黄蜀葵查尔酮合成酶基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酮类化合物系色原烷或色原酮的衍生物,其基本骨架具有C_6—C_3—C_6的特点,即指两个苯环(A与B环)通过中央三碳链相互连接而成的一系列化合物。它们的种类很多,包括黄酮、异黄酮、黄酮醇、查尔酮等。黄酮类化合物是一类在高等植物中大量存在的重要的次生代谢产物,它们有很多重要的功能,例如,参与花色的形成、UV防护、抵抗病原体、植物与微生物之间相互作用的信号分子、影响花粉生育率以及调节植物生长。目前研究表明,它们与人类的健康有着密切的关系。黄酮类化合物是药用植物中主要活性成分之一,具有消除氧自由基、抗氧化、抗炎、抗过敏、抗癌、雌激素样作用、保护心脑血管系统等多种药理作用。
     查尔酮合成酶(chalcone synthase,CHS)是所有黄酮类化合物合成的关键酶,它介导了此类化合物合成的第一步。它催化3分子的丙二酰辅酶A(malonyl-CoA)与1分子对羟基苯丙烯酰辅酶A(4-coumaroyl-CoA)缩合成柚皮素查尔酮(naringenin-chalcone),以此为支架其他黄酮类化合物得以衍生出来。目前,包括单子叶和双子叶植物的很多物种中,有的物种查尔酮合成酶已经得到纯化且基因组、cDNA克隆得到分离,有的或者得到了纯化酶,或者分离得到了基因组、cDNA克隆。在很多植物中,CHS的编码基因组成了一个多基因家族,例如,矮牵牛、豌豆、大豆等。不同物种中查尔酮合成酶氨基酸水平的同源性很高,79~91%。关于查尔酮合成酶结构的分析,不仅可以为研究植物中聚酮化合物合成的反应机制提供大量有用的信息,也为通过基因工程手段生成新的酶,并利用这些酶合成新的物质提供了可能性。查尔酮合成酶活性的积累与黄酮类化合物的积累是紧密相关的,因此对查尔酮合成酶的分子生物学研究可以为在农作物中提高黄酮类化合物的合成,增强农作物的抗病能力,同时产生对人类健康有益的食品奠定基础。
     本研究利用RT-PCR及RACE方法,从黄蜀葵花中(Abelmoschus manihot(L.)Medicus)克隆得到一个新的含有1309个核苷酸的CHS基因,其最大的开放阅读框(ORF)有1173 bp,推测其蛋白由390个氨基酸组成。我们将该基因命名为AmCHS。通过在Gene Bank中BLAST及生物学软件中进行核苷酸和蛋白的同源序列比较,我们推测所得的基因为黄蜀葵CHS全长cDNA序列。构建了卡那霉素抗性的植物表达载体pC2TCHS,用农杆菌介导法将CHS基因转入了烟草NC89中,获得15株卡那霉素抗性的植株。检测其中的4株,PCR结果表明其中2株为阳性植株,说明黄蜀葵查尔酮合成酶基因已经整合到烟草基因组中。
Flavonoids, derivatives of chromone or chromane, are built upon a C6-C3-C6 flavone skeleton in which the three-carbon bridge between the phenyl groups is commonly cyclized with oxygen. There are diverse group of plants containing flavone, isoflavone, flavonol, chalcone, ect. Flavonoids form an important class of secondary metabolites which are abundant in all higher plants. They play important roles in flower pigmentation, protection against UV light, defence against phytopathogens, signal transduction between plants and microorgnism interactions, pollen fertilization and growing regulation. Flavonoids are the mostly active components in the officinal plants, and exhibit a wide range of human health-promoting activities that are currently the focus of intense study. Flavonoids have been found to own potent antioxidant and free radical scavenging activities in vitro. There is growing evidence from human consumption studies supporting the protective roles of flavonoids in cardiovascular diseases and cancer. Ma
    ny flavonoids have been found to possess antiphlogistic, estrogenic or anti-allergenic properties.
    Chalcone synthase (CHS) is the first committed enzyme in the flavonoid biosynthesis catalyzing the condensation of 3 moleculars of malonyl-CoA and one molecular of hydroxycinnamoyl-CoA ester to form a naringenin-chalcone intermediate. Further isomerization and substitution of this central intermediate leads to the synthesis of other flavonoids. CHSs has been isolated from different plant species, including both monocots and dicots, some of their genomic DNAs and/or cDNAs have also been isolated. CHS is encoded by a multigene family in many plants, such as Petunia, Pea, Soybean, and so on. The amino acid identity among CHSs from different species is high, ranging from 79% to 91 %. The three-dimensional structure of CHS elucidates the chemical basis of plant polyketide biosynthesis and provides a framework for engineering CHS-like enzymes to produce new products. Enhancing flavonoid biosynthesis in chosen crops may provide new raw materials that have the potential to be used in foods designed for specific bene
    fits to human health.
    In this study, a novel cDNA encoding chalcone synthase was cloned from the flower of Abelmoschus manihot (L.) Medicus by RT-PCR and RACE. The open read frame of the gene has 1173bp and encodes a polypeptide of 390 amino acids. We named this gene AmCHS. We presume this new cDNA is the CHS full-length cDNA by BLAST and alignment of nucleotide and amino acid. A plant constitutive expression vector under the control of CaMV35S promoter was constructed by inserting the AmCHS cDNA into pCAMBIA2301-pT Q 4A. The AmCHS gene was introduced to tobacco by Agrobacterium-mediated transfer method, and 15 individual kanamycin resistant plants have been obtained. Results of PCR analysis showed that the foreign AmCHS gene has been integrated into the tobacco genome in two transformants.
引文
1.[日]刈米达夫著.植物化学[M].北京:科学出版社,1985.108-131
    2.陈孝泉编.植物化学分类学[M].北京:高等教育出版社,1990.80-85.
    3.陈瑗,周玫.自由基医学[M].北京:人民军医出版社,1991.
    4.崔桅,陈玉兰,王玉亮等.黄蜀葵花提取物对人中性粒细胞活化及分泌IL-8的影响.天津药学2003,8,15(4):1-3.
    5.范丽,董六一等。黄蜀葵花总黄酮抗炎解热作用.安徽医科大学学报2003,38(1):25-27.
    6.傅丰永,刘永隆,尚天民等.黄酮类化合物在植物界的分布,其药用价值和新药的寻找[J].植物学报,1980,22(1):77-92.
    7.傅荣昭,马江生,曹光诚,等.观赏植物色香形基因工程研究进展[J].园艺学报,1995,22(4):381-385.
    8.富杭育.中草药和天然药物中的抗病毒活性物质及其作用原理[J].药学通报,1988,23(4):195-200.
    9.高杉,董六一,岑德意,等.黄蜀葵总黄酮对脑缺血损伤的保护作用.中国中医基础医学杂志,2002,8(6):19,35.
    10.谷利伟,翁新楚.食用天然抗氧化剂研究进展[J].中国油脂,1997,22(3):37-39.
    11.胡春.黄酮类化合物的抗氧化性质[J].中国油脂,1996,21(4):18-21.
    12.黄河胜,马传庚,陈志武.黄酮类化合物药理作用研究进展[J].中国中药杂志2000,25(10).
    13.黄华艺,查锡良.黄酮类化合物抗肿瘤作用研究进展.中国新药与临床杂志,2002年7月,21(7):428-433.
    14.李茂星,谢景文,葛欣.芦丁药效学研究进展[J].华西药学志,2000,15(6).
    15.李庆林,陈志武,马传庚.黄蜀葵花总黄酮对心肌损伤的保护作用及其机制.中国药理学通报,2001,17(4):466-468.
    16.李文魁,林新,罗崇念等.异戊烯基黄酮在植物界的分布及其生理活性[J].见:国外医药—植物药分册,1995,10(5):211-212.
    17.李雄彪,张金忠编.简明植物生物化学[M].天津:南开大学出版社,1992.343.
    18.林文群,陈忠,陈金玲,等.黄蜀葵种子形态及其化学成分的研究.天然产物研究与开发,2002,14(3):41-44.
    19.刘莉华,宛晓春,李大祥.黄酮类化合物抗氧化活性构效关系的研究进展(综述).安徽农业大学学报,2002,29(3):265-270
    20.刘志辉,冯淑琴,李国荣.不同采收时间及干燥方法对黄蜀葵花总黄酮含量的影响.南京中医药大学学报,1999,15(3):157-159.
    21.刘志辉.黄蜀葵花的栽培与采收加工.中国野生植物资源,1999,18(1):46-47.
    22.马云峰,尚富德.黄酮类化合物在药用植物中的分布.生物学杂志,2003,20(1):35-39
    23.马自超,庞业珍编著.天然食用色素化学及生产工艺学[M].北京:中国林业出版社,1994,37-55.
    24.毛峻琴.大豆异黄酮的研究进展.中草药.2000,31(1):61-64
    
    
    25.毛雪石,徐世平.黄酮类化合物的抗肿瘤活性[J].国外医学药分册,1995,22(2):92-96.
    26.邵莉,李毅,陈章良.查酮合成酶基因对转基因植物花色和育性的影响[J].植物学报,1996,38(7):517-524。
    27.王淑芹.黄蜀葵的开发利用.中国土特产,1995,(3):14.
    28.王先荣,王兆全,李颖.黄蜀葵的化学成分研究.植物学报,1981;23(3):222.
    29.吴文君,姬志勤,胡兆农.天然产物与消化毒剂[J].农药,1997,36(6):6-9.
    30.徐柏颐.黄蜀葵花醇提物治疗家兔系膜增殖性肾炎的实验研究.江苏中医,1996,17(3):42-44.
    31.姚新生主编.天然药物化学[M].第二版,北京:人民卫生出版社,1996,191-193,194-1952
    32.尹莲芳,刘璐,弓玉祥,等.中药黄蜀葵花对肾病大鼠尿中透明质酸的影响.新中医,2000,32(9):32-33.
    33.尹莲芳,刘璐,弓玉祥,等.黄蜀葵花对肾病综合征模型大鼠肾小管损伤保护作用的研究.首都医科大学学报,2000,21(3):209-211.
    34.尹莲芳,濮家伉,弓玉祥,等.黄蜀葵花对阿霉素肾病大鼠钠潴留改善作用的机制.中华肾脏病杂志,1999,15(5):324-325.
    35.余江毅,熊宁宁,郭慧芳,邓颖等.黄蜀葵花醇提物治疗糖尿病肾病的临床观察.中国中西医结合杂志,1995,15(5):263-265.
    36.张鞍灵,高锦明,王姝清等.黄酮类化合物的分布及开发利用.西北林学院学报2000,15(1):69-74.
    37.张艳,田庆伟.大豆异黄酮抗癌作用研究进展.中国食品添加剂,1:12-15.
    38.赵军.黄酮类化合物的抗氧作用机制.华北煤炭医学院学报,2003,5(3):306-307.
    39.郑霞,潘苏华.黄蜀葵花抗炎作用的实验研究.徐州医学院学报,1994,14(3):226-228.
    40.周荣汉编.药用植物化学分类学[M].上海:上海科学技术出版社,1988.66-84,87,268.
    41.周荣汉主编.中药资源学[M].北京:中国医药科技出版社,1993.48-52,109-111.
    42.周正华,杜安全.黄蜀葵花总黄酮的含量测定.基层中药杂志,2000,14(5):21.
    43.朱晓薇.国外抗炎植物药研究进展[J].国外医药.植物药分册,1998,13(2):51-59.
    44. Adlercreutz H, Mazur W. Phyto-estrogens and western diseases. Ann. Med, 1997, 29: 95-120.
    45. Akashi T, Aoki T, Ayabe S. Cloning and functional expression ofa cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiology, 1999, 121 (3): 821-828.
    46. Beerhues L, Robeneck H, Wiermann R. Chalcone synthases from spinach (Spinacia oleracea L. ). Planta, 1988, 173: 544-553.
    47. Britsch L. Purification and characterization offlavone synthase 1, a 2-oxoglutarate-dependent desaturase. Arch Biochem Biophys, 1990, 282:152-160.
    48. Brown J E, Khodr H, Hider R C, etal. Structural dependence offlavonoid interactions with Cu~(2+) ions: implications for their antioxidant properties [J]. Biochemical Journal, 1998, 330(3): 1173~1178
    
    
    49. Chappell J, Hahlbrock K. Transcription of plant defense genes in response to UV light or fungal elicitor. Nature, 1984, 311: 76-78.
    50. Christensen A B, Gregersen P L, Schrder J, Collinge D B. A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV-light and pathogen attack. Plant Mol. Biol, 1998, 37: 849-857.
    51. Courtney-Gutterson N, Napoli C, Lemieux C, Morgen A, Firoozababy E, Robinson K E P Modification of flower color in florist's chrysanthemum: production of white-flowering variety through molecular genetics. Biotechnology, 1994, 12:268-271.
    52. Cramer C L, Ryder T B, Bell J N, Lamb C J. Rapid switching of plant gene expression induced by fungal elicitor. Science, 1984, 227: 1240-1242.
    53. De cooman L, Everaert E, Fache P, Van, sumere C F. Flavonoid biosynthesis in petals of Rhododendron simsii. Phytochemistry, 1993, 33: 1419-1426.
    54. Dixon R A, Harrison M J. Activation. structure and organization of genes involved in microbial defence in plants. Adv Genet, 1990, 28:166-217
    55. Dixon R A, Steele C L. Flavonoids and isoflavonoids-a gold mine for metabolic engineering. Trends in Plant Science, 1999, 4: 394-400.
    56. Dixon R A. Isoflavonoid: biochemistry, molecular biology and biological functions in comprehensive natural products, Chemistry, 1999, (Vol. 1)(sankawa, u., ed. ), pp: 773-823
    57. Downey James M. The Role of Xan the Oxidant duting Myocardial Ischemia in Several Species including Man[J]. J Mol Cell Cardial, 1988:20(s):55~59.
    58. Durbin M L, McCaig B, Clegg M T. Molecular evolution ofchalcone synthase multigene family in the morning glory genome. Plant Mol. Biol, 2000, 42: 79-92.
    59. Ebel J, Hahlbrock K. Biosynthesis. In: The Flavonoids. Advances in Research. Harborne JB and Mabry TJ (eds), Chapman and Hall, London, 1982: 641-679.
    60. Elomaa P, Holton T Modification of flower colour using genetic engineering. Biotechnology and Genetic Engineering Reviews, 1994, 12: 63-88.
    61. Elomaa P, Honkanen J, Puska R, Seppanen P, Helariutta Y, Mehto M, Kotilainen M, Nevalainen L, Teeri T H. Agrobacterium mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Bio/Technology, 1993, 11: 508-511.
    62. Ferrer J L, Jez J M, Bowman M E, Dixon R A, Noel J P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol, 1999, Aug; 6(8): 775-84.
    63. Franken P, Niesbach-Klsgen U, Weydemann U, Maréchal-Drouard L, Saedler H, Wienand U. The duplicated chalcone synthase genes C2 and Whp (white pollen) of Zea mays are independently regulated; evidence for translational control of Whp expression by the anthocyanin intensifying gene. EMBO J, 1991, 10: 2605-2612.
    64. Fritz, W. A, et al. Dietary genistein: perinatal mammary caner prevention, bioavailability and toxicity testing in the rat. Carcinogenesis, 1998, 19: 2151-2158.
    65. Habtemariam S. Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor Necrosis
    
    factor-a in L-929 tum or cells [J]. JNatProd, 1997, 60(8):775-778.
    66. Hahlbrock K, Scheel D. Physiology and molecular Biology of phenylpropanoid metabolism. Ann Rev Plant Mol Biol, 1989, 40: 347-369.
    67. Hashimoto Y, Ishizaki T, Shudo K. Chemistry of benzoxazinoids produced by plants as phytoalexin. Yakugaku Zasshi, 1995, 115:189-200.
    68. Heller W, Forkman G. Biosynthesis of flavonoids. in: the flavonoids, advances in research since 1986. Harborne JB (ed), Chapman and Hall, London 1993.
    69. Hipskind JD, Hanau R, Leite B and Nicholson RL. Phytoalexin Accumulation in Sorghum: Identification of an Apigeninidin Acyl Ester. Physiol Mol Plant Pathol 36:381-396 (1990).
    70. Hollman, P. C. Katan, M. B. Bioavailability and health effects of dietary flavonols in man. Arch. Toxicol, 1998, (Suppl. ) 20: 237-248.
    71. Hrazdina G, Wagner G J. Metabolic pathways as enzyme complexes: evidence for the synthesis ofphenylpropanoids and flavonoids of membrane-associated enzyme complexes. Arch Biochem Biophys, 1985, 237: 88-100.
    72. HUANG Jin-Xia, QU Li-Jia, YANG Ji, YIN Hao, GU Hong-Ya. A Preliminary Study on the Origin and Evolution of Chalcone Synthase (CHS) Gene in Angiosperms Acta Botanica Sinica 2004, 46 (1): 10-19
    73. HuCQ, Chen K, Shi Q etal. Anti-AIDSagents, 10, acacetin-7-O-β-D-galactopyranoside, an anti-HIV principale from chrysanthemum morifolivm and a structure activity correlation with some related flavonoids [J]. JNatProd, 1994, 57(1):42~5125.
    74. Ishimi, Y. et al. Selective effects ofgenistein, a soybean isoflavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency, Endocrinology, 1999, 140:1892-1900.
    75. Jez J M and Noel J P. Mechanism of chalcone synthase: pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase. J Biol Chem, 2000, 275: 39640-3964.
    76. Junghans H, Dalkin K I, Dixon R A. Stress responses in Alfalfa (Medicago sativa L. ). 15. characterization and expression patterns of members of a subset of the chalcone synthase multigene family. Plant Mol Biol, 1993, 22: 239-253.
    77. Kameoka S, Leavitt P, Chang C, etal. Expression of antioxidant proteins in human intestinal Caco-2cells treated with dietary flavonoids [J]. Cancer Letters, 1999, 146(2): 161~167.
    78. Katsube N, lwashita K, Tsushida T, Yamaki K & Kobori M Induction of apoptosis in cancercells by bilberry (Vaccinium myrtillus) and anthocyanins. J Agric Food Chem (2003)50: 519-525.
    79. Knogge W, Schmelzer E, Weissenbck G. The role ofchalcone synthase in the regulation of flavonoid biosynthesis in developing oat primary leaves. Arch Biochem Biophys, 1986, 250: 364-372.
    80. Koes R E, Quattrocchio F, Mol J N M. The flavonoid biosynthetic pathway in plants:function and evolution. Bioessays, 1994, 16: 123-132.
    
    
    81. Koes R E, Spelt C E, Mol J N M, Gerats A G M. The chalcone synthase multigene family of Petunia hybrida: sequence homology, chromosomal location and evolutionary aspects. Plant. Mol. Biol, 1987, 10: 159-169.
    82. Koes R E, Spelt C E, ReifH J, Van den Elzen P J M, Veltkamp E, Mol J N M. Floral tissue of petunia hybrida(v30) expresses only one member of the chalcone synthase multigene family. Nucleic Acids Res. 1986, 14: 5229-5239.
    83. Koes R E, Spelt C E, van den Elzen P J M, Mol J N Mo Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida. Gene, 1989, 81: 245-257.
    84. Kreuzaler F, Hahlbrock K. Enzymic synthesis of aromatic compounds in higher plants: formation of naringenin (5, 7, 4'-trihydroxy-flavanone) from p-coumaroyl-coenzyme A and malonyl-coenzyme A. FEBS Lett, 1972, 28: 69-72.
    85. Kubitzki K. Phenylpropanoid metabolism in relation to land plant origin and diversification. J. Plant Physiol, 1987, 131: 17-24.
    86. Lanz T, Tropf S, Marner F-J, Schr6der J, Schrder G. The role of cysteines in polyketide synthases. site directed mutagenesis ofresveratrol and chalcone synthases, two enzymes in different plant-specific pathways. J Biol Chem, 1991, 266: 9971-9976.
    87. Lawton M A, C J Lamb. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Molecular and Cellular Biol, 1987, 7: 335-340.
    88. Lo S C C, Nicholson, R L. Molcular cloning ofchalcone synthase genes from sorgum. (Umpublieshed) (http://www. ncbi. nlm. nih. gov/).
    89. Lue W L, Kuhn D, Nicholson R L. Chalcone synthase activity in sorghum mesocotyls inoculated with Colletrichum graminicola. Physiol Mol Plant Pathol, 1989, 35:413-422.
    90. Lukaszewicz M, Matysiak-Kata I, Skala J, Fecka I, Cisowski W, Szopa J. Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J Agric Food Chem. 2004 Mar 24; 52(6): 1526-33.
    91. Markham K R. Bryophyte flavonoids, their structures, distribution, and evolutionary significance, in Bryophytes their Chemistry and Chemical Taxonomy (H. D. Zinsmeister and R. Mues, eds. ), Clarendon Press, Oxford. 1990, pp: 143-161.
    92. Markham K R. Distribution of flavonoids in the lower plants and its evolutionary significance. in the Flavonoids(J B Harbome, ed. ), Chapman and Hall, London. 1988, pp: 427-468.
    93. Martin C R. Structure, function, and regulation of the chalcone synthase in International Review of Cytology: A Survey of Cell Biology (K. Jeon and J Jarvik, eds), Academic Press, New York. 1993, pp: 233-284.
    94. Meier B M, Shaw N, Slusarenko A J. Spatial and temporal accumulation of defense gene transcripts in bean (Phaseolus vulgaris) leaves in relation to bacteria-induced hypersensitive cell death. Molecular Plant Microbe Interactions, 1993, 6: 453-466.
    
    
    95. Moini H, Packer L, Guo Q O. Enzyme inhibition and protein-binding action of the procyanid in-rich French maritime pine bark extract, pycnogenol: Effect on xanthineoxidase [J]. Journal of Agricultural and Food Chemistry, 2000, 48(11):5630~5639.
    96. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalone synthase gene into petunia results in reversible cosuppession of homologous genes in trans. The Plant Cell, 1990, 2: 279-289.
    97. Narozna D, Pas J, Schneider J, Madrzak CJ. Two sequences encoding chalcone synthase in yellow lupin (Lupinus luteus Ⅰ. ) may have evolved by gene duplication. Cell Mol Biol Lett. 2004; 9(1):95-105.
    98. Nicholson RL and Hammerschmidt R. Phenolic Compounds and their Role in Disease Resistance. Ann Rev Phytopathol (1992)30: 369-389.
    99. Nicholson RL, Kollipara SS, Vincent JR, Lyons PC and Cadena-Gomez G. Phytoalexin Synthesis by the Sorghum Mesocotyl in Response to Infection by Pathogenic and Nonpathogenic Fungi. Proc Nat Acad Sci USA (1987)84:5520-5524.
    100. Nicholson RL. Colletotrichum graminicola and the Anthracnose Diseases of Maize and Sorghum. In: Colletotrichum: Biology, Pathology, and Control, Bailey JA and Jeger M J (eds), Wallingford, Cab International, (1992) 186-202.
    101. Packer L, Rimbach G, Virgili F. Antioxidant activity and biologic properties of a procyanid in-rich extract from pine (Pinusmaritima) bark, pycnogenol [J]. Free Radical Biology and Medicine, 1999, 27(5~6):704~724.
    102. Panaro N J, Popescu N C, Harrisl S R and U P Thorgeirsson flavone acetic acid induces a G2/M cell cycle arrest in mammary carcinoma cells British Journal of Cancer, 1999, 80: 1905-1911.
    103. Reimold U, Kroeger M, Kreuzaler F, Hahlbrock K. Coding and 3'noncoding nucleotide sequence of chalcone synthase messenger RNA and assignment of amino acid sequence of the enzyme. EMBO J, 1983, 2:1801-1806.
    104. Rhode W, Dorr S, Salamini F, Becker D. Structure of a chalcone synthase gene from Hordeum vulgare. Plant Mol. Biol, 1991, 16:1103-1106.
    105. Rice-Evans, C. A. and Miller, N. J. Antioxidant activities of flavonoids as bioactive components of food. Biochem. Soc. Trans, 1996, 24: 790-794.
    106. Ross JA & Kasum C M Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu Rev Nutr (2002)22: 19-34.
    107. Ryan K, Swinny E, Markham K & Winefield C (2002) Flavonoid gene expression and UV photo protection in transgenic and mutant Petunia leaves. Phytochemistry 59: 23-32.
    108. Ryder T B, Cramer C L, Bell J N, Robbins M P, Dixon R A, Lamb C J Elicitor rapidly induces chalcone synthase mRNA in Phaseolus vulgaris cells at the onset of the phytoalexin defense response. Proceedings National Academy of Sciences USA, 1984, 81: 5724-5728.
    109. Ryder T B, Hedrick S A, Bell J N, Liang X, Clouse S D, Lamb C J. Organization and
    
    differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris. Mol Gen Genet, 1987, 210: 219-233.
    110. Salisbury F B, Ross C. PLANT pHYSIOLOGY. 北京大学生物系等译,植物生理学.北京:科学出版社,1979:317.
    111. Saslowsky D E, Dana C D, Winkel-Shirley B. An allelic series for the chalcone synthase locus inArabidopsis. Gene, 2000, 255: 127-138.
    112. Schubert S Y, Lansky E R Neeman I. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids [J]. Journal of Ethnopharmacology, 1999, 66(1): 11~17.
    113. Sekiya J, Kajiwara T, Monma T, et al. Interaction of Tea Catechins with Proteins Formation of Protein Precipitate[J]. Agric Biol Chem, 1984, 48(8):8~9.
    114. Sestili P, Guidarelli A, Dacha M, etal. Quercetin prevents DNA single strand breakage and cytotoxicity caused bytert-butyl hydroperoxide: free radical scavenging versusir on chelating mechanism [J]. Free Radical Biology and Medicine, 1998, 25(2): 196~200
    115. Setchell, K. D. R, Cassidy, A. dietary isoflavones: biological effects and relevance to human health. J. Nutr. 1999, 129:758s-767s.
    116. Simoes CMO, Amoros M, Girre Let al. Antiviral Activity of Ternatin and Meliterrnatin, 3 methoxyflavones form species of Rutaceae [J]. J Nat Prod, 1990, 53(4):989~992.
    117. Sommer H, Saedler H. Structure of the chalcone synthase gene ofAntirrhinum majus. Mol Gen Genet, 1986, 202: 429-434.
    118. Stafford H A. Flavonoid evolution: an enzymic approach. Plant Physiol, 1991, 96: 680-685.
    119. TorelJ, CillardJ, CillardP. Antioxidant activity of flavonoids and reactivity with peroxyradical [J]. Phytochemistry, 1986, 25(2):383~385
    120. Tropf S, Karcher B, Schrder G, Schrder J. Reaction mechanisms of homodimeric plant polyketide synthases (stilbene and chalcone synthase). A single active site for the condensing reaction is sufficient for synthesis of stilbenes, chalcones, and 6'-deoxychalcones. J Biol Chem, 1995, 270: 7922-7928.
    121. Van der Krol A R, Lenting P E, Veenstra J, van der Meer I M, Koes R E, Gerats A G M, Mol J N M. Stuitje A R An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature, 1988, 333: 866-869.
    122. Van der Krol A R, Mur LA, de Lange E Gerats A G M, Mol J N M. Stuitje A R. Antisense chalcone synthase genes in petunia: visualization of variable transgene expression. Mol Gen Genet, 1990, 220: 204-212.
    123. Van der Krol A R, Mur, L A, Beld M M. Flavonnoid genes in petunia: addition of a limited number ofgene copies may lead to a suppression of gene expression. The Plant Cell, 1990, 2: 291-299.
    124. Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, de Vos CH, Colliver S. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J
    
    Exp Bot 2002 Oct; 53(377): 2099-2106
    125. Wienand U, Weydemann U, Nielsbach-Kloesgen U, Peterson PAI, Saedler H. Molecular cloning of the c2 locus ofZea mays, the gene coding for chalcone synthase. Mol. Gen. Genet, 1986, 203: 202-207.
    126. Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5: 218-223.
    127. Yasukawa K, Takido M, Takeuchi M, et al. Effects of chemical constituents from plants on 12-O-tetradecanoylphorbol-13-acetate induced in flammation in mice [J]. Chem Pharm Bull, 1989, 37(4): 1071~1073.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.