. Mol Cell Proteomics, 2004, 3:478 -489.
    101.Mager J, Bartolomei MS. Strategies for dissecting epigenetic mechanisms in the mouse [J]. Nat Genet. 2005, 37:1194-1200.
    102.Mehler A H. Studies of reactions of illuminatedchloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents [J]. Arch. Biochem.Biophys, 1951, 33: 65-77.
    103.Meyer S, Pospisil H, Scholten S. (2007) Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern [J]. Plant Mol. Biol. 63,381-391.
    104.Mikami S, Hori H, Mitsui T. Separation of distinct compartments of rice Golgi complex by sucrose density gradient centrifugation [J]. Plant Science, 2001,161 665-675
    105.Mikami S, Kishimoto T, Hori H, Mitsui T. Technical improvement to 2D-PAGE of rice organelle membrane proteins [J]. Biosci Biotechnol Biochem, 2002; 66:1170-1173 106.Minvielle F. Dominance is not necessary for heterosis: a two-locus model [J]. Genet Res, 1987, 49:245-247.
    107. Moons A, Gielen J, Vandekerckhove J, Van der Straeten D, Gheysen G, Van Montagu M. An abscisic-acid and salt-stress-responsive rice cDNAfrom a novel plant gene family [J]. Planta, 1997,202(4): 443- 454.
    108.Moskovitz J, Flescher E, Beriett B S, Azare J, Poston J M, Stadtman E R. Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress [J]. Proc Natl Acad Sci USA, 1998, 95(24):14071-14075.
    109.Moskovitz J, Rahman M A, Strassman J, Yancey S, Kushner S R, Brot N, Weissbach H. Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage [J]. J Biol Chem [J], 1995, 177(3): 502-507.
    110.Nakayama T, Watanabe M, Suzuki H, Toyota M, Sekita N, HirokawaY, Mizokami A, Ito H, Yatani R, Shiraishi T. Epigenetic regulation of androgen receptor gene expression in human prostate cancers [J]. Lab Invest. 2000, 80:1789-1796.
    111 .Neuhoff V, Stamm R, Eibl H. Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: A systematic analysis [J]. Electrophoresis, 1985, 6:427 - 448.
    112.Oda Y, Huang K, Cross F R, Cowburn D, Chait B T. Accurate quantitation of protein expression and site-specific phosphorylation [J]. Proc Natl Acad Sci USA, 1999, 96:6591-6596.
    113.O'Farrell P H. High resolution two-dimensional electrophoresis of proteins [J]. J Biol Chem, 1975, 250:4007-4021.
    114.Ohyanagi H, Tanaka T, Sakai H, et al. 2006. The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. Japonica genome information [J]. Nucleic Acids Research 34, D741-D744.
    115.0piteck GJ, Ramirez S M, Jorgenson, J W, Moseley, M A. Comprehensive two-dimensional high-performance liquid chromatography for the isolation of overexpressed proteins and proteome mapping [J]. Anal Biochem, 1998, 258:349-361.
    116. Pandey A, Mann M. Proteomics to study genes and genomes [J]. Nature, 2000, 405:837-846.
    117.Parker R, Flowers TJ, Moore A L, Harpham N V. An accurate and reproducible method for proteomep rofiling of the effects of salt stress in the rice leaf lamina [J]. Journal of Experimental Botany, 2006,57, 1109-1118.
    118.Paternainii E, lonnquist J H; Heterosis in interracial crosses of com (Zea mays L) [M]; Crop. Sci; 1963.
    119.Power S L. An expansion of Jones's theory for the explanation of heterosis [J]. Am Nat 1944, 78:275-280.
    120.Prag S, Adams J C. Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch protein in animals [J]. BMC Bioinformatics, 2003, 4:42-61.
    121 .Rakwal R, Komatsu S. Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis. Electrophoresis [J], 2000, 21(12): 2492-2500.
    122.Ramani S, Apte S K. Transient expression of multiple genes in salinity-stressed young seedlings of rice (Oryza sativa L.) cv [J]. Bura Rata Biochem Biophys Res Comm, 1997, 223:663-667.
    123.Richey F D. Mock-dominance and hybrid vigor [J]. Science, 1942, 96:280-281.
    124.Romagnoli s, Maddaloni M, Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea may L.) plantlets [J]. Theor Appl Genet, 1990, 80:767-775.
    125.Salekdeh G H, Siopongco J, Wade L J. Proteomic analysis of rice leaves during drought stress and recovery [J]. Proteomics, 2002, 2:1131-1145.
    126.Schnell F W, Cockerham C C. Multiplicative vs. arbitrary gene action in heterosis [J]. Genetics, 1992, 131:461-469.
    127.Shen S, Matsubae M, Takao T, Tanaka N, Komatsu S. A proteomic analysis of leaf-sheaths from rice [J]. J Biochem, 2002, 132:613-620.
    128.Shen S, Sharma A, Komatsu S. Charaterization of proteins responsive to gibberellin in theleaf-sheath of rice (Oryza sativa L.) Seedling using proteome analysis [J]. Biol Pharm Bull, 2003,26(2): 129-136.
    129.Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels [J]. Anal Chem, 1996,68(5): 850-858.
    130.Shull, G.F. The composition of a field of maize [J]. Rep Am Breed Assoc, 1908 5: 51-59.
    131.Smith O S, Smith J S C, Bowen S L, Tenborg R A, Wall S J. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, heterosis.and RFLPs[J].Theor Appl Genet, 1990,80:833-840.
    132.Song R, Messing J. (2003) Gene expression of a gene family in maize based on nonlinear haplotypes [J]. Proc. Natl. Acad. Sci. U. S. A. 100, 9055-9060.
    133.Song X, Ni Z, Yao Y, Xie C, Li Z, Wu H, Zhang Y, Sun Q. Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents [J]. Proteomics, 2007,7,:3538-3557.
    134.Stuber C W, Lineoin S E, Wolff D W, Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers [J].Genetics, 1992, 132:823-839.
    135.Stupar, R M, Springer N M. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid [J]. Genetics, 2006, 173: 2199-2210.
    136.Sun Q X, Ni Z F, Liu Z Y. Differential gene expression between wheat hybrids and their parental inbreds in seedling leaves [J]. Euphytica, 1999,106:117-123.
    137.Swanson-Wagner, R.A. Jia Y, DeCook R, Borsuk L A, Nettleton D, Schnable P S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents [J]. Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 6805-6810.
    138.Switzer RCMerril CR.and Shifrin SA highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels[J].Anal Biochem,1979, 98:231 - 237.
    139.Talloczy Z, Menon S, Neigeborn L, Leibowitz M J. The [kil-d] cytoplasmic genetic element of yeast results in epigenetic regulation of viral M double-stranded RNA gene expression [J]. Genetics,1998,150:21-30.
    14O.Tasftaris S A. Molecular aspects of heterosis in plants [J]. Plant Physiol, 1995, 94: 362-370.
    141.Tsaftaris S A and Kafka M. Mechanisms of heterosis in crop plants [J]. J Crop Production, 1998, 1:95-111.
    142.Tsugita A, Kawakami T, Uchiyama Y, Kamo M. Separation and characterization of rice proteins [J]. Electrophoresis, 1994, 15:708-720.
    143.Unlu M, Margan M E, Minden J S. Difference gel electrophoresis: A single gel Method for detecting changes in Protein extracts [J]. Electrophoresis, 1997, 18:2071-2077.
    144.Uzarowska A, Keller B, Piepho H-P, Schwarz G, Ingvardsen C, Wenzel G, Lubberstedt T. Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height [J]. Plant Mol Biol, 2007,63: 21-34.
    145.Wang R L, Stec A, Hey J, Lukens L, Doebley J. The limits of selection during maize domestication [J]. Nature, 1998, 398(18): 236-238.
    146.Wang X, Cao H, Zhang D, Li B, He Y, Li J, Wang S. Relationship between differential gene expression and heterosis during ear development in maize (zea mays L.) [J]. J Gen Geno,2007,34(2): 160-170.
    147.Wasinger V C, Cordwell S J, Cerpa-Poljak A, Yan J X, Gooley A A, Wilkins M R. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995,16(7):1090-1094.
    148.Wolffe A P, Matzke MA. Epigenetics: regulation through repression [J]. Science, 1999, 286:481-486.
    149.Woo S H, Fukuda M, Markus L B, Andon N L. Efficient peptide mapping and its application to identify embryo proteins in rice proteome analysis [J] Electrophoresis, 2002, 23:647-654.
    150.Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis molecular arkers [J]. Genetics, 1995, 140:745-754.
    151.Xie Z S, Wang J Q, Cao M L, Zhao C F, Zhao K, Shao J M, Lei T T, Xu N Z, Liu S Q. Pedigree analysis of an elite rice hybrid using proteomic approach [J]. Proteomics, 2006, 6(2): 474-486.
    152.Xiong L Z, Xu C G, Maroof M A S. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation sensitive amplification polymophism technique [J]. Moe Gen Gent, 1999, 261:439-446.
    153.Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice [J]. Nature Genetics, 2008, 40:761-767.
    154.Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N. Comparative Proteomic Analysis Provides New Insights into Chilling Stress Responses in Rice [J]. Mol Cell Prot, 2006, 5:484-496.
    155.Yasuhara M, Mitsui S, Hirano H, Takanabe R, Tokioka Y, lhara N, Komatsu A, Seki M, Shinozaki K, Kiyosue T. Identification of ASK and clock-associated proteins as molecular partners of LKP2 (LOV kelch protein 2) in Arabidopsis [J]. J Exp Bot, 2004, 55(405): 2015-2027.
    156.Zang X, Komatsu S. A proteomics approach for identifying osmotic-stress-related proteins in rice [J]. Phytochemistry, 2007,68(4): 426-437.
    157.Zhao C, Wang J, Cao M, Zhao K. Proteomic changes in rice leaves during development of field-grown rice plants[J].Proteomics,2005,5:961-972.
    158.Zhong B,Karibe H,Komatsu S,Ichimura H.Screening of rice genes from a cDNA catalog based on the sequence data-file of proteins separated by two-dimensional electrophoresis[J].Breed Sci,1997,47:245-251.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.